$hide=mobile$type=ticker$c=12$cols=3$l=0$sr=random$b=0

Mathematics and Youth Magazine Problems 2006

This article has
views, Facebook comments and 0 Blogger comments. Leave a comment.

Issue 343

  1. Find the numbers $x$ and $y$ satisfying the condition $$|x-2005|+|x-2006|+|y-2007|+|x-2008|=3.$$
  2. Let $A B C$ be a triangle with $\widehat{B A C}=55^{\circ}$ $\widehat{A B C}=115^{\circ} .$ On the bisector of angle $A C B$ take the point $M$ so that $\widehat{M A C}=25^{\circ} .$ Calculate the measure of angle $\angle B M C$.
  3. Find the natural numbers $x, y, z$ satisfying the following conditions
    • $x^{3}+y^{3}=2 z^{3}$.
    • $x+y+z$ is a prime number.
  4. Solve the equation $$\sqrt[3]{x+86}-\sqrt[3]{x-5}=1.$$
  5. Find the least value of the expression $$A=\frac{a^{4}}{(b-1)^{3}}+\frac{b^{4}}{(a-1)^{3}}$$ where $a$, $b$ are numbers greater than $1$, satisfying the condition $a+b \leq 4$.
  6. Let $A B C$ be an triangle with $B C=a$, $A B=A C=b$ $(a>b)$. Suppose that the measure of the angled bisector $B D$ is equal to $b$. Prove that $$\left(1+\frac{a}{b}\right)\left(\frac{a}{b}-\frac{b}{a}\right)=1.$$
  7. Let $A B C$ be a triangle with angled bisectors $A A_{1}$, $B B_{1}$, $C C_{1}$. Suppose that $\widehat{A_{1} B_{1} C_{1}}=90^{\circ}$. Calculate the measure of angle $A B C$.
  8. For every positive number $x$, let $a(x)$ denote the number of prime numbers not exceeding $x$ and for every positive integer $m,$ let $b(m)$ denote the number of prime divisors of $m$ Prove that for every positive integer $n,$ we have $$a(n)+a\left(\frac{n}{2}\right)+\ldots+a\left(\frac{n}{n}\right)=b(1)+b(2)+\ldots+b(n).$$
  9. Solve the equation $$\sqrt[3]{x^{2}}-2 \sqrt[3]{x}-(x-4) \sqrt{x-7}-3 x+28=0.$$
  10. Not using calculators, find the exact measure of acute angle $x$ satisfying $$\cos x=\frac{1}{\sqrt{1+(\sqrt{6}+\sqrt{2}-\sqrt{3}-2)^{2}}}.$$
  11. Let $A B C$ be a triangle satisfying the condition $a^{2}=4 S c o \operatorname{tg} A,$ where $B C=a$ and $S$ is the area of $\triangle A B C .$ Let $O$ and $G$ be respectively the circumcenter and the centroid of triangle $A B C .$ Calculate the measure of the angle formed by the lines $A G$ and $O G .$. 
  12. Let $A B C D$ be a tetrahedron such that its altitudes are concurrent. Let $R$ and $r$ be respectively the circumradius and the inradius of the tetrahedron $ABCD$. Let $R_A$, $R_B$, $R_C$, $R_D$ be respectively the circumradii of the tetrahedra $OBCD$, $OACD$, $OABD$, $OABC$ where $O$ is the circumcenter of the tetrahedron $A B C D$. Prove that
    a) $\displaystyle \frac{1}{R_{A}^{2}}+\frac{1}{R_{B}^{2}}+\frac{1}{R_{C}^{2}}+\frac{1}{R_{D}^{2}} \geq \frac{16}{9 R^{2}}$.
    b) $\displaystyle \frac{R_{A}}{\sqrt{3 R^{2}+4 R_{A}^{2}}}+\frac{R_{B}}{\sqrt{3 R^{2}+4 R_{B}^{2}}}+\frac{R_{C}}{\sqrt{3 R^{2}+4 R_{C}^{2}}}+\frac{R_{D}}{\sqrt{3 R^{2}+4 R_{D}^{2}}} \leq \frac{\sqrt 3}{3}\frac{R}{r}$.

