Andrew Wiles Và Định Lí Cuối Cùng Của Fermat


Định lý Fermat cuối cùng (Fermat’s Last Theorem, viết tắt là FLT) mãi tới gần đây vẫn là bài toán chưa giải được nổi tiếng nhất trong toán học. Vào giữa thế kỷ 17, Pierre de Fermat đã viết rằng không có giá trị $n > 2$ nào có thể thỏa mãn phương trình $x^n+y^n=z^n$ trong đó n là các số nguyên. Ông cam đoan rằng ông đã có một cách chứng minh đơn giản định lý này, nhưng tới nay người ta chưa tìm thấy tài liệu nào về điều đó. Kể từ lúc đó, vô số nhà toán học chuyên và không chuyên đã cố tìm một chứng minh hợp lệ (và nghi ngờ rằng liệu Fermat có thật có chứng minh đó hay không). Vào năm 1994, Andrew Wiles tại Princeton University tuyên bố rằng ông đã khám phá ra cách chứng minh trong khi nghiên cứu về một bài toán hình học tổng quát hơn.



Helen G. Grundman, giáo sư toán tại Byrn Mawr College, đánh giá tình hình của cách chứng minh đó như sau: “Tôi nghĩ là ta có thể nói, vâng, các nhà toán học hiện nay đã bằng lòng với cách chứng minh FLT đó. Tuy nhiên, một số sẽ cho là chứng minh đó của một mình Wiles mà thôi. Thật ra chứng minh đó là công trình của nhiều người. Wiles đã có đóng góp đáng kể và là người kết hợp các công trình lại với nhau thành cái mà ông đã nghĩ là một cách chứng minh. Mặc dù cố gắng khởi đầu của ông được phát hiện sau đó là có sai lầm, Wiles và người phụ tá Richard Taylor đã sửa lại được, và nay đó là cái mà ta tin là cách chứng minh đúng FLT.

“Chứng minh mà ta biết hiện nay đòi hỏi sự phát triển của cả một lãnh vực toán học chưa đuợc biết tới vào thời Fermat. Bản thân định lý được phát biểu rất dễ dàng và vì vậy xem ra có vẻ đơn giản một cách giả tạo; bạn không cần biết rất nhiều về toán để hiểu bài toán. Tuy nhiên, để rồi nhận ra rằng, theo kiến thức tốt nhất của bạn, cần phải biết rất nhiều về toán mới có thể giải được nó. Vẫn là một câu hỏi chưa có lời đáp rằng liệu có hay không một cách chứng minh FLT mà chỉ liên quan tới toán học và các phương pháp đã có vào thời Fermat. Chúng ta không có cách nào trả lời trừ phi ai đó tìm ra một chứng minh như vậy.

Glenn H. Stevens ở khoa toán tại Boston University cho biết thêm: “Vâng, các nhà toán học bằng lòng rằng FLT đã được chứng minh. Cách chứng minh của Andrew Wiles theo ‘semistable modularity conjecture’ – phần mấu chốt của cách chứng minh của ông – đã được kiểm tra cẩn thận và thậm chí đơn giản hóa. Trước khi có chứng minh của Wiles, người ta đã biết FLT sẽ là một hệ quả của modularity conjecture, kết hợp nó với một định lý lớn khác theo Ken Ribet và dùng các ý tưởng mấu chốt từ Gerhard Frey và Jean-Pierre Serre.

“Tôi muốn hỏi câu hỏi thứ hai này bằng một cách khác. Nói cho cùng, làm sao chúng ta có thể may mắn tới mức tìm ra một cách chứng minh? Nhà bác học Đức Karl Gauss tổng kết thái độ của nhiều nhà toán học chuyên nghiệp trước-1985 khi vào năm 1816 ông đã viết: ‘Tôi thú nhận rằng FLT, như một định đề (proposition) cô lập, không thu hút tôi cho lắm, vì tôi có thể dễ dàng đưa ra vô số các định đề như vậy, mà chúng không thể đuợc chứng minh hay bị bác bỏ.’ Dù sao chúng ta cũng đã gặp may và xoay sở để cứu FLT khỏi cảnh cô lập của nó bằng cách liên hệ với vài nhánh quan trọng của toán học hiện đại, đặc biệt là các dạng theory of modular. Có thật là chỉ nhờ may mắn? Có bao nhiêu trong số ‘vô số địnhđề’ của Gauss cũng có thể được chuyển đổi đầy ma thuật và tạo khả năng khai thác những công cụ mạnh mẽ của toán học hiện đại? FLT chỉ mới là khởi đầu. Vẫn còn nhiều cuộc thám hiểm hấp dẫn phía trước chúng ta.

