[Shortlists & Solutions] Entirely Legitimate (Junior) Math Olympiad 2013


  1. Find all triples $(f,g,h)$ of injective functions from the set of real numbers to itself satisfying $$\begin{align*} f(x+f(y)) &= g(x) + h(y) \\ g(x+g(y)) &= h(x) + f(y) \\ h(x+h(y)) &= f(x) + g(y) \end{align*}$$ for all real numbers $x$ and $y$. (We say a function $F$ is injective if $F(a)\neq F(b)$ for any distinct real numbers $a$ and $b$.)
  2. Prove that for all positive reals $a,b,c$, \[\frac{1}{a+\frac{1}{b}+1}+\frac{1}{b+\frac{1}{c}+1}+\frac{1}{c+\frac{1}{a}+1}\ge \frac{3}{\sqrt[3]{abc}+\frac{1}{\sqrt[3]{abc}}+1}. \]
  3. Find all $f:\mathbb{R}\to\mathbb{R}$ such that for all $x,y\in\mathbb{R}$, $f(x)+f(y) = f(x+y)$ and $f(x^{2013}) = f(x)^{2013}$.
  4. Positive reals $a$, $b$, and $c$ obey $$\frac{a^2+b^2+c^2}{ab+bc+ca} = \frac{ab+bc+ca+1}{2}.$$ Prove that \[ \sqrt{a^2+b^2+c^2} \le 1 + \frac{\lvert a-b \rvert + \lvert b-c \rvert + \lvert c-a \rvert}{2}. \]
  5. Let $a,b,c$ be positive reals satisfying $a+b+c = \sqrt[7]{a} + \sqrt[7]{b} + \sqrt[7]{c}$. Prove that $a^a b^b c^c \ge 1$.
  6. Let $a, b, c$ be positive reals such that $a+b+c=3$. Prove that \[18\sum_{\text{cyc}}\frac{1}{(3-c)(4-c)}+2(ab+bc+ca)\ge 15. \]
  7. Consider a function $f: \mathbb Z \to \mathbb Z$ such that for every integer $n \ge 0$, there are at most $0.001n^2$ pairs of integers $(x,y)$ for which $f(x+y) \neq f(x)+f(y)$ and $\max\{ \lvert x \rvert, \lvert y \rvert \} \le n$. Is it possible that for some integer $n \ge 0$, there are more than $n$ integers $a$ such that $f(a) \neq a \cdot f(1)$ and $\lvert a \rvert \le n$?
  8. Let $a, b, c$ be positive reals with $a^{2014}+b^{2014}+c^{2014}+abc=4$. Prove that \[ \frac{a^{2013}+b^{2013}-c}{c^{2013}} + \frac{b^{2013}+c^{2013}-a}{a^{2013}} + \frac{c^{2013}+a^{2013}-b}{b^{2013}} \ge a^{2012}+b^{2012}+c^{2012}. \]
  9. Let $a, b, c$ be positive reals, and let $$\sqrt[2013]{\frac{3}{a^{2013}+b^{2013}+c^{2013}}}=P.$$ Prove that \[\prod_{\text{cyc}}\left(\frac{(2P+\frac{1}{2a+b})(2P+\frac{1}{a+2b})}{(2P+\frac{1}{a+b+c})^2}\right)\ge \prod_{\text{cyc}}\left(\frac{(P+\frac{1}{4a+b+c})(P+\frac{1}{3b+3c})}{(P+\frac{1}{3a+2b+c})(P+\frac{1}{3a+b+2c})}\right).\]


  1. Let $n\ge2$ be a positive integer. The numbers $1,2,..., n^2$ are consecutively placed into squares of an $n\times n$, so the first row contains $1,2,...,n$ from left to right, the second row contains $n+1,n+2,...,2n$ from left to right, and so on. The magic square value of a grid is defined to be the number of rows, columns, and main diagonals whose elements have an average value of $\frac{n^2 + 1}{2}$. Show that the magic-square value of the grid stays constant under the following two operations: (1) a permutation of the rows; and (2) a permutation of the columns. (The operations can be used multiple times, and in any order.)