Issue 344

  1. Find natural number $n$ such that the sum of $2 n$ terms $$\frac{1}{1.3}+\frac{1}{2.4}+\frac{1}{3.5}+\ldots+\frac{1}{(2 n-1)(2 n+1)}+\frac{1}{2 n(2 n+2)}$$ is equal to $\dfrac{14651}{19800}$.
  2. Let $A B C$ be an isosceles right angled triangle. Let $M$ be the midpoint of the hypotenuse $B C$, $E$ be the orthogonal projection of $M$ on the line $C G,$ where $G$ is the point on the side $A B$ such that $A G=\dfrac{1}{3} A B$. The lines $M G$ and $A C$ intersect at $D$. Compare the lengths of the segments $D E$ and $B C$.
  3. Solve the equation $$\frac{2+\sqrt{x}}{\sqrt{2}+\sqrt{2+\sqrt{x}}}+\frac{2-\sqrt{x}}{\sqrt{2}-\sqrt{2-\sqrt{x}}}=\sqrt{2}.$$
  4. Solve the system of equations $$\begin{cases}3 x^{3}-y^{3} &= \dfrac{1}{x+y} \\ x^{2}+y^{2} &=1\end{cases}.$$
  5. Pind the least value of the expression $$M=\frac{a b^{2}+b c^{2}+c a^{2}}{(a b+b c+c a)^{2}}$$ where $a$, $b$, $c$ are positive numbers satisfying the condition $a^{2}+b^{2}+c^{2}=3$.
  6. Let $X$ be a point on the side $A B$ of a parallelogram $A B C D$. The line passing through $X,$ parallel to $A D$ cuts $A C$ at $M$ and cuts $B D$ at $N .$ The line $X D$ cuts $A C$ at $P$ and the line $X C$ cuts $B D$ at $Q .$ Prove that $$\frac{M P}{A C}+\frac{N Q}{B D} \geq \frac{1}{3}.$$ When does equality occur?
  7. Let $A B C$ be a triangle with altitudes $A M$, $B N$ and with circumcircle $(O) .$ Let $D$ be a point on $(O),$ such that $D$ is distinct from $A$, $B$ and $D A$ is not parallel to $B N .$ The line $D A$ intersects the line $B N$ at $Q$. The line $D B$ intersects the line $A M$ at $P$. Prove that when $D$ moves on the circle $(O)$. the midpoint of the segment PQ lies on a fixed line.
  8. Let $p$ be a given odd prime number Prove that the difference $$\sum_{j=0}^{p}\left(\begin{array}{c} p \\ j \end{array}\right)\left(\begin{array}{c} p+j \\ j \end{array}\right)-\left(2^{p}+1\right)$$ is divisible by $p^{2}$, where $\left(\begin{array}{l}p \\ j\end{array}\right)$ is binomial coefficient.
  9. Consider the sequence $\left(f_{n}(x)\right)$ $(n=0,1,2, \ldots)$ of functions defined on $[0: 1]$ such that $$f_{0}(x)=0,\quad f_{n+1}(x)=f_{n}(x)+\frac{1}{2}\left(x-\left(f_{n}(x)\right)^{2}\right),\,\forall n=0,1,2, \ldots$$ Prove that $\dfrac{n x}{2+n \sqrt{x}} \leq f_{n}(x) \leq \sqrt{x}$ for all $n \in \mathrm{N}$, $x \in[0 ; 1]$
  10. Consider the polynomial $P(x)=x^{2}-1$. Find the number of distinct real roots of the equation $$P(P(\ldots, P(x)) \ldots)=0$$ where there are $2006$ notations $P$ on the left hand side of the equation.
  11. Suppose that $A_{1} B_{1} C_{1}$, $A_{2} B_{2} C_{2}$, $A_{3} B_{3} C_{3}$ are three triangles satisfying the conditions $$\widehat{C_{1}}=\widehat{C_{2}}=\widehat{C_{3}},\quad A_{1} B_{1}=A_{2} B_{2}=A_{3} B_{3},\\ B_{1} C_{1}+C_{2} A_{2}=B_{2} C_{2}+C_{3} A_{3}=B_{3} C_{3}+C_{1} A_{1}.$$ Prove that these three triangles are congruent.
  12. Consider a convex hexagon $A B C D E F$ inscribed in a circle. The diagonal $B F$ cuts $A E$, $A C$ respectively at $M$, $N$. The diagonal $B D$ cuts $C A$, $C E$ respectively at $P$, $Q$. The diagonal $D F$ cuts $E C$, $EA$ respectively at $R$, $S$. Prove that $M Q$, $N R$ and $P S$ are concurrent.