Và Fernando Q. Gouvêa, trưởng khoa toán và khoa học máy tính tại Colby College, cho thêm thông tin: “Chứng minh đầy đủ FLT bao gồm trong 2 bài báo, một bởi Andrew Wiles và một được viết chung bởi Wiles và Richard Taylor, tạo nên toàn bộ nội dung số tháng 5/1995 của tờ Annals of Mathematics (*), một tạp chí xuất bản tại Princeton University. Việc xuất bản tạp chí dĩ nhiên ngụ ý là những người xét duyệt đã công nhận rằng bài báo là đúng.

“Vào mùa hè 1995, đã có một hội nghị lớn tổ chức tại Boston University để đi sâu vào chi tiết của bài chứng minh. Các chuyên gia trong mỗi lãnh vực liên quan đã có bài phát biểu giải thích nền tảng và nội dung công trình của Wiles và Taylor. Sau khi khảo sát bài chứng minh quá kỹ lưỡng đến như vậy, cộng đồng toán học cảm thấy thoải mái khi công nhận rằng nó đúng.

“Câu hỏi thứ hai khó trả lời hơn nhiều. Dĩ nhiên, rất có thể nguyên nhân cần một thời gian dài để chứng minh định lý là chúng ta không đủ thông minh! Nhưng xem ra không phải vậy khi ta thấy biết bao nhiêu nhà toán học lỗi lạc đã suy nghĩ về nó qua nhiều thế kỷ. Vậy thì tại sao bài chứng minh lại khó như vậy?

“Thứ nhất FLT là một phát biểu rất tổng quát: ứng với không số mũ n>2 nào làm cho phương trình Fermat có lời giải. Dễ dàng hơn nhiều khi cố gắng giải bài toán ứng với một số mũ cụ thể. Thí dụ, trong một lá thơ, Ferma đã giải thích làm sao để chứng minh với n=4; Euler vào thế kỷ 18 đã có thể đưa ra cách chứng minh cho trường hợp n=3, và vân vân. Thực sự, ngay trước công trình của Wiles, các nhà toán học đã chỉ ra rằng không có lời giải cho định lý đối với các số lên tới n=4,000,000 hay cỡ đó. Xem ra đó là rất nhiều số, nhưng tất nhiên, nó chưa hề thậm chí làm xây xát bề mặt của điều đoan quyết nói về tất cả số mũ.

“Vấn đề khác là đoan quyết của Fermat luôn luôn có vẻ như, bên lề (**). Thật khó khăn khi nối kết FLT với các phần khác của toán học, điều đó có nghĩa là các ý tưởng toán học đầy sức mạnh có thể không nhất thiết áp dụng được. Sự thật là, nếu có ai nhìn vào lịch sử của định lý sẽ thấy rằng những bước tiến lớn nhất khi nghiên cứu hướng về một cách chứng minh xuất hiện khi vài liên hệ với các lãnh vực toán khác được tìm thấy. Thí dụ, công trình của nhà toán học Ba lan Ernst Eduard Kummers vào giữa thế kỷ 19 xuất hiện từ sự liên hệ FLT với các theory of cyclotomic fields. Và Wiles không phải là ngoại lệ: chứng minh của ông phát triển từ công trình của Frey, Serre và Ribet liên kết phát biểu của Fermat với theory of elliptic curves. Một khi mối liên hệ đã được thiết lập, và người ta biết rằng chứng minh được Modularity Conjecture cho các đường cong elliptic sẽ dẫn tới cách chứng minh FLT, là có lý do để hy vọng. Công trình của Wiles cho thấy niềm hy vọng đó đã được xác nhận.