  2. Let $n$ be a fixed positive integer. Initially, $n$ 1's are written on a blackboard. Every minute, David picks two numbers $x$ and $y$ written on the blackboard, erases them, and writes the number $(x+y)^4$ on the blackboard. Show that after $n-1$ minutes, the number written on the blackboard is at least $2^{\frac{4n^2-4}{3}}$.
  3. Let $a_1,a_2,...,a_9$ be nine real numbers, not necessarily distinct, with average $m$. Let $A$ denote the number of triples $1 \le i < j < k \le 9$ for which $a_i + a_j + a_k \ge 3m$. What is the minimum possible value of $A$? 
  4. Let $n$ be a positive integer. The numbers $\{1, 2, ..., n^2\}$ are placed in an $n \times n$ grid, each exactly once. The grid is said to be Muirhead-able if the sum of the entries in each column is the same, but for every $1 \le i,k \le n-1$, the sum of the first $k$ entries in column $i$ is at least the sum of the first $k$ entries in column $i+1$. For which $n$ can one construct a Muirhead-able array such that the entries in each column are decreasing? 
  5. There is a $2012\times 2012$ grid with rows numbered $1,2,\dots 2012$ and columns numbered $1,2,\dots, 2012$, and we place some rectangular napkins on it such that the sides of the napkins all lie on grid lines. Each napkin has a positive integer thickness. (in micrometers!) 
    a) Show that there exist $2012^2$ unique integers $a_{i,j}$ where $i,j \in [1,2012]$ such that for all $x,y\in [1,2012]$, the sum \[ \sum _{i=1}^{x} \sum_{j=1}^{y} a_{i,j} \] is equal to the sum of the thicknesses of all the napkins that cover the grid square in row $x$ and column $y$. 
    b) Show that if we use at most $500,000$ napkins, at least half of the $a_{i,j}$ will be $0$. 
  6.  A $4\times4$ grid has its 16 cells colored arbitrarily in three colors. A swap is an exchange between the colors of two cells. Prove or disprove that it always takes at most three swaps to produce a line of symmetry, regardless of the grid's initial coloring. 
  7.  A $2^{2014} + 1$ by $2^{2014} + 1$ grid has some black squares filled. The filled black squares form one or more snakes on the plane, each of whose heads splits at some points but never comes back together. In other words, for every positive integer $n$ greater than $2$, there do not exist pairwise distinct black squares $s_1$, $s_2$, \dots, $s_n$ such that $s_i$ and $s_{i+1}$ share an edge for $i=1,2, \dots, n$ (here $s_{n+1}=s_1$). What is the maximum possible number of filled black squares? 
  8. There are 20 people at a party. Each person holds some number of coins. Every minute, each person who has at least 19 coins simultaneously gives one coin to every other person at the party. (So, it is possible that $A$ gives $B$ a coin and $B$ gives $A$ a coin at the same time.) Suppose that this process continues indefinitely. That is, for any positive integer $n$, there exists a person who will give away coins during the $n$th minute. What is the smallest number of coins that could be at the party?
  9. Let $f_0$ be the function from $\mathbb{Z}^2$ to $\{0,1\}$ such that $f_0(0,0)=1$ and $f_0(x,y)=0$ otherwise. For each positive integer $m$, let $f_m(x,y)$ be the remainder when \[ f_{m-1}(x,y) + \sum_{j=-1}^{1} \sum_{k=-1}^{1} f_{m-1}(x+j,y+k) \] is divided by $2$. Finally, for each nonnegative integer $n$, let $a_n$ denote the number of pairs $(x,y)$ such that $f_n(x,y) = 1$. Find a closed form for $a_n$.
