Mathematics and Youth Magazine Problems 2006


Issue 343

  1. Find the numbers $x$ and $y$ satisfying the condition $$|x-2005|+|x-2006|+|y-2007|+|x-2008|=3.$$
  2. Let $A B C$ be a triangle with $\widehat{B A C}=55^{\circ}$ $\widehat{A B C}=115^{\circ} .$ On the bisector of angle $A C B$ take the point $M$ so that $\widehat{M A C}=25^{\circ} .$ Calculate the measure of angle $\angle B M C$.
  3. Find the natural numbers $x, y, z$ satisfying the following conditions
    • $x^{3}+y^{3}=2 z^{3}$.
    • $x+y+z$ is a prime number.
  4. Solve the equation $$\sqrt[3]{x+86}-\sqrt[3]{x-5}=1.$$
  5. Find the least value of the expression $$A=\frac{a^{4}}{(b-1)^{3}}+\frac{b^{4}}{(a-1)^{3}}$$ where $a$, $b$ are numbers greater than $1$, satisfying the condition $a+b \leq 4$.
  6. Let $A B C$ be an triangle with $B C=a$, $A B=A C=b$ $(a>b)$. Suppose that the measure of the angled bisector $B D$ is equal to $b$. Prove that $$\left(1+\frac{a}{b}\right)\left(\frac{a}{b}-\frac{b}{a}\right)=1.$$
  7. Let $A B C$ be a triangle with angled bisectors $A A_{1}$, $B B_{1}$, $C C_{1}$. Suppose that $\widehat{A_{1} B_{1} C_{1}}=90^{\circ}$. Calculate the measure of angle $A B C$.
  8. For every positive number $x$, let $a(x)$ denote the number of prime numbers not exceeding $x$ and for every positive integer $m,$ let $b(m)$ denote the number of prime divisors of $m$ Prove that for every positive integer $n,$ we have $$a(n)+a\left(\frac{n}{2}\right)+\ldots+a\left(\frac{n}{n}\right)=b(1)+b(2)+\ldots+b(n).$$
  9. Solve the equation $$\sqrt[3]{x^{2}}-2 \sqrt[3]{x}-(x-4) \sqrt{x-7}-3 x+28=0.$$
  10. Not using calculators, find the exact measure of acute angle $x$ satisfying $$\cos x=\frac{1}{\sqrt{1+(\sqrt{6}+\sqrt{2}-\sqrt{3}-2)^{2}}}.$$
  11. Let $A B C$ be a triangle satisfying the condition $a^{2}=4 S c o \operatorname{tg} A,$ where $B C=a$ and $S$ is the area of $\triangle A B C .$ Let $O$ and $G$ be respectively the circumcenter and the centroid of triangle $A B C .$ Calculate the measure of the angle formed by the lines $A G$ and $O G .$. 
  12. Let $A B C D$ be a tetrahedron such that its altitudes are concurrent. Let $R$ and $r$ be respectively the circumradius and the inradius of the tetrahedron $ABCD$. Let $R_A$, $R_B$, $R_C$, $R_D$ be respectively the circumradii of the tetrahedra $OBCD$, $OACD$, $OABD$, $OABC$ where $O$ is the circumcenter of the tetrahedron $A B C D$. Prove that
    a) $\displaystyle \frac{1}{R_{A}^{2}}+\frac{1}{R_{B}^{2}}+\frac{1}{R_{C}^{2}}+\frac{1}{R_{D}^{2}} \geq \frac{16}{9 R^{2}}$.
    b) $\displaystyle \frac{R_{A}}{\sqrt{3 R^{2}+4 R_{A}^{2}}}+\frac{R_{B}}{\sqrt{3 R^{2}+4 R_{B}^{2}}}+\frac{R_{C}}{\sqrt{3 R^{2}+4 R_{C}^{2}}}+\frac{R_{D}}{\sqrt{3 R^{2}+4 R_{D}^{2}}} \leq \frac{\sqrt 3}{3}\frac{R}{r}$.

Issue 344

  1. Find natural number $n$ such that the sum of $2 n$ terms $$\frac{1}{1.3}+\frac{1}{2.4}+\frac{1}{3.5}+\ldots+\frac{1}{(2 n-1)(2 n+1)}+\frac{1}{2 n(2 n+2)}$$ is equal to $\dfrac{14651}{19800}$.
  2. Let $A B C$ be an isosceles right angled triangle. Let $M$ be the midpoint of the hypotenuse $B C$, $E$ be the orthogonal projection of $M$ on the line $C G,$ where $G$ is the point on the side $A B$ such that $A G=\dfrac{1}{3} A B$. The lines $M G$ and $A C$ intersect at $D$. Compare the lengths of the segments $D E$ and $B C$.
  3. Solve the equation $$\frac{2+\sqrt{x}}{\sqrt{2}+\sqrt{2+\sqrt{x}}}+\frac{2-\sqrt{x}}{\sqrt{2}-\sqrt{2-\sqrt{x}}}=\sqrt{2}.$$
  4. Solve the system of equations $$\begin{cases}3 x^{3}-y^{3} &= \dfrac{1}{x+y} \\ x^{2}+y^{2} &=1\end{cases}.$$
  5. Pind the least value of the expression $$M=\frac{a b^{2}+b c^{2}+c a^{2}}{(a b+b c+c a)^{2}}$$ where $a$, $b$, $c$ are positive numbers satisfying the condition $a^{2}+b^{2}+c^{2}=3$.
  6. Let $X$ be a point on the side $A B$ of a parallelogram $A B C D$. The line passing through $X,$ parallel to $A D$ cuts $A C$ at $M$ and cuts $B D$ at $N .$ The line $X D$ cuts $A C$ at $P$ and the line $X C$ cuts $B D$ at $Q .$ Prove that $$\frac{M P}{A C}+\frac{N Q}{B D} \geq \frac{1}{3}.$$ When does equality occur?
  7. Let $A B C$ be a triangle with altitudes $A M$, $B N$ and with circumcircle $(O) .$ Let $D$ be a point on $(O),$ such that $D$ is distinct from $A$, $B$ and $D A$ is not parallel to $B N .$ The line $D A$ intersects the line $B N$ at $Q$. The line $D B$ intersects the line $A M$ at $P$. Prove that when $D$ moves on the circle $(O)$. the midpoint of the segment PQ lies on a fixed line.
  8. Let $p$ be a given odd prime number Prove that the difference $$\sum_{j=0}^{p}\left(\begin{array}{c} p \\ j \end{array}\right)\left(\begin{array}{c} p+j \\ j \end{array}\right)-\left(2^{p}+1\right)$$ is divisible by $p^{2}$, where $\left(\begin{array}{l}p \\ j\end{array}\right)$ is binomial coefficient.
  9. Consider the sequence $\left(f_{n}(x)\right)$ $(n=0,1,2, \ldots)$ of functions defined on $[0: 1]$ such that $$f_{0}(x)=0,\quad f_{n+1}(x)=f_{n}(x)+\frac{1}{2}\left(x-\left(f_{n}(x)\right)^{2}\right),\,\forall n=0,1,2, \ldots$$ Prove that $\dfrac{n x}{2+n \sqrt{x}} \leq f_{n}(x) \leq \sqrt{x}$ for all $n \in \mathrm{N}$, $x \in[0 ; 1]$
  10. Consider the polynomial $P(x)=x^{2}-1$. Find the number of distinct real roots of the equation $$P(P(\ldots, P(x)) \ldots)=0$$ where there are $2006$ notations $P$ on the left hand side of the equation.
  11. Suppose that $A_{1} B_{1} C_{1}$, $A_{2} B_{2} C_{2}$, $A_{3} B_{3} C_{3}$ are three triangles satisfying the conditions $$\widehat{C_{1}}=\widehat{C_{2}}=\widehat{C_{3}},\quad A_{1} B_{1}=A_{2} B_{2}=A_{3} B_{3},\\ B_{1} C_{1}+C_{2} A_{2}=B_{2} C_{2}+C_{3} A_{3}=B_{3} C_{3}+C_{1} A_{1}.$$ Prove that these three triangles are congruent.
  12. Consider a convex hexagon $A B C D E F$ inscribed in a circle. The diagonal $B F$ cuts $A E$, $A C$ respectively at $M$, $N$. The diagonal $B D$ cuts $C A$, $C E$ respectively at $P$, $Q$. The diagonal $D F$ cuts $E C$, $EA$ respectively at $R$, $S$. Prove that $M Q$, $N R$ and $P S$ are concurrent.