Niên biểu sơ lược về quá trình chứng minh định lý Fermat cuối cùng (FLT):
- Tháng 5/1993, “crucial breakthrough”, Wiles khoe với phu nhân là đã giải được rồi.
- Sau đó (có lẽ khoảng tháng 6/1993), có một hội nghị tại Cambridge quê ông. Trong bài báo cáo “Elliptic Curves and Modular Forms,” Wiles lần đầu tiên công bố là ông đã giải được FLT.
- Tháng 7-8/1993, Nick Katz (đồng nghiệp) trao đổi email với Wiles về những điểm chưa hiểu rõ, trong đó có 1 sai lầm căn bản.
- Tháng 9/1993, Wiles nhận ra chỗ sai và cố gắng sửa. Sinh nhật phu nhân ngày 6/10, bà nói chỉ cần quà sinh nhật là một chứng minh đúng. Wiles cố hết sức nhưng không làm được.
- Tháng 11/1993, ông gởi email công bố là có trục trặc trong phần đó của chứng minh.
- Sau nhiều tháng thất bại, Wiles sắp chịu thua. Trong tuyệt vọng, ông yêu cầu giúp đỡ. Richard Taylor, sinh viên cũ, tới Princeton.
- Ba tháng đầu 1994, ông cùng Taylor tìm mọi cách sửa chữa vấn đề nhưng vô hiệu.
- Tháng 9/1994, trở ngược lại nghiên cứu một vấn đề căn bản mà chứng minh được dựa trên đó
- 19/9/1994 phát hiện cách sửa chữa chỗ trục trặc đơn giản và đẹp dựa trên một cố gắng chứng minh đã làm 3 năm trước. Sau khi coi tới coi lui, ông mừng rỡ nói với phu nhân là đã làm được, thoạt tiên bà không hiểu ông nói về chuyện gì.
- Tháng 5/1995 đăng lời giải trên Annals of Mathematics (Princeton University).
- Tháng 8/1995 hội thảo ở Boston University, giới toán học công nhận chứng minh là đúng.
MOlympiad.NET là dự án thu thập và phát hành các đề thi tuyển sinh và học sinh giỏi toán. Quý bạn đọc muốn giúp chúng tôi chỉnh sửa đề thi này, xin hãy để lại bình luận facebook (có thể đính kèm hình ảnh) hoặc google (có thể sử dụng $\LaTeX$) bên dưới. BBT rất mong bạn đọc ủng hộ UPLOAD đề thi và đáp án mới hoặc liên hệ
Chúng tôi nhận tất cả các định dạng của tài liệu: $\TeX$, PDF, WORD, IMG,...



