Bất đẳng thức hoán vị là những bài toán rất đẹp bởi sự phát biểu đơn giản nhẹ nhàng của chúng. Tuy nhiên, việc giải chúng thì ngược lại, việc tìm một lời giải cho chúng vô cùng vất vả và khó khăn. Và đối với những bài toán có 2 đẳng thức trở lên thì mọi việc lại càng trở nên khó khăn hơn. Do độ khó của các bài toán nên đôi khi một số lời giải có đôi chút dài, nhưng bù lại là ta có thể làm chặt cho một số bài toán. Dưới đây là một số bài toán bất đẳng thức hoán vị được thầy Lê Khánh Sỹ biên soạn, với rất nhiều bài toán khó đi kèm lời giải khủng hy vọng sẽ giúp ích được cho những ai đam mê và yêu thích về bất đẳng thức.
[Lê Khánh Sỹ] Bất Đẳng Thức Hoán Vị
# Chọn Đội Tuyển
# Contest
# Đề Thi HSG
# Duyên Hải Bắc Bộ
# Gặp Gỡ Toán Học
# HSG 10
# HSG 11
# HSG 12
# HSG 9
# IMO
# International
# Journal
# National
# Kỷ Yếu
# Olympic 10
# Olympic 11
# Olympic 12
# Olympic KHTN
# Olympic Sinh Viên
# Tạp Chí
# Trường Đông
# Trường Hè
# Trường Thu
# Trường Xuân
# Trại Hè Hùng Vương
# Trại Hè Phương Nam
# TST
# Tuyển Sinh 10
# VMO
# VNTST
Bất Đẳng Thức
Chuyên Đề
Lê Khánh Sỹ
MOlympiad.NET là dự án thu thập và phát hành các đề thi tuyển sinh và học sinh giỏi toán. Quý bạn đọc muốn giúp chúng tôi chỉnh sửa bài viết này, xin hãy để lại bình luận facebook (có thể đính kèm hình ảnh) hoặc google (có thể sử dụng $\LaTeX$) bên dưới. BBT rất mong bạn đọc ủng hộ UPLOAD đề thi và đáp án mới hoặc liên hệ Chúng tôi nhận tất cả các định dạng của tài liệu: $\TeX$, PDF, WORD, IMG,... | |
- Đề Thi Chọn Đội Tuyển Tỉnh Bình Phước Dự Thi Học Sinh Giỏi Quốc Gia THPT 2021-2022
- Toán Học Tuổi Trẻ
- [Phạm Văn Thuận, Lê Vĩ] Bất Đẳng Thức Suy Luận Và Khám Phá
- [Trần Phương] Những Viên Kim Cương Trong Bất Đẳng Thức Toán Học
- [Nguyễn Nhất Huy, Nguyễn Minh Tuấn, Phan Quang Đạt, Dương Quỳnh Châu, Lăng Hồng Nguyệt Anh, Doãn Quang Tiến] Số Học Hướng Tới Kì Thi Chuyên Toán
- [Nguyễn Song Thiên Long] Tổng Hợp Các Bài Toán Hay Luyện Thi Olympic Toán
- [Nguyễn Tài Chung] Bồi Dưỡng Học Sinh Giỏi Phương Trình Hàm
- Đề Thi Tuyển Sinh Lớp 10 THPT Chuyên TP Hải Phòng 2022-2023 (Toán Chung)
- Ứng Dụng Nguyên Lý Dirichlet Trong Chứng Minh Bất Đẳng Thức
- [Kỷ Yếu] Chuyên Đề Hội Thảo Các Trường THPT Chuyên Khu Vực Duyên Hải - Đồng Bằng Bắc Bộ 2020