Issue 345

  1. Let $$A=\left(1-\frac{1}{1+2}\right)\left(1-\frac{1}{1+2+3}\right) \cdot\left(1-\frac{1}{1+2+3+\ldots+n}\right)$$ (consisting of $n-1$ factors) and $B=\dfrac{n+2}{n}$. Calculate $\dfrac{A}{B}$.
  2. Let $A B C$ be an isosceles triangle $(A B=A C)$ and $O$ be a point inside $A B C$ such that $\widehat{A O B}<\widehat{A O C}$. Compare the measures of $OB$ and $O C$.
  3. Find the numbers $x$ such that $$\frac{\sqrt{x}}{x\sqrt{x}-3 \sqrt{x}+ 3}$$ is an integer. 
  4. Find the greatest value of the expression $$ P=\frac{x}{1+y^{2}}+\frac{y}{1+x^{2}}$$ where $x$, $y$ are non negative real numbers not exceeding $\dfrac{\sqrt{2}}{2}$.
  5. Prove that $$\frac{3 \sqrt{3}}{4} \leq \frac{b c}{a(1+b c)}+\frac{c a}{b(1+c a)}+\frac{a b}{c(1+a b)} \leq \frac{a+b+c}{4}$$ where $a, b, c$ are positive real numbe satisfying the condition $a+b+c=a b c$. When do equalities occur?
  6. Two arbitrary points $E$, lie respectively on the sides $A B$, $A C$ of a triangle $A B C$ so that $\dfrac{A E}{E B}=\dfrac{C D}{D A}$. The lines $B D$, $C E$ intersect at $M$. Determine the positions of $E$ and $D$ so that the area of triangle $B M C$ attains its greatest value and calculate this value in terms of the area of triangle $A B C$.
  7. Let $A B C$ be a triangle inscribed in a circle $(O)$. The bisector of angle $B A C$ cuts the circle $(O)$ at $A$ and $D .$ The circle with center $D$ and radius $D B$ cuts the line $A B$ at $B$ and $Q$, cuts the line $A C$ at $C$ and $P$. Prove that the line $A O$ is perpendicular to the line $P Q$.
  8. Determine non empty subsets $A$, $B$, $C$ of the set $N=\{0,1,2, \ldots\}$ satisfying the following conditions
    • $A \cap B=B \cap C=C \cap A=\varnothing$;
    • $A \cup B \cup C=N$;
    • if $a \in A, b \in B, c \in C$ then $a+c \in A$ $b+c \in B, a+b \in C$
    1. Prove that $$\left|x_{1}+x_{2}+\ldots+x_{2007}\right| \leq \frac{2007}{3}$$ where $x_{1}, x_{2}, \ldots, x_{2007}$ are real numbers belonging to the segment $[-1 ; 1],$ so that the sum of their cubes is equal to $0$. When does equality occur?
    2. Find all functions $f: \mathbb{Z} \rightarrow \mathbb{Z}$ satisfying the following conditions $f(1)>0$ and $$f(f(m)-n)=f\left(m^{2}\right)+f(n)-2 n f(m),\,\forall m, n \in \mathbb{Z} .$$ 
    3. Let $A A_{1}$, $B B_{1}$, $C C_{1}$ be the medians of a triangle $A B C$. Prove that if the radii of the incircles of the triangles $B C B_{1}$, $C A C_{1}$, $A B A_{1}$ are all equal then $A B C$ is an equilateral triangle.
    4. Let be given a sphere with center $O$ and radius $R$. A pyramid $S . A B C$ moves so that the sides $S A$, $S B$, $S C$ touch the sphere $(O)$ respectively at $A$, $B$, $C$ and so that $\widehat{A S B}=90^{\circ}$, $\widehat{B S C}=60^{\circ}$, $\widehat{C S A}=120^{\circ}$. Find the locus of the apex $S$.

    Issue 346

    1. Compare the number $\dfrac{1}{1002}$ with the following sum (consisting of $2006$ terms) $$A=\frac{2}{2005+1}+\frac{2^{2}}{2005^{2}+1}+\ldots+\frac{2^{n+1}}{2005^{2^{n}}+1}+\ldots+\frac{2^{2006}}{2005^{2^{2005}}+1}.$$
    2. Let $a, b, c$ be three distinct integers different from $0$ such that $a+b+c=0$. Calculate the value of the expression $$P=\left(\frac{a-b}{c}+\frac{b-c}{a}+\frac{c-a}{b}\right)\left(\frac{c}{a-b}+\frac{a}{b-c}+\frac{b}{c-a}\right).$$
    3. Let $a, b, c$ be positive real numbers satisfying $a b c \leq 1$. Prove that $$\frac{a}{c}+\frac{b}{a}+\frac{c}{b} \geq a+b+c.$$ When does equality occur?
    4. Solve the equation $$2 \sqrt{2 x+4}+4 \sqrt{2-x}=\sqrt{9 x^{2}+16}.$$
    5. Find the least value of the expression $$\left(x^{2}+1\right) \sqrt{x^{2}+1}-x \sqrt{x^{4}+2 x^{2}+5}+(x-1)^{2}.$$
    6. Let $A B C$ be a triangle with obtuse angle $\widehat{A B C}$. Prove that $$\sin (x+y)=\sin x \cdot \cos y+\sin y \cdot \cos x$$ where $x=\widehat{B A C}$ and $y=\widehat{B C A}$.
    7. Let $A B C D$ be a cyclic quadrilateral such that the sides $A B$, $C D$ are not parallel and let $I$ be the point of intersection of its diagonals. Let $M$, $N$ be respectively the midpoints of $B C$, $C D$. Prove that if $N I$ is perpendicular to $A B$ then $M I$ is perpendicular to $A D$.
    8. Let $a, b, c, d, e, f$ be six positive integers satisfying $a b c=d e f$. Prove that $$a\left(b^{2}+c^{2}\right)+d\left(e^{2}+f^{2}\right)$$ is a composite number.
    9. Consider all quadratic trinomials $f(x)=a x^{2}+b x+c$ ($a, b, c$ are integers, $a>0)$ having two distinct roots belonging to the interval $(0 ; 1)$. Find the trinomial such that the coefficient $a$ attains its least value.
    10. Prove that $$a b+b c+c a \geq 8\left(a^{2}+b^{2}+c^{2}\right)\left(a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}\right)$$ where $a, b, c$ are nonnegative real numbers satisfying $a+b+c=1$.
    11. The incircle $(I)$ of a triangle $A_{1} A_{2} A_{3}$ has radius $r$ and touches the sides $A_{2} A_{3}$, $A_{3} A_{1}$, $A_{1} A_{2}$ respectively at $M_{1}$, $M_{2}$, $M_{3}$. Let $\left(I_{i}\right)$ be the circle touching the sides $A_{i} A_{j}$, $A_{j} A_{k}$ and externally touching $(I)$ ($i, j, k \in\{1,2,3\}$, $i \neq j \neq k \neq i$). Let $K_{1}$, $K_{2}$, $K_{3}$ be the touching points respectively of $\left(I_{1}\right)$ with $A_{1} A_{2}$, of $\left(I_{2}\right)$ with $A_{2} A_{3}$, of $\left(I_{3}\right)$ with $A_{3} A_{1}$. Put $A_{i} I_{1}=a_{i}$, $A_{i} K_{i}=b_{i}$ $(i=1,2,3)$. Prove that $$\frac{1}{r} \sum_{i=1}^{3}\left(a_{i}+b_{i}\right) \geq 2+\sqrt{3}.$$When does equality occur?
    12. Let be given a sphere with center $O$ and a chord $A B$, not passing through $O$. Let $M M^{\prime}$, $N N^{\prime}$, $P P^{\prime}$ be three chords (not coinciding with $A B$) passing through the midpoint $I$ of $A B$. Let $E$, $E^{\prime}$ be the points of intersection of the line $A B$ respectively with the planes $(MNP)$, $\left(M^{\prime} N^{\prime} P^{\prime}\right)$. Prove that $I E=I E^{\prime}$.