Name

Abel Albania AMM Amsterdam An Giang Andrew Wiles Anh APMO Austria (Áo) Ba Đình Ba Lan Bà Rịa Vũng Tàu Bắc Bộ Bắc Giang Bắc Kạn Bạc Liêu Bắc Ninh Bắc Trung Bộ Bài Toán Hay Balkan Baltic Way BAMO Bất Đẳng Thức Bến Tre Benelux Bình Định Bình Dương Bình Phước Bình Thuận Birch BMO Booklet Bosnia Herzegovina BoxMath Brazil British Bùi Đắc Hiên Bùi Thị Thiện Mỹ Bùi Văn Tuyên Bùi Xuân Diệu Bulgaria Buôn Ma Thuột BxMO Cà Mau Cần Thơ Canada Cao Bằng Cao Quang Minh Câu Chuyện Toán Học Caucasus CGMO China - Trung Quốc Chọn Đội Tuyển Chu Tuấn Anh Chuyên Đề Chuyên Sư Phạm Chuyên Trần Hưng Đạo Collection College Mathematic Concours Cono Sur Contest Correspondence Cosmin Poahata Crux Czech-Polish-Slovak Đà Nẵng Đa Thức Đại Số Đắk Lắk Đắk Nông Đan Phượng Danube Đào Thái Hiệp ĐBSCL Đề Thi Đề Thi HSG Đề Thi JMO Điện Biên Định Lý Định Lý Beaty Đỗ Hữu Đức Thịnh Do Thái Doãn Quang Tiến Đoàn Quỳnh Đoàn Văn Trung Đống Đa Đồng Nai Đồng Tháp Du Hiền Vinh Đức Duyên Hải Bắc Bộ E-Book EGMO ELMO EMC Epsilon Estonian Euler Evan Chen Fermat Finland Forum Of Geometry Furstenberg G. Polya Gặp Gỡ Toán Học Gauss GDTX Geometry Gia Lai Gia Viễn Giải Tích Hàm Giảng Võ Giới hạn Goldbach Hà Giang Hà Lan Hà Nam Hà Nội Hà Tĩnh Hà Trung Kiên Hải Dương Hải Phòng Hậu Giang Hậu Lộc Hilbert Hình Học HKUST Hòa Bình Hoài Nhơn Hoàng Bá Minh Hoàng Minh Quân Hodge Hojoo Lee HOMC HongKong HSG 10 HSG 10 Bắc Giang HSG 10 Thái Nguyên HSG 11 HSG 11 Bắc Giang HSG 11 Lạng Sơn HSG 11 Thái Nguyên HSG 12 HSG 12 2010-2011 HSG 12 2011-2012 HSG 12 2012-2013 HSG 12 2013-2014 HSG 12 2014-2015 HSG 12 2015-2016 HSG 12 2016-2017 HSG 12 2017-2018 HSG 12 2018-2019 HSG 12 2019-2020 HSG 12 2020-2021 HSG 12 2021-2022 HSG 12 Bắc Giang HSG 12 Bình Phước HSG 12 Đồng Tháp HSG 12 Lạng Sơn HSG 12 Long An HSG 12 Quảng Nam HSG 12 Quảng Ninh HSG 12 Thái Nguyên HSG 9 HSG 9 2010-2011 HSG 9 2011-2012 HSG 9 2012-2013 HSG 9 2013-2014 HSG 9 2014-2015 HSG 9 2015-2016 HSG 9 2016-2017 HSG 9 2017-2018 HSG 9 2018-2019 HSG 9 2019-2020 HSG 9 2020-2021 HSG 9 2021-202 HSG 9 2021-2022 HSG 9 Bắc Giang HSG 9 Bình Phước HSG 9 Đồng Tháp HSG 9 Lạng Sơn HSG 9 Long An HSG 9 Quảng Nam HSG 9 Quảng Ninh HSG Cấp Trường HSG Quốc Gia HSG Quốc Tế Hứa Lâm Phong Hứa Thuần Phỏng Hùng Vương Hưng Yên Hương Sơn Huỳnh Kim Linh Hy Lạp IMC IMO IMT India - Ấn Độ Inequality InMC International Iran Jakob JBMO Jewish Journal Junior K2pi Kazakhstan Khánh Hòa KHTN Kiên Giang Kim Liên Kon Tum Korea - Hàn Quốc Kvant Kỷ Yếu Lai Châu Lâm Đồng Lạng Sơn Langlands Lào Cai Lê Hải Châu Lê Hải Khôi Lê Hoành Phò Lê Khánh Sỹ Lê Minh Cường Lê Phúc Lữ Lê Phương Lê Quý Đôn Lê Viết Hải Lê Việt Hưng Leibniz Long An Lớp 10 Lớp 10 Chuyên Lớp 10 Không Chuyên Lớp 11 