  10. Let $N\ge2$ be a fixed positive integer. There are $2N$ people, numbered $1,2,...,2N$, participating in a tennis tournament. For any two positive integers $i,j$ with $1\le i<j\le 2N$, player $i$ has a higher skill level than player $j$. Prior to the first round, the players are paired arbitrarily and each pair is assigned a unique court among $N$ courts, numbered $1,2,...,N$. During a round, each player plays against the other person assigned to his court (so that exactly one match takes place per court), and the player with higher skill wins the match (in other words, there are no upsets). Afterwards, for $i=2,3,...,N$, the winner of court $i$ moves to court $i-1$ and the loser of court $i$ stays on court $i$; however, the winner of court 1 stays on court 1 and the loser of court 1 moves to court $N$. Find all positive integers $M$ such that, regardless of the initial pairing, the players $2, 3, \ldots, N+1$ all change courts immediately after the $M$th round.


  1. Let $ABC$ be a triangle with incenter $I$. Let $U$, $V$ and $W$ be the intersections of the angle bisectors of angles $A$, $B$, and $C$ with the incircle, so that $V$ lies between $B$ and $I$, and similarly with $U$ and $W$. Let $X$, $Y$, and $Z$ be the points of tangency of the incircle of triangle $ABC$ with $BC$, $AC$, and $AB$, respectively. Let triangle $UVW$ be the David Yang triangle of $ABC$ and let $XYZ$ be the Scott Wu triangle of $ABC$. Prove that the David Yang and Scott Wu triangles of a triangle are congruent if and only if $ABC$ is equilateral.
  2. Let $ABC$ be a scalene triangle with circumcircle $\Gamma$, and let $D$,$E$,$F$ be the points where its incircle meets $BC$, $AC$, $AB$ respectively. Let the circumcircles of $\triangle AEF$, $\triangle BFD$, and $\triangle CDE$ meet $\Gamma$ a second time at $X,Y,Z$ respectively. Prove that the perpendiculars from $A,B,C$ to $AX,BY,CZ$ respectively are concurrent.
  3. In $\triangle ABC$, a point $D$ lies on line $BC$. The circumcircle of $ABD$ meets $AC$ at $F$ (other than $A$), and the circumcircle of $ADC$ meets $AB$ at $E$ (other than $A$). Prove that as $D$ varies, the circumcircle of $AEF$ always passes through a fixed point other than $A$, and that this point lies on the median from $A$ to $BC$.
  4. Triangle $ABC$ is inscribed in circle $\omega$. A circle with chord $BC$ intersects segments $AB$ and $AC$ again at $S$ and $R$, respectively. Segments $BR$ and $CS$ meet at $L$, and rays $LR$ and $LS$ intersect $\omega$ at $D$ and $E$, respectively. The internal angle bisector of $\angle BDE$ meets line $ER$ at $K$. Prove that if $BE = BR$, then $\angle ELK = \tfrac{1}{2} \angle BCD$.
  5. Let $\omega_1$ and $\omega_2$ be two orthogonal circles, and let the center of $\omega_1$ be $O$. Diameter $AB$ of $\omega_1$ is selected so that $B$ lies strictly inside $\omega_2$. The two circles tangent to $\omega_2$, passing through $O$ and $A$, touch $\omega_2$ at $F$ and $G$. Prove that $FGOB$ is cyclic.
  6. Let $ABCDEF$ be a non-degenerate cyclic hexagon with no two opposite sides parallel, and define $X=AB\cap DE$, $Y=BC\cap EF$, and $Z=CD\cap FA$. Prove that
    \[\frac{XY}{XZ}=\frac{BE}{AD}\frac{\sin |\angle{B}-\angle{E}|}{\sin |\angle{A}-\angle{D}|}.\]
  7. Let $ABC$ be a triangle inscribed in circle $\omega$, and let the medians from $B$ and $C$ intersect $\omega$ at $D$ and $E$ respectively. Let $O_1$ be the center of the circle through $D$ tangent to $AC$ at $C$, and let $O_2$ be the center of the circle through $E$ tangent to $AB$ at $B$. Prove that $O_1$, $O_2$, and the nine-point center of $ABC$ are collinear.