    Issue 347

    1. Compare $\dfrac{5}{8}$ with $\left(\dfrac{389}{401}\right)^{10}$.
    2. Let $E$, $F$ be points respectively on the sides $A C$, $A B$ of a triangle $A B C$ such that $\widehat{A B E}=\dfrac{1}{3} \widehat{A B C}$, $\widehat{A C F}=\dfrac{1}{3} \widehat{A C B}$. The lines $B E$ and $C F$ intersect at $O$. Suppose that $O E=O F$. Prove that $A B=A C$ or $\widehat{B A C}=90^{\circ}$.
    3. Find integral solutions of the system of equations $$\begin{cases}4 x^{3}+y^{2} &=16 \\ z^{2}+y z &=3\end{cases}$$
    4. Consider all quadratic equations $a x^{2}+b x+c=0$ having two roots belonging to the segment $[0 ; 2]$. Find the greatest value of the expression $$P=\frac{8 a^{2}-6 a b+b^{2}}{4 a^{2}-2 a b+a c}.$$
    5. Consider all triangles $A B C$ such that the measures $a, b, c$ of their sides satisfy the relation $$1964 a b+15 b c+10 c a=2006 a b c.$$ Find the least value of the expression $$M=\frac{1974}{p-a}+\frac{1979}{p-b}+\frac{25}{p-c}$$ where $p$ is the semiperimeter of triangle $A B C$.
    6. Let be given a quadrilateral $A B C D$. Take two points $M, P$ respectively on the sides $A B$, $A C$ such that $\dfrac{A M}{A B}=\dfrac{C P}{C D}$. Find the locus of the midpoints $I$ of the segments $M P$ when $M$, $P$ moves respectively on $A B$, $A C$.
    7. Let $A B C$ be a triangle with $\widehat{B A C}=135^{\circ}$ and $A M$, $B N$ be two of its altitudes ($M$ on $B C$, $N$ on $C A$). The line $M N$ cuts the perpendicular bisector of $A C$ at $P$. Let $D$ and $E$ be the midpoints respectively of $N P$ and $B C$. Prove that $A B C$ is a right isosceles triangle.
    8. Let be given $167$ sets $A_{1}, A_{2}, \ldots, A_{167}$ satisfying the following conditions
      • $\sum_{i=1}^{167}\left|A_{i}\right|=2004$;
      • $\left|A_{j}\right|=\left|A_{i} \| A_{i} \cap A_{j}\right|$ for all $i, j \in\{1,2, \ldots,167\}$ and $i \neq j$.
      Calculate $\left|\bigcup_{i=1}^{67} A_{i}\right|$, where $|A|$ denotes the number of elements of the set $A$.
    9. Find all continuous functions $f$, defined on $\mathbb{R}$, satisfying the condition $$f_{3}(x)+f(x)=2 x,\,\forall x \in \mathbb{R}$$ where $f_{3}(x)=f(f(f(x)))$.
    10. Find the least value of the expression $$H=\frac{x^{2}}{y+z}+\frac{y^{2}}{z+x}+\frac{z^{2}}{x+y},$$ where $x, y, z$ are positive numbers satisfying $$\sqrt{x^{2}+y^{2}}+\sqrt{y^{2}+z^{2}}+\sqrt{z^{2}+x^{2}}=2006.$$
    11. Let $A B C$ be an acute triangle with altitudes $A D$, $B E$, $C F$ and let $O$ be its circumcenter. Let $M$, $N$, $P$ be the midpoints respectively of the segments $B C$, $C A$, $A B$. Let $D_{1}$, $E_{1}$, $F_{1}$ be the reflexions respectively of $D$ in $M$, of $E$ in $N$, of $F$ in $P_{1}$. Prove that $O$ lies inside the triangle $D_{1} E_{1} F_{1}$.
    12. Let $G_{1}$, $G_{2}$, $G_{3}$, $G_{4}$ be the centroids respectively of the faces $B C D$, $CDA$, $D A B$, $A B C$ of a tetrahedron $A B C D$. Let $A_{1}$, $B_{1}$, $C_{1}$, $D_{1}$ be the points of intersection of the circumsphere of the tetrahedron respectively with $A G_{1}$, $B G_{2}$, $C G_{3}$, $D G_{4}$. Prove that $$\frac{A G_{1}}{A A_{1}}+\frac{B G_{2}}{B B_{1}}+\frac{C G_{3}}{C C_{1}}+\frac{D G_{4}}{D D_{1}} \leq \frac{8}{3} .$$

    Issue 348

    1. Find all four-digit numbers $\overline{a b c d}$ satisfying the condition $$\overline{a b c d}=a^{2}+2 b^{2}+3 c^{2}+4 d^{2}+2006.$$
    2. Let $A B C$ be a right-angled triangle with right angle at $A .$ On the side $A C$ take the point $E$ so that $\widehat{E B C}=2 \widehat{A B E}$. On the segment $B E$ take the point $M$ such that $E M=B C$. Compare the measures of the angles $\widehat{M B C}$ and $\widehat{B M C}$.
    3. Solve the equation $$\frac{1}{4 x-2006}+\frac{1}{5 x+2004}=\frac{1}{15 x-2007}-\frac{1}{6 x-2005}.$$
    4. Prove that $$a(b+c)+b(c+a)+c(a+b)+2\left(\frac{1}{1+a^{2}}+\frac{1}{1+b^{2}}+\frac{1}{1+c^{2}}\right) \geq 6$$ for arbitrary numbers $a, b, c$ not less than $1$.
    5. Find the greatest value of the expression $$P=3 x y+3 y z+3 z x-x y z$$ where $x, y, z$ are positive numbers satisfying the condition $x^{3}+y^{3}+z^{3}=3$.
    6. Let be given a triangle $A B C$. $P$ is a point on the line $B C$. On the opposite ray of the ray $A P$, take the point $D$ such that $A D=\dfrac{B C}{2}$. Let $E$ and $F$ be the midpoints respectively of the segments $D B$ and $D C$. Prove that the circle with diameter $E F$ passes through a fixed point when $P$ moves on the line $B C$.
    7. Let $A B C$ be a triangle with $A B=A C=a$. Construct a circle with center $A$, with radius $R$ $(R<a)$. From $B$ and $C$, draw the tangents $B M$, $C N$ to this circle ($M$ and $N$ are touching points) so that they are not symmetric with respect to the altitude $A H$ of triangle $A B C$. Let $I$ be the point of intersection of $B M$ and $C N$.
      a) Find the locus of $I$ when $R$ varies.
      b) Prove that $I B \cdot I C=\left|a^{2}-d^{2}\right|$ where $A I=d$.
    8. Let be given $n$ real positive numbers $a_{1}, a_{2}, \ldots, a_{n}$ satisfying the condition $$\sum_{i=1}^{k} a_{i} \leq \sum_{i=1}^{k} i(i+1),\,\forall k=1,2, \ldots, n.$$ Prove that $$\frac{1}{a_{1}}+\frac{1}{a_{2}}+\ldots+\frac{1}{a_{n}} \geq \frac{n}{n+1}$$
    9. Determine the number of distinct real roots belonging to the interval $(0 ; 2 \pi)$ of the equation $$e^{2 \cos ^{2} x}\left(8 \sin ^{6} x-12 \sin ^{4} x+10 \sin ^{2} x\right)=e+\frac{5}{2}.$$
    10. Find all polynomials $P(x)$ with real coefficients satisfying the condition $$P(x) \cdot P\left(2 x^{2}\right)=P\left(x^{3}+x\right),\,\forall x \in \mathbb{R}.$$
    11. Let $O$ be the point of intersection of the diagonals $A C, B D$ of a convex quadrilateral $A B C D$. Let $G_{1}$ and $G_{2}$ be the centroids respectively of the triangles $O A B$ and $O C D$. Let $H_{1}$ and $H_{2}$ be the orthocenters respectively of the triangles $O B C$ and $O D A$. Prove that $G_{1} G_{2}$ is perpendicular to $H_{1} H_{2}$
    12. Let $I$ and $r$ be respectively the center and the radius of the sphere inscribed in al tetrahedron $A B C D$. Let $r_{A}$, $r_{B}$, $r_{C}$, $r_{D}$ be the radii of the spheres inscribed respectivelly in the tetrahedra $I B C D$, $I A C D$, $I A B D$, $I A B C$. Prove the inequality $$\frac{1}{r_{A}}+\frac{1}{r_{B}}+\frac{1}{r_{C}}+\frac{1}{r_{D}} \leq \frac{4+\sqrt{6}}{r}.$$