Lục Ngạn Lượng giác Lương Tài Lưu Giang Nam Lý Thánh Tông Macedonian Malaysia Margulis Mark Levi Mathematical Excalibur Mathematical Reflections Mathematics Magazine Mathematics Today Mathley MathLinks MathProblems Journal Mathscope MathsVN MathVN MEMO Metropolises Mexico MIC Michael Guillen Mochizuki Moldova Moscow MYM MYTS Nam Định Nam Phi National Nesbitt Newton Nghệ An Ngô Bảo Châu Ngô Việt Hải Ngọc Huyền Nguyễn Anh Tuyến Nguyễn Bá Đang Nguyễn Đình Thi Nguyễn Đức Tấn Nguyễn Đức Thắng Nguyễn Duy Khương Nguyễn Duy Tùng Nguyễn Hữu Điển Nguyễn Mình Hà Nguyễn Minh Tuấn Nguyễn Phan Tài Vương Nguyễn Phú Khánh Nguyễn Phúc Tăng Nguyễn Quản Bá Hồng Nguyễn Quang Sơn Nguyễn Tài Chung Nguyễn Tăng Vũ Nguyễn Tất Thu Nguyễn Thúc Vũ Hoàng Nguyễn Trung Tuấn Nguyễn Tuấn Anh Nguyễn Văn Huyện Nguyễn Văn Mậu Nguyễn Văn Nho Nguyễn Văn Quý Nguyễn Văn Thông Nguyễn Việt Anh Nguyễn Vũ Lương Nhật Bản Nhóm $\LaTeX$ Nhóm Toán Ninh Bình Ninh Thuận Nội Suy Lagrange Nội Suy Newton Nordic Olympiad Corner Olympiad Preliminary Olympic 10 Olympic 10/3 Olympic 11 Olympic 12 Olympic 24/3 Olympic 24/3 Quảng Nam Olympic 27/4 Olympic 30/4 Olympic KHTN Olympic Sinh Viên Olympic Tháng 4 Olympic Toán Olympic Toán Sơ Cấp PAMO Phạm Đình Đồng Phạm Đức Tài Phạm Huy Hoàng Pham Kim Hung Phạm Quốc Sang Phan Huy Khải Phan Thành Nam Pháp Philippines Phú Thọ Phú Yên Phùng Hồ Hải Phương Trình Hàm Phương Trình Pythagoras Pi Polish Problems PT-HPT PTNK Putnam Quảng Bình Quảng Nam Quảng Ngãi Quảng Ninh Quảng Trị Quỹ Tích Riemann RMM RMO Romania Romanian Mathematical Russia Sách Thường Thức Toán Sách Toán Sách Toán Cao Học Sách Toán THCS Saudi Arabia - Ả Rập Xê Út Scholze Serbia Sharygin Shortlists Simon Singh Singapore Số Học - Tổ Hợp Sóc Trăng Sơn La Spain Star Education Stars of Mathematics Swinnerton-Dyer Talent Search Tăng Hải Tuân Tạp Chí Tập San Tây Ban Nha Tây Ninh Thạch Hà Thái Bình Thái Nguyên Thái Vân Thanh Hóa THCS Thổ Nhĩ Kỳ Thomas J. Mildorf THPT Chuyên Lê Quý Đôn THPTQG THTT Thừa Thiên Huế Tiền Giang Tin Tức Toán Học Titu Andreescu Toán 12 Toán Cao Cấp Toán Chuyên Toán Rời Rạc Toán Tuổi Thơ Tôn Ngọc Minh Quân TOT TPHCM Trà Vinh Trắc Nghiệm Trắc Nghiệm Toán Trại Hè Trại Hè Hùng Vương Trại Hè Phương Nam Trần Đăng Phúc Trần Minh Hiền Trần Nam Dũng Trần Phương Trần Quang Hùng Trần Quốc Anh Trần Quốc Luật Trần Quốc Nghĩa Trần Tiến Tự Trịnh Đào Chiến Trường Đông Trường Hè Trường Thu Trường Xuân TST TST 2010-2011 TST 2011-2012 TST 2012-2013 TST 2013-2014 TST 2014-2015 TST 2015-2016 TST 2016-2017 TST 2017-2018 TST 2018-2019 TST 2019-2020 TST 2020-2021 TST 2021-2022 TST Bắc Giang TST Bình Phước TST Đồng Tháp TST Lạng Sơn TST Long An TST Quảng Nam TST Quảng Ninh TST Thái Nguyên