Issue 345

  1. Let $$A=\left(1-\frac{1}{1+2}\right)\left(1-\frac{1}{1+2+3}\right) \cdot\left(1-\frac{1}{1+2+3+\ldots+n}\right)$$ (consisting of $n-1$ factors) and $B=\dfrac{n+2}{n}$. Calculate $\dfrac{A}{B}$.
  2. Let $A B C$ be an isosceles triangle $(A B=A C)$ and $O$ be a point inside $A B C$ such that $\widehat{A O B}<\widehat{A O C}$. Compare the measures of $OB$ and $O C$.
  3. Find the numbers $x$ such that $$\frac{\sqrt{x}}{x\sqrt{x}-3 \sqrt{x}+ 3}$$ is an integer. 
  4. Find the greatest value of the expression $$ P=\frac{x}{1+y^{2}}+\frac{y}{1+x^{2}}$$ where $x$, $y$ are non negative real numbers not exceeding $\dfrac{\sqrt{2}}{2}$.
  5. Prove that $$\frac{3 \sqrt{3}}{4} \leq \frac{b c}{a(1+b c)}+\frac{c a}{b(1+c a)}+\frac{a b}{c(1+a b)} \leq \frac{a+b+c}{4}$$ where $a, b, c$ are positive real numbe satisfying the condition $a+b+c=a b c$. When do equalities occur?
  6. Two arbitrary points $E$, lie respectively on the sides $A B$, $A C$ of a triangle $A B C$ so that $\dfrac{A E}{E B}=\dfrac{C D}{D A}$. The lines $B D$, $C E$ intersect at $M$. Determine the positions of $E$ and $D$ so that the area of triangle $B M C$ attains its greatest value and calculate this value in terms of the area of triangle $A B C$.
  7. Let $A B C$ be a triangle inscribed in a circle $(O)$. The bisector of angle $B A C$ cuts the circle $(O)$ at $A$ and $D .$ The circle with center $D$ and radius $D B$ cuts the line $A B$ at $B$ and $Q$, cuts the line $A C$ at $C$ and $P$. Prove that the line $A O$ is perpendicular to the line $P Q$.
  8. Determine non empty subsets $A$, $B$, $C$ of the set $N=\{0,1,2, \ldots\}$ satisfying the following conditions
    • $A \cap B=B \cap C=C \cap A=\varnothing$;
    • $A \cup B \cup C=N$;
    • if $a \in A, b \in B, c \in C$ then $a+c \in A$ $b+c \in B, a+b \in C$
    1. Prove that $$\left|x_{1}+x_{2}+\ldots+x_{2007}\right| \leq \frac{2007}{3}$$ where $x_{1}, x_{2}, \ldots, x_{2007}$ are real numbers belonging to the segment $[-1 ; 1],$ so that the sum of their cubes is equal to $0$. When does equality occur?
    2. Find all functions $f: \mathbb{Z} \rightarrow \mathbb{Z}$ satisfying the following conditions $f(1)>0$ and $$f(f(m)-n)=f\left(m^{2}\right)+f(n)-2 n f(m),\,\forall m, n \in \mathbb{Z} .$$ 
    3. Let $A A_{1}$, $B B_{1}$, $C C_{1}$ be the medians of a triangle $A B C$. Prove that if the radii of the incircles of the triangles $B C B_{1}$, $C A C_{1}$, $A B A_{1}$ are all equal then $A B C$ is an equilateral triangle.
    4. Let be given a sphere with center $O$ and radius $R$. A pyramid $S . A B C$ moves so that the sides $S A$, $S B$, $S C$ touch the sphere $(O)$ respectively at $A$, $B$, $C$ and so that $\widehat{A S B}=90^{\circ}$, $\widehat{B S C}=60^{\circ}$, $\widehat{C S A}=120^{\circ}$. Find the locus of the apex $S$.