    Issue 349


    1. Let $S$ be the following sum of $2006$ terms $$S=\frac{2}{2^{1}}+\frac{3}{2^{2}}+\ldots+\frac{n+1}{2^{n}}+\ldots+\frac{2007}{2^{2006}} .$$ Compare $S$ with $3$.
    2. Let $A B C$ be a triangle with its two medians $A D$, $B E$ meeting at $M$. Prove that if $$\widehat{A M B} \leq 90^{\circ}$ then $A C+B C>3 A B.$$
    3. Prove that for every given positive integer $r$ less than $59$, there exists a unique positive integer $n$ less than $59$ such that $\left(2^{n}-r\right)$ is divisible by $59$.
    4. Solve the equation $$2 x^{2}-5 x+2=4 \sqrt{2\left(x^{3}-21 x-20\right)}.$$
    5. Prove that $$4 a b c \left[\frac{1}{(a+b)^{2} c}+\frac{1}{(b+c)^{2} a}+\frac{1}{(c+a)^{2} b}\right]+\frac{a+c}{b}+\frac{b+c}{a}+\frac{a+b}{c} \geq 9$$ for arbitrary positive real numbers $a, b, c$.
    6. Let $A B C$ be a right-angled triangle, right at $B$ and $A B=2 B C$. Let $D$ be the point on side $A C$ such that $B C=C D$, let $E$ be the point on side $A B$ such that $A D=A E$. Prove that $A D^{2}=A B \cdot B E$.
    7. In plane, let be given two lines $\Delta_{1}$, $\Delta_{2}$ intersecting at $O$. A point $M$ moves in plane so that $O M$ is equal to a constant $R$ and $M$ does not lie on $\Delta_{1}$, $\Delta_{2}$. Let $H$, $K$ be the orthogonal projections of $M$ on $\Delta_{1}$, $\Delta_{2}$ respectively. Find the locus of the incenter of triangle $M H K$.
    8. Let be given three prime numbers $p_{1}$, $p_{2}, p_{3}$ $\left(p_{1}<p_{2}<p_{3}\right)$. Put $$A=\left\{n \mid n \in \mathbb{N}^{*}, 1 \leq n \leq p_{1} p_{2} p_{3}, p_{1} \nmid n, p_{2} \nmid n, p_{3} \nmid n\right\}.$$ Prove that $|A| \geq 8$ ($|A|$ denotes the number of elements of the set $A$). When does equality occur?
    9. Let be given six real numbers $a, b, c$, $a_{1}$, $b_{1}$, $c_{1}$ $\left(a a_{1} \neq 0\right)$ satisfying the condition $$\left(\frac{c}{a}-\frac{c_{1}}{a_{1}}\right)^{2}+\left(\frac{b}{a}-\frac{b_{1}}{a_{1}}\right) \cdot \frac{b c_{1}-c b_{1}}{a a_{1}}<0.$$ Prove that each of the following equations $a x^{2}+b x+c=0$ and $a_{1} x^{2}+b_{1} x+c_{1}=0$ has two distinct roots and by representing these roots on the number line, the roots of one equation alternate with the roots of the other equation.
    10. Find all polynomials with real coefficients $P(x)$ satisfying the condition $$P(x) \cdot P(x+1)=P\left(x^{2}+2\right),\,\forall x \in \mathbb{R}$$
    11. Let $A A_{1}$, $B B_{1}$, $C C_{1}$ be the inner angled bisectors of triangle $A B C$ and $A_{2}$, $B_{2}$, $C_{2}$ be the touching points of the incircle of triangle $A B C$ with the sides $B C$, $C A$, $A B$ respectively. Let $S$, $S_{1}$, $S_{2}$ be the areas of triangles $A B C$, $A_{1} B_{1} C_{1}$, $A_{2} B_{2} C_{2}$ respectively. Prove that $$\frac{3}{S_{1}}-\frac{2}{S_{2}} \leq \frac{4}{S}.$$
    12. Let $Sxyz$ be a trihedral angle with $\widehat{x S y}=121^{\circ}$, $\widehat{x S z}=59^{\circ}$. $A$ is a point on $S x$, $O A=a$. On the ray bisecting the angle $\widehat{z S y}$, take the point $B$ such that $S B=a \sqrt{3}$. Calculate the measures of the angles of triangle $S A B$.

    Issue 350

    1. Prove that $2005^{2007^{2006}}+2006^{2005^{2007}}+2007^{2006^{2005}}$ is divisible by $102$.
    2. Consider the sum of $n$ terms $$S_{n}=1+\frac{1}{1+2}+\frac{1}{1+2+3}+\ldots+\frac{1}{1+2+\ldots+n}$$ for $n \in \mathbb{N}^{*}$. Find the least rational number $a$ such that $S_{n}<a$ for all $\in \mathbb{N}^{*}$.
    3. Find all solutions $(x, y)$ of the equation $$\left(x^{2}+4 y^{2}+28\right)^{2}=17\left(x^{4}+y^{4}+14 y^{2}+49\right)$$ such that $x, y$ are natural numbers.
    4. Solve the following system of equations $$\begin{cases}\dfrac{1}{x}+\dfrac{1}{y+z} &=\dfrac{1}{2} \\ \dfrac{1}{y}+\dfrac{1}{x+z} &=\dfrac{1}{3} \\ \dfrac{1}{z}+\dfrac{1}{x+y} &=\dfrac{1}{4}\end{cases}$$
    5. Find the greatest value and the least value of the expression $$P=\sqrt{2 x+1}+\sqrt{3 y+1}+\sqrt{4 z+1}$$ where $x, y, z$ are arbitrary non negative real numbers satisfying the condition $x+y+z=4$. 
    6. Let $M$ be a point inside an acute triangle $A B C$ satisfying the condition $\widehat{M B A}=\widehat{M C A}$. Let $K$ and $L$ be the feet of the perpendiculars respectively to $A B$ and $A C$ passing through $M$. Prove that $K$ and $L$ are in equal distances from the midpoint of $B C$ and the median issued from $M$ of triangle $M K L$ passes through a fixed point when $M$ moves inside triangle $A B C .$
    7. Let be given a right-angled triangle $A B C$, right at $A$ and $A H$ be its altitude issued from $A$. A circle passing through $B$ and $C$ cuts $A B$ and $A C$ at $M$ and $N$ respectively. Consider the rectangle $A M D C$. Prove that $H N$ is perpendicular to $H D$.
    8. Let $a$ be a natural number greater than 1. Consider a non empty subset $A$ of $N$ satysfying the condition: If $k \in A$ then $k+2 a \in A$ and $\left[\frac{k}{a}\right] \in A([x]$ denotes the integral part of $x$). Prove that $A=N$.
    9. Find all continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying the condition $$9 f(8 x)-9 f(4 x)+2 f(2 x)=100 x,\,\forall x \in \mathbb{R}.$$
    10. Find the greatest value and the least value of the expression $$P=a(b-c)^{3}+b(c-a)^{3}+c(a-b)^{3}$$ where $a, b, c$ are arbitrary non negative real numbers satisfying the condition $a+b+c=1$.
    11. Let $I$ and $G$ be respectively the incenter and the centroid of a triangle $A B C$. Let $R_{1}$, $R_{2}$, $R_{3}$ be the circumradii respectively of the triangles $I B C$, $I C A$, $I A B$ and let $R_{1}^{\prime}$, $R_{2}^{\prime}$, $R_{3}^{\prime}$ be the circumradii respectively of the triangles $G B C$, $G C A$, $G A B$. Prove that $$R_{1}^{\prime}+R_{2}^{\prime}+R_{3}^{\prime} \geq R_{1}+R_{2}+R_{3} .$$
    12. Let $A B C D$ be a tetrahedron, the measures of its sides are: $B C=a$, $D A=a_{1}$, $C A=b$, $D B=b_{1}$, $A B=c$, $D C=c_{1}$ and let $G$ be its centroid. The sphere circumscribing $A B C D$ cuts $A G$, $B G$, $C G$, $D G$ respectively at $A_{1}$, $B_{1}$, $C_{1}$, $D_{1}$; let $R$ be its radius. Prove that $$\frac{4}{R} \leq \frac{1}{G A_{1}}+\frac{1}{G B_{1}}+\frac{1}{G C_{1}}+\frac{1}{G D_{1}} \leq \frac{2 \sqrt{3}}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{a_{1}}+\frac{1}{b_{1}}+\frac{1}{c_{1}}\right).$$