  8. Let $ABC$ be a triangle, and let $D$, $A$, $B$, $E$ be points on line $AB$, in that order, such that $AC=AD$ and $BE=BC$. Let $\omega_1, \omega_2$ be the circumcircles of $\triangle ABC$ and $\triangle CDE$, respectively, which meet at a point $F \neq C$. If the tangent to $\omega_2$ at $F$ cuts $\omega_1$ again at $G$, and the foot of the altitude from $G$ to $FC$ is $H$, prove that $\angle AGH=\angle BGH$.
  9. Let $ABCD$ be a cyclic quadrilateral inscribed in circle $\omega$ whose diagonals meet at $F$. Lines $AB$ and $CD$ meet at $E$. Segment $EF$ intersects $\omega$ at $X$. Lines $BX$ and $CD$ meet at $M$, and lines $CX$ and $AB$ meet at $N$. Prove that $MN$ and $BC$ concur with the tangent to $\omega$ at $X$.
  10. Let $AB=AC$ in $\triangle ABC$, and let $D$ be a point on segment $AB$. The tangent at $D$ to the circumcircle $\omega$ of $BCD$ hits $AC$ at $E$. The other tangent from $E$ to $\omega$ touches it at $F$, and $G=BF \cap CD$, $H=AG \cap BC$. Prove that $BH=2HC$.
  11. Let $\triangle ABC$ be a nondegenerate isosceles triangle with $AB=AC$, and let $D, E, F$ be the midpoints of $BC, CA, AB$ respectively. $BE$ intersects the circumcircle of $\triangle ABC$ again at $G$, and $H$ is the midpoint of minor arc $BC$. $CF\cap DG=I, BI\cap AC=J$. Prove that $\angle BJH=\angle ADG$ if and only if $\angle BID=\angle GBC$.
  12. Let $ABC$ be a nondegenerate acute triangle with circumcircle $\omega$ and let its incircle $\gamma$ touch $AB, AC, BC$ at $X, Y, Z$ respectively. Let $XY$ hit arcs $AB, AC$ of $\omega$ at $M, N$ respectively, and let $P \neq X, Q \neq Y$ be the points on $\gamma$ such that $MP=MX, NQ=NY$. If $I$ is the center of $\gamma$, prove that $P, I, Q$ are collinear if and only if $\angle BAC=90^\circ$.
  13. In $\triangle ABC$, $AB<AC$. $D$ and $P$ are the feet of the internal and external angle bisectors of $\angle BAC$, respectively. $M$ is the midpoint of segment $BC$, and $\omega$ is the circumcircle of $\triangle APD$. Suppose $Q$ is on the minor arc $AD$ of $\omega$ such that $MQ$ is tangent to $\omega$. $QB$ meets $\omega$ again at $R$, and the line through $R$ perpendicular to $BC$ meets $PQ$ at $S$. Prove $SD$ is tangent to the circumcircle of $\triangle QDM$.
  14. Let $O$ be a point (in the plane) and $T$ be an infinite set of points such that $|P_1P_2| \le 2012$ for every two distinct points $P_1,P_2\in T$. Let $S(T)$ be the set of points $Q$ in the plane satisfying $|QP| \le 2013$ for at least one point $P\in T$. Now let $L$ be the set of lines containing exactly one point of $S(T)$. Call a line $\ell_0$ passing through $O$ bad if there does not exist a line $\ell\in L$ parallel to (or coinciding with) $\ell_0$.
    a) Prove that $L$ is nonempty.
    b) Prove that one can assign a line $\ell(i)$ to each positive integer $i$ so that for every bad line $\ell_0$ passing through $O$, there exists a positive integer $n$ with $\ell(n) = \ell_0$

Number Theory 

  1. Find all ordered triples of non-negative integers $(a,b,c)$ such that $a^2+2b+c$, $b^2+2c+a$, and $c^2+2a+b$ are all perfect squares. 