Tuyên Quang Tuyển Sinh Tuyển Sinh 10 Tuyển Sinh 10 Bắc Giang Tuyển Sinh 10 Bình Phước Tuyển Sinh 10 Đồng Tháp Tuyển Sinh 10 Lạng Sơn Tuyển Sinh 10 Long An Tuyển Sinh 10 Quảng Nam Tuyển Sinh 10 Quảng Ninh Tuyển Sinh 10 Thái Nguyên Tuyển Sinh 2010-2011 Tuyển Sinh 2011-2012 Tuyển Sinh 2011-2022 Tuyển Sinh 2012-2013 Tuyển Sinh 2013-2014 Tuyển Sinh 2014-2015 Tuyển Sinh 2015-2016 Tuyển Sinh 2016-2017 Tuyển Sinh 2017-2018 Tuyển Sinh 2018-2019 Tuyển Sinh 2019-2020 Tuyển Sinh 2020-2021 Tuyển Sinh 2021-202 Tuyển Sinh 2021-2022 Tuyển Tập Tuymaada UK - Anh Undergraduate USA - Mỹ USA TSTST USAJMO USATST USEMO Uzbekistan Vasile Cîrtoaje Vật Lý Viện Toán Học Vietnam Viktor Prasolov VIMF Vinh Vĩnh Long Vĩnh Phúc Virginia Tech VLTT VMEO VMF VMO VNTST Võ Anh Khoa Võ Quốc Bá Cẩn Võ Thành Văn Vojtěch Jarník Vũ Hữu Bình Vương Trung Dũng WFNMC Journal Wiles Yên Bái Yên Định Yên Thành Zhautykov Zhou Yuan Zhe
false
ltr
item
MOlympiad.NET: Andrew Wiles Và Định Lí Cuối Cùng Của Fermat
Andrew Wiles Và Định Lí Cuối Cùng Của Fermat
https://3.bp.blogspot.com/-3jFBKiJFVQY/WbxPRyI6QGI/AAAAAAAAAi8/GAj28cDlEC4AgqynyX7HzlRYuh8F7qgigCLcBGAs/s1600/Andrew-Wiles-1.jpg
https://3.bp.blogspot.com/-3jFBKiJFVQY/WbxPRyI6QGI/AAAAAAAAAi8/GAj28cDlEC4AgqynyX7HzlRYuh8F7qgigCLcBGAs/s72-c/Andrew-Wiles-1.jpg
MOlympiad.NET
https://www.molympiad.net/2017/09/andrew-wiles-va-dinh-li-cuoi-cung-cua-fermat.html
https://www.molympiad.net/
https://www.molympiad.net/
https://www.molympiad.net/2017/09/andrew-wiles-va-dinh-li-cuoi-cung-cua-fermat.html
true
2506595080985176441
UTF-8
Not found any posts Not found any related posts VIEW ALL Readmore Reply Cancel reply Delete By Home PAGES POSTS View All RECOMMENDED FOR YOU Tag ARCHIVE SEARCH ALL POSTS Not found any post match with your request Back Home Contents See also related Sunday Monday Tuesday Wednesday Thursday Friday Saturday Sun Mon Tue Wed Thu Fri Sat January February March April May June July August September October November December Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec just now 1 minute ago $$1$$ minutes ago 1 hour ago $$1$$ hours ago Yesterday $$1$$ days ago $$1$$ weeks ago more than 5 weeks ago Followers Follow Copy All Code Select All Code All codes were copied to your clipboard Can not copy the codes / texts, please press [CTRL]+[C] (or CMD+C with Mac) to copy THIS PREMIUM CONTENT IS LOCKED
PLEASE FOLLOW THE INSTRUCTIONS TO VIEW THIS CONTENT
NỘI DUNG CAO CẤP NÀY ĐÃ BỊ KHÓA
XIN HÃY LÀM THEO HƯỚNG DẪN ĐỂ XEM NỘI DUNG NÀY
STEP 1: SHARE THIS ARTICLE TO A SOCIAL NETWORK
BƯỚC 1: CHIA SẺ BÀI VIẾT NÀY LÊN MẠNG XÃ HỘI
STEP 2: CLICK THE LINK ON YOUR SOCIAL NETWORK
BƯỚC 2: BẤM VÀO ĐƯỜNG DẪN TRÊN MẠNG XÃ HỘI CỦA BẠN