    Issue 351

    1. Consider the product of $11$ factors $$T=(5 a+2006 b)(6 a+2005 b)(7 a+2004 b) \ldots(15 a+1996 b)$$ where $a$, $b$ are given integers. Prove that if $T$ is divisible by $2011$ then $T$ is divisible by $2011^{11}$.
    2. Calculate the sum of 2006 terms $$S=\frac{3^{3}+1^{3}}{2^{3}-1^{3}}+\frac{5^{3}+2^{3}}{3^{3}-2^{3}}+\frac{7^{3}+3^{3}}{4^{3}-3^{3}}+\ldots+\frac{4013^{3}+2006^{3}}{2007^{3}-2006^{3}}$$
    3. Find the prime number $p$ such that $2005^{2005}-p^{2006}$ is divisible by $2005+p$
    4. Solve the system of equations $$\begin{cases}x+y+z+t & =12 \\ x^{2}+y^{2}+z^{2}+t^{2} & =50 \\ x^{3}+y^{3}+z^{3}+t^{3} & =252 \\ x^{2} t^{2}+y^{2} z^{2} & =2 x y z t\end{cases}$$
    5. Find the least value of the expression $$P=\frac{a b+b c+c a}{a^{2}+b^{2}+c^{2}}+\frac{(a+b+c)^{3}}{a b c},$$ where $a, b, c$ are positive real numbers.
    6. Let be given a not obtuse triangle $A B C$ with its three altitudes $A A_{1}$, $B B_{1}$, $C C_{1}$ and its orthocenter $H$. Prove that $$H A^{2}+H A_{1}^{2}+H B^{2}+H B_{1}^{2}+H C^{2}+H C_{1}^{2} \geq \frac{5}{2}\left(H A \cdot H A_{1}+H B \cdot H B_{1}+H C \cdot H C_{1}\right)$$
    7. Let be given five concyclic points $A$, $B$, $C$, $D$, $E$ and let $M$, $N$, $P$, $Q$ be the orthogonal projections of $E$ respectively on the lines $A B$, $B C$, $C D$, $D A$. Prove that the orthogonal projections of $E$ on the lines $M N$, $N P$, $P Q$, $Q M$ are collinear.
    8. Prove that $(2 n+1)^{n+1} \leq(2 n+1) ! ! \pi^{n}$ for every natural number $n$, where $(2 n+1) ! !$ denotes the product of the first $n+1$ positive odd integers.
    9. Solve the equation $$x^{3}-3 x=\sqrt{x+2}.$$
    10. Let $f(x)$ be a continuous function defined on $[0 ; 1]$ satisfying the conditions $$f(0)=0,\, f(1)=1,\quad 6 f\left(\frac{2 x+y}{3}\right)=5 f(x)+f(y),\,\forall x \geq y ; x, y \in[0 ; 1].$$ Calculate $f\left(\dfrac{8}{23}\right)$.
    11. Calculate the measures of the angles of a triangle $A B C$ satisfying the condition $$\frac{h_{a}}{m_{b}}+\frac{h_{b}}{m_{a}}=\frac{4}{\sqrt{3}}$$ where $m_{a}, m_{b}$ are the measures of its two medians and $h_{a}$, $h_{a}$ are the measures of its two altitudes issued respectively from the vertices $A$, $B$.
    12. Let be given an equifaced tetrahedron $A B C D$ ($A B=C D$, $A C=B D$, $B C=A D$) and let $V$, $R$, $r$ be respectively its volume, its circumradius, its inradius. Prove that $$\frac{243 V^{2}}{512 R^{6}} \leq \cos A \cdot \cos B \cdot \cos C \leq \frac{9}{8}\left(\frac{r}{R}\right)^{2}$$ where $A$, $B$, $C$ are the angles of triangle $A B C$. When do equalities occur?

    Issue 352

    1. Find a $5$-digit number such that by multiplying it by $2$ we obtain a $6$-digit number with six distinct nonzero digits and by multiplying it respectively by $5,6,7,8,11$ we obtain five $6$-digit numbers such that the digits of each number are the six above mentioned nonzero digits but written in another order.
    2. Let $a, b, c, d, m, n$ be positive integers such that $a b=c d$. Prove that the number $$A=a^{2 n+1}+b^{2 m+1}+c^{2 n+1}+d^{2 m+1}$$ is a composite number.
    3. Find integral solutions of the equation $$x^{5}-y^{5}-x y=32 .$$
    4. Let be given positive numbers $a, b, c$ satisfying the condition $a b c \geq 1$. Prove that $$\frac{a}{\sqrt{b+\sqrt{a c}}}+\frac{b}{\sqrt{c+\sqrt{a b}}}+\frac{c}{\sqrt{a+\sqrt{b c}}} \geq \frac{3}{\sqrt{2}}.$$
    5. Find real numbers $x, y$ satisfying the conditions $$x+y \geq 4,\quad \left(x^{3}+y^{3}\right)\left(x^{7}+y^{7}\right)=x^{11}+y^{11}.$$
    6. Let $A B C D$ be a convex quadrilateral and let $E$, $F$ be the midpoints respectively of $A D$, $B C$. The lines $A F$, $B E$ intersect at $M$, the lines $C E$, $D F$ intersect at $N$. Find the least value of $$P=\frac{M A}{M F}+\frac{M B}{M E}+\frac{N C}{N E}+\frac{N D}{N F} .$$
    7. Let $A$, $B$, $C$ be three points lying on a circle with center $O$ and radius $R$ so that $$C B-C A=R,\quad C A \cdot C B=R^{2} .$$ Calculate the measures of the angles of triangle $A B C$.
    8. The sequence of numbers $\left(a_{i}\right)$ $(i=1,2,3, \ldots)$ is defined by $$a_{1}=1,\, a_{2}=-1,\quad a_{n}=-a_{n-1}-2 a_{n-2},\,\forall n=3,4, \ldots$$ Calculate the value of the expression $$A=2 a_{2006}^{2}+a_{2006} \cdot a_{2007}+a_{2007}^{2}.$$
    9. Let $N_{m}$ be the set of all integers not less then a given integer $m$. Find all functions $f: N_{m} \rightarrow N_{m}$ satisfying the condition $$f\left(x^{2}+f(y)\right)=y+(f(x))^{2},\,\forall x, y \in N_{m}.$$
    10. Suppose that the system of equations $$\begin{cases}x^{2}+x y+x &=1 \\ y^{2}+x y+x+y &=1\end{cases}$$ has a unique solution $\left(x_{0}, y_{0}\right)$ with $x_{0}>0$, $y_{0}>0$. Prove that $$\frac{1}{x_{0}}+\frac{1}{y_{0}}=8 \cos ^{3} \frac{\pi}{7}.$$
    11. The measures of the sides of a triangle $A B C$ are $B C=a$, $C A=b$, $A B=c$ and the measures of its altitudes issued respectively from $A$, $B$, $C$ are $h_{a}$, $h_{b}$, $h_{c}$. Take $A_{1}$ on the side $B C$ so that the incircles of triangles $A B A_{1}$, $A C A_{1}$ have equal radii $r_{A}$. One defines $r_{B}$, $r_{C}$ analogously. Prove that $$2\left(r_{A}+r_{B}+r_{C}\right)+p \leq h_{a}+h_{b}+h_{c}$$ where $p$ is the semiperimeter of triangle $A B C$.
    12. Let be given a triangular pyramid $S.MNP$ such that $$\widehat{M S N}+\widehat{N S P}+\widehat{P S M}=180^{\circ}.$$ Prove that $\cos \alpha+\cos \beta+\cos \gamma=1$ where $\alpha$, $\beta$, $\gamma$ are the measures of the dihedral angles with sides $S M$, $S N$, $S P$ respectively.