  2. For what polynomials $P(n)$ with integer coefficients can a positive integer be assigned to every lattice point in $\mathbb{R}^3$ so that for every integer $n \ge 1$, the sum of the $n^3$ integers assigned to any $n \times n \times n$ grid of lattice points is divisible by $P(n)$?
  3.  Define a beautiful number to be an integer of the form $a^n$, where $a\in\{3,4,5,6\}$ and $n$ is a positive integer. Prove that each integer greater than $2$ can be expressed as the sum of pairwise distinct beautiful numbers. 
  4. Find all triples $(a,b,c)$ of positive integers such that if $n$ is not divisible by any prime less than $2014$, then $n+c$ divides $a^n+b^n+n$. 
  5. Let $m_1,m_2,...,m_{2013} > 1$ be 2013 pairwise relatively prime positive integers and $A_1,A_2,...,A_{2013}$ be 2013 (possibly empty) sets with $A_i\subseteq \{1,2,...,m_i-1\}$ for $i=1,2,...,2013$. Prove that there is a positive integer $N$ such that
    \[ N \le \left( 2\left\lvert A_1 \right\rvert + 1 \right)\left( 2\left\lvert A_2 \right\rvert + 1 \right)\cdots\left( 2\left\lvert A_{2013} \right\rvert + 1 \right) \]
    and for each $i = 1, 2, ..., 2013$, there does not exist $a \in A_i$ such that $m_i$ divides $N-a$.
  6. Let $\mathbb N$ denote the set of positive integers, and for a function $f$, let $f^k(n)$ denote the function $f$ applied $k$ times. Call a function $f : \mathbb N \to \mathbb N$ saturated if \[ f^{f^{f(n)}(n)}(n) = n \] for every positive integer $n$. Find all positive integers $m$ for which the following holds: every saturated function $f$ satisfies $f^{2014}(m) = m$.
  7. Let $p$ be a prime satisfying $p^2\mid 2^{p-1}-1$, and let $n$ be a positive integer. Define
    \[ f(x) = \frac{(x-1)^{p^n}-(x^{p^n}-1)}{p(x-1)}. \]
    Find the largest positive integer $N$ such that there exist polynomials $g(x)$, $h(x)$ with integer coefficients and an integer $r$ satisfying $f(x) = (x-r)^N g(x) + p \cdot h(x)$.
  8. We define the Fibonacci sequence $\{F_n\}_{n\ge0}$ by $F_0=0$, $F_1=1$, and for $n\ge2$, $F_n=F_{n-1}+F_{n-2}$; we define the Stirling number of the second kind $S(n,k)$ as the number of ways to partition a set of $n\ge1$ distinguishable elements into $k\ge1$ indistinguishable nonempty subsets.
  9. For every positive integer $n$, let $t_n = \sum_{k=1}^{n} S(n,k) F_k$. Let $p\ge7$ be a prime. Prove that \[ t_{n+p^{2p}-1} \equiv t_n \pmod{p} \] for all $n\ge1$.
MOlympiad.NET là dự án thu thập và phát hành các đề thi tuyển sinh và học sinh giỏi toán. Quý bạn đọc muốn giúp chúng tôi chỉnh sửa đề thi này, xin hãy để lại bình luận facebook (có thể đính kèm hình ảnh) hoặc google (có thể sử dụng $\LaTeX$) bên dưới. BBT rất mong bạn đọc ủng hộ UPLOAD đề thi và đáp án mới hoặc liên hệ
Chúng tôi nhận tất cả các định dạng của tài liệu: $\TeX$, PDF, WORD, IMG,...