    Issue 346

    1. Compare the number $\dfrac{1}{1002}$ with the following sum (consisting of $2006$ terms) $$A=\frac{2}{2005+1}+\frac{2^{2}}{2005^{2}+1}+\ldots+\frac{2^{n+1}}{2005^{2^{n}}+1}+\ldots+\frac{2^{2006}}{2005^{2^{2005}}+1}.$$
    2. Let $a, b, c$ be three distinct integers different from $0$ such that $a+b+c=0$. Calculate the value of the expression $$P=\left(\frac{a-b}{c}+\frac{b-c}{a}+\frac{c-a}{b}\right)\left(\frac{c}{a-b}+\frac{a}{b-c}+\frac{b}{c-a}\right).$$
    3. Let $a, b, c$ be positive real numbers satisfying $a b c \leq 1$. Prove that $$\frac{a}{c}+\frac{b}{a}+\frac{c}{b} \geq a+b+c.$$ When does equality occur?
    4. Solve the equation $$2 \sqrt{2 x+4}+4 \sqrt{2-x}=\sqrt{9 x^{2}+16}.$$
    5. Find the least value of the expression $$\left(x^{2}+1\right) \sqrt{x^{2}+1}-x \sqrt{x^{4}+2 x^{2}+5}+(x-1)^{2}.$$
    6. Let $A B C$ be a triangle with obtuse angle $\widehat{A B C}$. Prove that $$\sin (x+y)=\sin x \cdot \cos y+\sin y \cdot \cos x$$ where $x=\widehat{B A C}$ and $y=\widehat{B C A}$.
    7. Let $A B C D$ be a cyclic quadrilateral such that the sides $A B$, $C D$ are not parallel and let $I$ be the point of intersection of its diagonals. Let $M$, $N$ be respectively the midpoints of $B C$, $C D$. Prove that if $N I$ is perpendicular to $A B$ then $M I$ is perpendicular to $A D$.
    8. Let $a, b, c, d, e, f$ be six positive integers satisfying $a b c=d e f$. Prove that $$a\left(b^{2}+c^{2}\right)+d\left(e^{2}+f^{2}\right)$$ is a composite number.
    9. Consider all quadratic trinomials $f(x)=a x^{2}+b x+c$ ($a, b, c$ are integers, $a>0)$ having two distinct roots belonging to the interval $(0 ; 1)$. Find the trinomial such that the coefficient $a$ attains its least value.
    10. Prove that $$a b+b c+c a \geq 8\left(a^{2}+b^{2}+c^{2}\right)\left(a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}\right)$$ where $a, b, c$ are nonnegative real numbers satisfying $a+b+c=1$.
    11. The incircle $(I)$ of a triangle $A_{1} A_{2} A_{3}$ has radius $r$ and touches the sides $A_{2} A_{3}$, $A_{3} A_{1}$, $A_{1} A_{2}$ respectively at $M_{1}$, $M_{2}$, $M_{3}$. Let $\left(I_{i}\right)$ be the circle touching the sides $A_{i} A_{j}$, $A_{j} A_{k}$ and externally touching $(I)$ ($i, j, k \in\{1,2,3\}$, $i \neq j \neq k \neq i$). Let $K_{1}$, $K_{2}$, $K_{3}$ be the touching points respectively of $\left(I_{1}\right)$ with $A_{1} A_{2}$, of $\left(I_{2}\right)$ with $A_{2} A_{3}$, of $\left(I_{3}\right)$ with $A_{3} A_{1}$. Put $A_{i} I_{1}=a_{i}$, $A_{i} K_{i}=b_{i}$ $(i=1,2,3)$. Prove that $$\frac{1}{r} \sum_{i=1}^{3}\left(a_{i}+b_{i}\right) \geq 2+\sqrt{3}.$$When does equality occur?
    12. Let be given a sphere with center $O$ and a chord $A B$, not passing through $O$. Let $M M^{\prime}$, $N N^{\prime}$, $P P^{\prime}$ be three chords (not coinciding with $A B$) passing through the midpoint $I$ of $A B$. Let $E$, $E^{\prime}$ be the points of intersection of the line $A B$ respectively with the planes $(MNP)$, $\left(M^{\prime} N^{\prime} P^{\prime}\right)$. Prove that $I E=I E^{\prime}$.