    Issue 353

    1. Find $2 n$-digit number of the form $\overline{a_{1} a_{2} \ldots a_{2 n-1} a_{2 n}}$ satisfying the condition $$\overline{a_{1} a_{2} \ldots a_{2 n-1} a_{2 n}}=a_{1} \cdot a_{2}+\ldots+a_{2 n-1} \cdot a_{2 n}+2006.$$
    2. Do there exist three numbers $a, b, c$ satisfying $$\frac{a}{b^{2}-c a}=\frac{b}{c^{2}-a b}=\frac{c}{a^{2}-b c}$$
    3. Find all positive integers $x, y, z$ satisfying simultaneously the two conditions
      • $\dfrac{x-y \sqrt{2006}}{y-z \sqrt{2006}}$ is a rational number,
      • $x^{2}+y^{2}+z^{2}$ is a prime number.
    4. Find the greatest value and the least value of the expression $P=x y z$ where $x, y, z$ are real numbers satisfying $$\frac{8-x^{4}}{16+x^{4}}+\frac{8-y^{4}}{16+y^{4}}+\frac{8-z^{4}}{16+z^{4}} \geq 0.$$
    5. Prove that $$\frac{2}{9} \leq a^{3}+b^{3}+c^{3}+3 a b c < \frac{1}{4}$$ where $a, b, c$ are the measures of three sides of a triangle with perimeter $a+b+c=1$.
    6. Consider convex quadrilateral $A A^{\prime} C^{\prime} C$ such that the lines $A C$, $A^{\prime} C^{\prime}$ intersect at a point $I$. Take a point $B$ on the side $A C$ and a point $B^{\prime}$ on the side $A^{\prime} C^{\prime}$. Let $O$ be the point of intersection of the lines $A C^{\prime}$, $A^{\prime} C$; let $P$ be that of $A B^{\prime}$, $A^{\prime} B$; let $Q$ be that of $B C^{\prime} \cdot B^{\prime} C$. Prove that the points $P$, $O$, $Q$ are collinear.
    7. Let be given an isosceles triangle $A B C$ with $A B=A C$. Take a point $D$ on the side $A B$ and a point $E$ on the side $A C$ so that $D E=B D+C E$. The bisector of angle $B D E$ cuts the side $B C$ at $I$. a) Find the measure of angle $\angle D I E$. b) Prove that the line $D I$ passes through a fixed point when $D$ moves on $A B$ and $E$ moves on $A C$.
    8. Find all positive integers $n$ greater than 1 such that every integer $k$, $1<k<n$ satisfying $\gcd(k, n)=1$, is a prime.
    9. Find all polynomials $P(x)$ satisfying the condition $$P\left(x^{2006}+y^{2006}\right)=(P(x))^{2006}+(P(y))^{2006}$$ for all real numbers $x, y$.
    10. Solve the equation $$2 \sqrt{x^{2}-\frac{1}{4}+\sqrt{x^{2}-\frac{1}{4}+\sqrt{\ldots+\sqrt{x^{2}-\frac{1}{4}+\sqrt{x^{2}+x+\frac{1}{4}}}}}}=2 x^{3}+3 x^{2}+3 x+1$$ where on the left side there are $2006$ signs of radical.
    11. Let be given a quadrilateral $A B C D$ inscribed in a circle with center $O$, radius $R$. The lines $A B$, $C D$ intersect at $P$, the lines $A D$, $B C$ intesect at $Q$. Prove that $$\overrightarrow{O P} \cdot \overrightarrow{O Q}=R^{2}.$$
    12. Let $M$ be a point lying inside the tetrahedron $A B C D$. The lines $M A$, $M B$, $M C$, $M D$ cut the faces $B C D$, $C D A$, $D A B$, $A B C$ respectively at $A^{\prime}$, $B^{\prime}$, $C^{\prime}$, $D^{\prime}$. Prove that the volume of the tetrahedron $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ does not exceed $\dfrac{1}{27}$ that of the tetrahedron $A B C D$.