Abel Albania AMM Amsterdam An Giang Andrew Wiles Anh APMO Austria (Áo) Ba Đình Ba Lan Bà Rịa Vũng Tàu Bắc Bộ Bắc Giang Bắc Kạn Bạc Liêu Bắc Ninh Bắc Trung Bộ Bài Toán Hay Balkan Baltic Way BAMO Bất Đẳng Thức Bến Tre Benelux Bình Định Bình Dương Bình Phước Bình Thuận Birch BMO Booklet Bosnia Herzegovina BoxMath Brazil British Bùi Đắc Hiên Bùi Thị Thiện Mỹ Bùi Văn Tuyên Bùi Xuân Diệu Bulgaria Buôn Ma Thuột BxMO Cà Mau Cần Thơ Canada Cao Bằng Cao Quang Minh Câu Chuyện Toán Học Caucasus CGMO China - Trung Quốc Chọn Đội Tuyển Chu Tuấn Anh Chuyên Đề Chuyên Sư Phạm Chuyên Trần Hưng Đạo Collection College Mathematic Concours Cono Sur Contest Correspondence Cosmin Poahata Crux Czech-Polish-Slovak Đà Nẵng Đa Thức Đại Số Đắk Lắk Đắk Nông Đan Phượng Danube Đào Thái Hiệp ĐBSCL Đề Thi Đề Thi HSG Đề Thi JMO Điện Biên Định Lý Định Lý Beaty Đỗ Hữu Đức Thịnh Do Thái Doãn Quang Tiến Đoàn Quỳnh Đoàn Văn Trung Đống Đa Đồng Nai Đồng Tháp Du Hiền Vinh Đức Duyên Hải Bắc Bộ E-Book EGMO ELMO EMC Epsilon Estonian Euler Evan Chen Fermat Finland Forum Of Geometry Furstenberg G. Polya Gặp Gỡ Toán Học Gauss GDTX Geometry Gia Lai Gia Viễn Giải Tích Hàm Giảng Võ Giới hạn Goldbach Hà Giang Hà Lan Hà Nam Hà Nội Hà Tĩnh Hà Trung Kiên Hải Dương Hải Phòng Hậu Giang Hậu Lộc Hilbert Hình Học HKUST Hòa Bình Hoài Nhơn Hoàng Bá Minh Hoàng Minh Quân Hodge Hojoo Lee HOMC HongKong HSG 10 HSG 10 Bắc Giang HSG 10 Thái Nguyên HSG 11 HSG 11 Bắc Giang HSG 11 Lạng Sơn HSG 11 Thái Nguyên HSG 12 HSG 12 2010-2011 HSG 12 2011-2012 HSG 12 2012-2013 HSG 12 2013-2014 HSG 12 2014-2015 HSG 12 2015-2016 HSG 12 2016-2017 HSG 12 2017-2018 HSG 12 2018-2019 HSG 12 2019-2020 HSG 12 2020-2021 HSG 12 2021-2022 HSG 12 Bắc Giang HSG 12 Bình Phước HSG 12 Đồng Tháp HSG 12 Lạng Sơn HSG 12 Long An HSG 12 Quảng Nam HSG 12 Quảng Ninh HSG 12 Thái Nguyên HSG 9 HSG 9 2010-2011 HSG 9 2011-2012 HSG 9 2012-2013 HSG 9 2013-2014 HSG 9 2014-2015 HSG 9 2015-2016 HSG 9 2016-2017 HSG 9 2017-2018 HSG 9 2018-2019 HSG 9 2019-2020 HSG 9 2020-2021 HSG 9 2021-202 HSG 9 2021-2022 HSG 9 Bắc Giang HSG 9 Bình Phước HSG 9 Đồng Tháp HSG 9 Lạng Sơn HSG 9 Long An HSG 9 Quảng Nam HSG 9 Quảng Ninh HSG Cấp Trường HSG Quốc Gia HSG Quốc Tế Hứa Lâm Phong Hứa Thuần Phỏng Hùng Vương Hưng Yên Hương Sơn Huỳnh Kim Linh Hy Lạp IMC IMO IMT India - Ấn Độ Inequality InMC International Iran Jakob JBMO Jewish Journal Junior K2pi Kazakhstan Khánh Hòa KHTN Kiên Giang Kim Liên Kon