    Issue 354

    1. a) Find all natural number, each of which can be written as the sum of two relatively prime integers greater than $1$.
      b) Find all natural numbers, each of which can be written as the sum of three pairwise relatively prime integers greater than $1$.
    2. Let $A B C$ be a triangle with acute angle $\widehat{A B C}$. Let $K$ be a point on the side $A B$, and $H$ be its orthogonal projection on the line $B C$. A ray $B x$ cuts the segment $KH$ at $E$ and cuts the line passing through $K$ parallel to $B C$ at $F$. Prove that $\widehat{A B C}=3 \widehat{C B F}$ when and only when $E F=$ $2 B K$.
    3. Find all natural numbers $n$ such that the product of the digits of $n$ is equal to $$(n-86)^{2}\left(n^{2}-85 n+40\right).$$
    4. Prove that $a b+b c+c a<\sqrt{3} d^{2}$, where $a, b, c, d$ are real numbers satisfying the following conditions $$0<a, b, c<d,\quad \frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\sqrt{\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}}=\frac{2}{d}.$$
    5. Solve the equation $$x^{4}+2 x^{3}+2 x^{2}-2 x+1=\left(x^{3}+x\right) \sqrt{\frac{1-x^{2}}{x}}.$$
    6. Let $A B C D$ be a square with sides equal to $a$. On the side $A D$, take the point $M$ such that $A M=3 M D$. Draw the ray $B x$ cutting the side $C D$ at $I$ such that $\widehat{A B M}=\widehat{M B I}$. The angle bisector of $\widehat{C B I}$ cuts the side $C D$ at $N$. Calculate the area of triangle $B M N$.
    7. Let $B C$ be a fixed chord (which is not a diameter) of a circle. On the major arc $B C$ of the circle, take a point $A$ not coinciding with $B$, $C$. Let $H$ be the orthocenter of triangle $A B C$. The second points of intersection of the line $B C$ with the circumcircles of triangles $A B H$ and $A C H$ are $E$ and $F$ respectively. The line $E H$ cuts the side $A C$ at $M$ and the line $F H$ cuts the side $A B$ at $N$. Determine the position of $A$ so that the measure of the segment $M N$ attains its least value.
    8. How many are there natural $9$-digit numbers with $3$ distinct odd digits, $3$ distinct even digits and every even digit in each number appears exactly two times (in this number).
    9. For every positive integer $n$, consider the function $f_{n}$ defined on $\mathbb{R}$ by $$f_{n}(x)=x^{2 n}+x^{2 n-1}+\ldots+x^{2}+x+1$$ a) Prove that the function $f_{n}$ attains its least value at a unique value $x_{n}$ of $x$.
      b) Let $S_{n}$ be the least value of $f_{n}$. Prove that
      • $S_{n}>\dfrac{1}{2}$ for all $n$ and there does not exist a real number $a>\dfrac{1}{2}$ such that $S_{n}>a$ for all $n$.
      • $\left(S_{n}\right)$ $(n=1,2, \ldots)$ is a decreasing sequence and $\lim S_{n}=\dfrac{1}{2}$.
      • $\displaystyle\lim_{n\to\infty} x_{n}=-1$.
    10. Let $$A=\sqrt{x^{2}+\sqrt{4 x^{2}+\sqrt{16 x^{2}+\sqrt{100 x^{2}+39 x+\sqrt{3}}}}}.$$ Find the greatest integer not exceeding $A$ when $x=20062007$.
    11. Let $A B C$ be a triangle with $B C=d$ $C A=b$, $A B=c$, with inradius $r$ and with incenter $I$. Let $A_{1}$, $B_{1}$, $C_{1}$ be respectively the touching points of the sides $B C$, $C A$, $A B$ with the incircle. The rays $I A$, $I B$, $I C$ cut the incircle respectively at $A_{2}$, $B_{2}$, $C_{2}$. Let $B_{i} C_{i}=a_{1}$, $C_{1} A_{i}=b_{i}$, $A_{i} B_{i}=c_{i}$ $(\mathrm{i}=1,2)$. Prove that $$\frac{a_{2}^{3} b_{2}^{3} c_{2}^{3}}{a_{1}^{2} b_{1}^{2} c_{1}^{2}} \geq \frac{216 r^{6}}{a b c}.$$ When does equality occur?
    12. Let $O A B C$ be a tetrahedron with $$\widehat{A O B}+\widehat{B O C}+\widehat{C O A}=180^{\circ}.$$ $O A_{1}$, $O B_{1}$, $O C_{1}$ are internal angle bisectors respectively of the triangles $O B C$, $O C A$, $O A B$; $O A_{2}$, $O B_{2}$, $O C_{2}$ are internal angle bisectors respectively of the triangles $O A A_{1}$, $O B B_{1}$, $O C C_{1}$. Prove that $$\left(\frac{A A_{1}}{A_{2} A_{1}}\right)^{2}+\left(\frac{B B_{1}}{B_{2} B_{1}}\right)^{2}+\left(\frac{C C_{1}}{C_{2} C_{1}}\right)^{2} \geq(2+\sqrt{3})^{2}.$$ When does equality occur?
    MOlympiad.NET là dự án thu thập và phát hành các đề thi tuyển sinh và học sinh giỏi toán. Quý bạn đọc muốn giúp chúng tôi chỉnh sửa đề thi này, xin hãy để lại bình luận facebook (có thể đính kèm hình ảnh) hoặc google (có thể sử dụng $\LaTeX$) bên dưới. BBT rất mong bạn đọc ủng hộ UPLOAD đề thi và đáp án mới hoặc liên hệ
    Chúng tôi nhận tất cả các định dạng của tài liệu: $\TeX$, PDF, WORD, IMG,...



    Name

    Abel Albania AMM Amsterdam An Giang Andrew Wiles Anh APMO Austria (Áo) Ba Đình Ba Lan Bà Rịa Vũng Tàu Bắc Bộ Bắc Giang Bắc Kạn Bạc Liêu Bắc Ninh Bắc Trung Bộ Bài Toán Hay Balkan Baltic Way BAMO Bất Đẳng Thức Bến Tre Benelux Bình Định Bình Dương Bình Phước Bình Thuận Birch BMO Booklet Bosnia Herzegovina BoxMath Brazil British Bùi Đắc Hiên Bùi Thị Thiện Mỹ Bùi Văn Tuyên Bùi Xuân Diệu Bulgaria Buôn Ma Thuột BxMO Cà Mau Cần Thơ Canada Cao Bằng Cao Quang Minh Câu Chuyện Toán Học Caucasus CGMO China - Trung Quốc Chọn Đội Tuyển Chu Tuấn Anh Chuyên Đề Chuyên Sư Phạm Chuyên Trần Hưng Đạo Collection College Mathematic Concours Cono Sur Contest Correspondence Cosmin Poahata Crux Czech-Polish-Slovak Đà Nẵng Đa Thức Đại Số Đắk Lắk Đắk Nông Đan Phượng Danube Đào Thái Hiệp ĐBSCL Đề Thi Đề Thi HSG Đề Thi JMO Điện Biên Định Lý Định Lý Beaty Đỗ Hữu Đức Thịnh Do Thái Doãn Quang Tiến Đoàn Quỳnh Đoàn Văn Trung Đống Đa Đồng Nai Đồng Tháp Du Hiền Vinh Đức Duyên Hải Bắc Bộ E-Book EGMO ELMO EMC Epsilon Estonian Euler Evan Chen Fermat Finland Forum Of Geometry Furstenberg G. Polya Gặp Gỡ Toán Học Gauss GDTX Geometry Gia Lai Gia Viễn Giải Tích Hàm Giảng Võ Giới hạn Goldbach Hà Giang Hà Lan Hà Nam Hà Nội Hà Tĩnh Hà Trung Kiên Hải Dương Hải Phòng Hậu Giang Hậu Lộc Hilbert Hình Học HKUST Hòa Bình Hoài Nhơn Hoàng Bá Minh Hoàng Minh Quân Hodge Hojoo Lee HOMC HongKong HSG 10 HSG 10 Bắc Giang HSG 10 Thái Nguyên HSG 10 Vĩnh Phúc HSG 11 HSG 11 Bắc Giang HSG 11 Lạng Sơn HSG 11 Thái Nguyên HSG 11 Vĩnh Phúc HSG 12 HSG 12 2010-2011 HSG 12 2011-2012 HSG 12 2012-2013 HSG 12 2013-2014 HSG 12 2014-2015 HSG 12 2015-2016 HSG 12 2016-2017 HSG 12 2017-2018 HSG 12 2018-2019 HSG 12 2019-2020 HSG 12 2020-2021 HSG 12 2021-2022 HSG 12 Bắc Giang HSG 12 Bình Phước HSG 12 Đồng Tháp HSG 12 Lạng Sơn HSG 12 Long An HSG 12 Quảng Nam HSG 12 Quảng Ninh HSG 12 Thái Nguyên HSG 12 Vĩnh Phúc HSG 9 HSG 9 2010-2011 HSG 9 2011-2012 HSG 9 2012-2013 HSG 9 2013-2014 HSG 9 2014-2015 HSG 9 2015-2016 HSG 9 2016-2017 HSG 9 2017-2018 HSG 9 2018-2019 HSG 9 2019-2020 HSG 9 2020-2021 HSG 9 2021-202 HSG 9 2021-2022 HSG 9 Bắc Giang HSG 9 Bình Phước HSG 9 Đồng Tháp HSG 9 Lạng Sơn HSG 9 Long An HSG 9 Quảng Nam HSG 9 Quảng Ninh HSG 9 Vĩnh Phúc HSG Cấp Trường HSG Quốc Gia HSG Quốc Tế Hứa Lâm Phong Hứa Thuần Phỏng Hùng Vương Hưng Yên Hương Sơn Huỳnh Kim Linh Hy Lạp IMC IMO IMT India - Ấn Độ Inequality InMC International Iran Jakob JBMO Jewish Journal Junior K2pi Kazakhstan Khánh Hòa KHTN Kiên Giang Kim Liên Kon Tum Korea - Hàn Quốc Kvant Kỷ Yếu Lai Châu Lâm Đồng Lạng Sơn Langlands Lào Cai Lê Hải Châu Lê Hải Khôi Lê Hoành Phò Lê Khánh Sỹ Lê Minh Cường Lê Phúc Lữ Lê Phương Lê Quý Đôn Lê Viết Hải Lê Việt Hưng Leibniz Long An Lớp 10 Lớp 10 Chuyên Lớp 10 Không Chuyên Lớp 11 Lục Ngạn Lượng giác Lương Tài Lưu Giang Nam Lý Thánh Tông Macedonian Malaysia Margulis Mark Levi Mathematical Excalibur Mathematical Reflections Mathematics Magazine Mathematics Today Mathley MathLinks MathProblems Journal Mathscope MathsVN MathVN MEMO Metropolises Mexico MIC Michael Guillen Mochizuki Moldova Moscow MYM MYTS Nam Định Nam Phi National Nesbitt Newton Nghệ An Ngô Bảo Châu Ngô Việt Hải Ngọc Huyền Nguyễn Anh Tuyến Nguyễn Bá Đang Nguyễn Đình Thi Nguyễn Đức Tấn Nguyễn Đức Thắng Nguyễn Duy Khương Nguyễn Duy Tùng Nguyễn Hữu Điển Nguyễn Mình Hà Nguyễn Minh Tuấn Nguyễn Phan Tài Vương Nguyễn Phú Khánh Nguyễn Phúc Tăng Nguyễn Quản Bá Hồng Nguyễn Quang Sơn Nguyễn Tài Chung Nguyễn Tăng Vũ Nguyễn Tất Thu Nguyễn Thúc Vũ Hoàng Nguyễn Trung Tuấn Nguyễn Tuấn Anh Nguyễn Văn Huyện Nguyễn Văn Mậu Nguyễn Văn Nho Nguyễn Văn Quý Nguyễn Văn Thông Nguyễn Việt Anh Nguyễn Vũ Lương Nhật Bản Nhóm $\LaTeX$ Nhóm Toán Ninh Bình Ninh Thuận Nội Suy Lagrange Nội Suy Newton Nordic Olympiad Corner Olympiad Preliminary Olympic 10 Olympic 10/3 Olympic 11 Olympic 12 Olympic 24/3 Olympic 24/3 Quảng Nam Olympic 27/4 Olympic 30/4 Olympic KHTN Olympic Sinh Viên Olympic Tháng 4 Olympic Toán Olympic Toán Sơ Cấp PAMO Phạm Đình Đồng Phạm Đức Tài Phạm Huy Hoàng Pham Kim Hung Phạm Quốc Sang Phan Huy Khải Phan Thành Nam Pháp Philippines Phú Thọ Phú Yên Phùng Hồ Hải Phương Trình Hàm Phương Trình Pythagoras Pi Polish Problems PT-HPT PTNK Putnam Quảng Bình Quảng Nam Quảng Ngãi Quảng Ninh Quảng Trị Quỹ Tích Riemann RMM RMO Romania Romanian Mathematical Russia Sách Thường Thức Toán Sách Toán Sách Toán Cao Học Sách Toán THCS Saudi Arabia - Ả Rập Xê Út Scholze Serbia Sharygin Shortlists Simon Singh Singapore Số Học - Tổ Hợp Sóc Trăng Sơn La Spain Star Education Stars of Mathematics Swinnerton-Dyer Talent Search Tăng Hải Tuân Tạp Chí Tập San Tây Ban Nha Tây Ninh Thạch Hà Thái Bình Thái Nguyên Thái Vân Thanh Hóa THCS Thổ Nhĩ Kỳ Thomas J. Mildorf THPT Chuyên Lê Quý Đôn THPTQG THTT Thừa Thiên Huế Tiền Giang Tin Tức Toán Học Titu Andreescu Toán 12 Toán Cao Cấp Toán Chuyên Toán Rời Rạc Toán Tuổi Thơ Tôn Ngọc Minh Quân TOT TPHCM Trà Vinh Trắc Nghiệm Trắc Nghiệm Toán Trại Hè Trại Hè Hùng Vương Trại Hè Phương Nam Trần Đăng Phúc Trần Minh Hiền Trần Nam Dũng Trần Phương Trần Quang Hùng Trần Quốc Anh Trần Quốc Luật Trần Quốc Nghĩa Trần Tiến Tự Trịnh Đào Chiến Trường Đông Trường Hè Trường Thu Trường Xuân TST TST 2010-2011 TST 2011-2012 TST 2012-2013 TST 2013-2014 TST 2014-2015 TST 2015-2016 TST 2016-2017 TST 2017-2018 TST 2018-2019 TST 2019-2020 TST 2020-2021 TST 2021-2022 TST Bắc Giang TST Bình Phước TST Đồng Tháp TST Lạng Sơn TST Long An TST Quảng Nam TST Quảng Ninh TST Thái Nguyên TST Vĩnh Phúc Tuyên Quang Tuyển Sinh Tuyển Sinh 10 Tuyển Sinh 10 Bắc Giang Tuyển Sinh 10 Bình Phước Tuyển Sinh 10 Đồng Tháp Tuyển Sinh 10 Lạng Sơn Tuyển Sinh 10 Long An Tuyển Sinh 10 Quảng Nam Tuyển Sinh 10 Quảng Ninh Tuyển Sinh 10 Thái Nguyên Tuyển Sinh 10 Vĩnh Phúc Tuyển Sinh 2010-2011 Tuyển Sinh 2011-2012 Tuyển Sinh 2011-2022 Tuyển Sinh 2012-2013 Tuyển Sinh 2013-2014 Tuyển Sinh 2014-2015 Tuyển Sinh 2015-2016 Tuyển Sinh 2016-2017 Tuyển Sinh 2017-2018 Tuyển Sinh 2018-2019 Tuyển Sinh 2019-2020 Tuyển Sinh 2020-2021 Tuyển Sinh 2021-202 Tuyển Sinh 2021-2022 Tuyển Tập Tuymaada UK - Anh Undergraduate USA - Mỹ USA TSTST USAJMO USATST USEMO Uzbekistan Vasile Cîrtoaje Vật Lý Viện Toán Học Vietnam Viktor Prasolov VIMF Vinh Vĩnh Long Vĩnh Phúc Virginia Tech VLTT VMEO VMF VMO VNTST Võ Anh Khoa Võ Quốc Bá Cẩn Võ Thành Văn Vojtěch Jarník Vũ Hữu Bình Vương Trung Dũng WFNMC Journal Wiles Yên Bái Yên Định Yên Thành Zhautykov Zhou Yuan Zhe
    false
    ltr
    item
    MOlympiad.NET: Mathematics and Youth Magazine Problems 2006
    Mathematics and Youth Magazine Problems 2006
    MOlympiad.NET
    https://www.molympiad.net/2022/04/mym-2006.html
    https://www.molympiad.net/
    https://www.molympiad.net/
    https://www.molympiad.net/2022/04/mym-2006.html
    true
    2506595080985176441
    UTF-8
    Not found any posts Not found any related posts VIEW ALL Readmore Reply Cancel reply Delete By Home PAGES POSTS View All RECOMMENDED FOR YOU Tag ARCHIVE SEARCH ALL POSTS Not found any post match with your request Back Home Contents See also related Sunday Monday Tuesday Wednesday Thursday Friday Saturday Sun Mon Tue Wed Thu Fri Sat January February March April May June July August September October November December Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec just now 1 minute ago $$1$$ minutes ago 1 hour ago $$1$$ hours ago Yesterday $$1$$ days ago $$1$$ weeks ago more than 5 weeks ago Followers Follow Copy All Code Select All Code All codes were copied to your clipboard Can not copy the codes / texts, please press [CTRL]+[C] (or CMD+C with Mac) to copy THIS PREMIUM CONTENT IS LOCKED
    PLEASE FOLLOW THE INSTRUCTIONS TO VIEW THIS CONTENT
    NỘI DUNG CAO CẤP NÀY ĐÃ BỊ KHÓA
    XIN HÃY LÀM THEO HƯỚNG DẪN ĐỂ XEM NỘI DUNG NÀY
    STEP 1: SHARE THIS ARTICLE TO A SOCIAL NETWORK
    BƯỚC 1: CHIA SẺ BÀI VIẾT NÀY LÊN MẠNG XÃ HỘI
    STEP 2: CLICK THE LINK ON YOUR SOCIAL NETWORK
    BƯỚC 2: BẤM VÀO ĐƯỜNG DẪN TRÊN MẠNG XÃ HỘI CỦA BẠN