Tum Korea - Hàn Quốc Kvant Kỷ Yếu Lai Châu Lâm Đồng Lạng Sơn Langlands Lào Cai Lê Hải Châu Lê Hải Khôi Lê Hoành Phò Lê Khánh Sỹ Lê Minh Cường Lê Phúc Lữ Lê Phương Lê Quý Đôn Lê Viết Hải Lê Việt Hưng Leibniz Long An Lớp 10 Lớp 10 Chuyên Lớp 10 Không Chuyên Lớp 11 Lục Ngạn Lượng giác Lương Tài Lưu Giang Nam Lý Thánh Tông Macedonian Malaysia Margulis Mark Levi Mathematical Excalibur Mathematical Reflections Mathematics Magazine Mathematics Today Mathley MathLinks MathProblems Journal Mathscope MathsVN MathVN MEMO Metropolises Mexico MIC Michael Guillen Mochizuki Moldova Moscow MYM MYTS Nam Định Nam Phi National Nesbitt Newton Nghệ An Ngô Bảo Châu Ngô Việt Hải Ngọc Huyền Nguyễn Anh Tuyến Nguyễn Bá Đang Nguyễn Đình Thi Nguyễn Đức Tấn Nguyễn Đức Thắng Nguyễn Duy Khương Nguyễn Duy Tùng Nguyễn Hữu Điển Nguyễn Mình Hà Nguyễn Minh Tuấn Nguyễn Phan Tài Vương Nguyễn Phú Khánh Nguyễn Phúc Tăng Nguyễn Quản Bá Hồng Nguyễn Quang Sơn Nguyễn Tài Chung Nguyễn Tăng Vũ Nguyễn Tất Thu Nguyễn Thúc Vũ Hoàng Nguyễn Trung Tuấn Nguyễn Tuấn Anh Nguyễn Văn Huyện Nguyễn Văn Mậu Nguyễn Văn Nho Nguyễn Văn Quý Nguyễn Văn Thông Nguyễn Việt Anh Nguyễn Vũ Lương Nhật Bản Nhóm $\LaTeX$ Nhóm Toán Ninh Bình Ninh Thuận Nội Suy Lagrange Nội Suy Newton Nordic Olympiad Corner Olympiad Preliminary Olympic 10 Olympic 10/3 Olympic 11 Olympic 12 Olympic 24/3 Olympic 24/3 Quảng Nam Olympic 27/4 Olympic 30/4 Olympic KHTN Olympic Sinh Viên Olympic Tháng 4 Olympic Toán Olympic Toán Sơ Cấp PAMO Phạm Đình Đồng Phạm Đức Tài Phạm Huy Hoàng Pham Kim Hung Phạm Quốc Sang Phan Huy Khải Phan Thành Nam Pháp Philippines Phú Thọ Phú Yên Phùng Hồ Hải Phương Trình Hàm Phương Trình Pythagoras Pi Polish Problems PT-HPT PTNK Putnam Quảng Bình Quảng Nam Quảng Ngãi Quảng Ninh Quảng Trị Quỹ Tích Riemann RMM RMO Romania Romanian Mathematical Russia Sách Thường Thức Toán Sách Toán Sách Toán Cao Học Sách Toán THCS Saudi Arabia - Ả Rập Xê Út Scholze Serbia Sharygin Shortlists Simon Singh Singapore Số Học - Tổ Hợp Sóc Trăng Sơn La Spain Star Education Stars of Mathematics Swinnerton-Dyer Talent Search Tăng Hải Tuân Tạp Chí Tập San Tây Ban Nha Tây Ninh Thạch Hà Thái Bình Thái Nguyên Thái Vân Thanh Hóa THCS Thổ Nhĩ Kỳ Thomas J. Mildorf THPT Chuyên Lê Quý Đôn THPTQG THTT Thừa Thiên Huế Tiền Giang Tin Tức Toán Học Titu Andreescu Toán 12 Toán Cao Cấp Toán Chuyên Toán Rời Rạc Toán Tuổi Thơ Tôn Ngọc Minh Quân TOT TPHCM Trà Vinh Trắc Nghiệm Trắc Nghiệm Toán Trại Hè Trại Hè Hùng Vương Trại Hè Phương Nam Trần Đăng Phúc Trần Minh Hiền Trần Nam Dũng Trần Phương Trần Quang Hùng Trần Quốc Anh Trần Quốc Luật Trần Quốc Nghĩa Trần Tiến Tự Trịnh Đào Chiến Trường Đông Trường Hè Trường Thu Trường Xuân TST TST 2010-2011 TST 2011-2012 TST 2012-2013 TST 2013-2014 TST 2014-2015 TST 2015-2016 TST 2016-2017 TST 2017-2018 TST 2018-2019 TST 2019-2020 TST 2020-2021 TST 2021-2022 TST Bắc Giang TST Bình Phước TST Đồng Tháp TST Lạng Sơn TST Long An TST Quảng Nam TST Quảng Ninh TST Thái Nguyên Tuyên Quang Tuyển Sinh Tuyển Sinh 10 Tuyển Sinh 10 Bắc Giang Tuyển Sinh 10 Bình Phước Tuyển Sinh 10 Đồng Tháp Tuyển Sinh 10 Lạng Sơn Tuyển Sinh 10 Long An Tuyển Sinh 10 Quảng Nam Tuyển Sinh 10 Quảng Ninh Tuyển Sinh 10 Thái Nguyên Tuyển Sinh 2010-2011 Tuyển Sinh 2011-2012 Tuyển Sinh 2011-2022 Tuyển Sinh 2012-2013 Tuyển Sinh 2013-2014 Tuyển Sinh 2014-2015 Tuyển Sinh 2015-2016 Tuyển Sinh 2016-2017 Tuyển Sinh 2017-2018 Tuyển Sinh 2018-2019 Tuyển Sinh 2019-2020 Tuyển Sinh 2020-2021 Tuyển Sinh 2021-202 Tuyển Sinh 2021-2022 Tuyển Tập Tuymaada UK - Anh Undergraduate USA - Mỹ USA TSTST USAJMO USATST USEMO Uzbekistan Vasile Cîrtoaje Vật Lý Viện Toán Học Vietnam Viktor Prasolov VIMF Vinh Vĩnh Long Vĩnh Phúc Virginia Tech VLTT VMEO VMF VMO VNTST Võ Anh Khoa Võ Quốc Bá Cẩn Võ Thành Văn Vojtěch Jarník Vũ Hữu Bình Vương Trung Dũng WFNMC Journal Wiles Yên Bái Yên Định Yên Thành Zhautykov Zhou Yuan Zhe
MOlympiad.NET: [Shortlists & Solutions] Entirely Legitimate (Junior) Math Olympiad 2013
[Shortlists & Solutions] Entirely Legitimate (Junior) Math Olympiad 2013
Not found any posts Not found any related posts VIEW ALL Readmore Reply Cancel reply Delete By Home PAGES POSTS View All RECOMMENDED FOR YOU Tag ARCHIVE SEARCH ALL POSTS Not found any post match with your request Back Home Contents See also related Sunday Monday Tuesday Wednesday Thursday Friday Saturday Sun Mon Tue Wed Thu Fri Sat January February March April May June July August September October November December Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec just now 1 minute ago $$1$$ minutes ago 1 hour ago $$1$$ hours ago Yesterday $$1$$ days ago $$1$$ weeks ago more than 5 weeks ago Followers Follow Copy All Code Select All Code All codes were copied to your clipboard Can not copy the codes / texts, please press [CTRL]+[C] (or CMD+C with Mac) to copy THIS PREMIUM CONTENT IS LOCKED