    Issue 347

    1. Compare $\dfrac{5}{8}$ with $\left(\dfrac{389}{401}\right)^{10}$.
    2. Let $E$, $F$ be points respectively on the sides $A C$, $A B$ of a triangle $A B C$ such that $\widehat{A B E}=\dfrac{1}{3} \widehat{A B C}$, $\widehat{A C F}=\dfrac{1}{3} \widehat{A C B}$. The lines $B E$ and $C F$ intersect at $O$. Suppose that $O E=O F$. Prove that $A B=A C$ or $\widehat{B A C}=90^{\circ}$.
    3. Find integral solutions of the system of equations $$\begin{cases}4 x^{3}+y^{2} &=16 \\ z^{2}+y z &=3\end{cases}$$
    4. Consider all quadratic equations $a x^{2}+b x+c=0$ having two roots belonging to the segment $[0 ; 2]$. Find the greatest value of the expression $$P=\frac{8 a^{2}-6 a b+b^{2}}{4 a^{2}-2 a b+a c}.$$
    5. Consider all triangles $A B C$ such that the measures $a, b, c$ of their sides satisfy the relation $$1964 a b+15 b c+10 c a=2006 a b c.$$ Find the least value of the expression $$M=\frac{1974}{p-a}+\frac{1979}{p-b}+\frac{25}{p-c}$$ where $p$ is the semiperimeter of triangle $A B C$.
    6. Let be given a quadrilateral $A B C D$. Take two points $M, P$ respectively on the sides $A B$, $A C$ such that $\dfrac{A M}{A B}=\dfrac{C P}{C D}$. Find the locus of the midpoints $I$ of the segments $M P$ when $M$, $P$ moves respectively on $A B$, $A C$.
    7. Let $A B C$ be a triangle with $\widehat{B A C}=135^{\circ}$ and $A M$, $B N$ be two of its altitudes ($M$ on $B C$, $N$ on $C A$). The line $M N$ cuts the perpendicular bisector of $A C$ at $P$. Let $D$ and $E$ be the midpoints respectively of $N P$ and $B C$. Prove that $A B C$ is a right isosceles triangle.
    8. Let be given $167$ sets $A_{1}, A_{2}, \ldots, A_{167}$ satisfying the following conditions
      • $\sum_{i=1}^{167}\left|A_{i}\right|=2004$;
      • $\left|A_{j}\right|=\left|A_{i} \| A_{i} \cap A_{j}\right|$ for all $i, j \in\{1,2, \ldots,167\}$ and $i \neq j$.
      Calculate $\left|\bigcup_{i=1}^{67} A_{i}\right|$, where $|A|$ denotes the number of elements of the set $A$.
    9. Find all continuous functions $f$, defined on $\mathbb{R}$, satisfying the condition $$f_{3}(x)+f(x)=2 x,\,\forall x \in \mathbb{R}$$ where $f_{3}(x)=f(f(f(x)))$.
    10. Find the least value of the expression $$H=\frac{x^{2}}{y+z}+\frac{y^{2}}{z+x}+\frac{z^{2}}{x+y},$$ where $x, y, z$ are positive numbers satisfying $$\sqrt{x^{2}+y^{2}}+\sqrt{y^{2}+z^{2}}+\sqrt{z^{2}+x^{2}}=2006.$$
    11. Let $A B C$ be an acute triangle with altitudes $A D$, $B E$, $C F$ and let $O$ be its circumcenter. Let $M$, $N$, $P$ be the midpoints respectively of the segments $B C$, $C A$, $A B$. Let $D_{1}$, $E_{1}$, $F_{1}$ be the reflexions respectively of $D$ in $M$, of $E$ in $N$, of $F$ in $P_{1}$. Prove that $O$ lies inside the triangle $D_{1} E_{1} F_{1}$.
    12. Let $G_{1}$, $G_{2}$, $G_{3}$, $G_{4}$ be the centroids respectively of the faces $B C D$, $CDA$, $D A B$, $A B C$ of a tetrahedron $A B C D$. Let $A_{1}$, $B_{1}$, $C_{1}$, $D_{1}$ be the points of intersection of the circumsphere of the tetrahedron respectively with $A G_{1}$, $B G_{2}$, $C G_{3}$, $D G_{4}$. Prove that $$\frac{A G_{1}}{A A_{1}}+\frac{B G_{2}}{B B_{1}}+\frac{C G_{3}}{C C_{1}}+\frac{D G_{4}}{D D_{1}} \leq \frac{8}{3} .$$

    Issue 348

    1. Find all four-digit numbers $\overline{a b c d}$ satisfying the condition $$\overline{a b c d}=a^{2}+2 b^{2}+3 c^{2}+4 d^{2}+2006.$$
    2. Let $A B C$ be a right-angled triangle with right angle at $A .$ On the side $A C$ take the point $E$ so that $\widehat{E B C}=2 \widehat{A B E}$. On the segment $B E$ take the point $M$ such that $E M=B C$. Compare the measures of the angles $\widehat{M B C}$ and $\widehat{B M C}$.
    3. Solve the equation $$\frac{1}{4 x-2006}+\frac{1}{5 x+2004}=\frac{1}{15 x-2007}-\frac{1}{6 x-2005}.$$
    4. Prove that $$a(b+c)+b(c+a)+c(a+b)+2\left(\frac{1}{1+a^{2}}+\frac{1}{1+b^{2}}+\frac{1}{1+c^{2}}\right) \geq 6$$ for arbitrary numbers $a, b, c$ not less than $1$.
    5. Find the greatest value of the expression $$P=3 x y+3 y z+3 z x-x y z$$ where $x, y, z$ are positive numbers satisfying the condition $x^{3}+y^{3}+z^{3}=3$.
    6. Let be given a triangle $A B C$. $P$ is a point on the line $B C$. On the opposite ray of the ray $A P$, take the point $D$ such that $A D=\dfrac{B C}{2}$. Let $E$ and $F$ be the midpoints respectively of the segments $D B$ and $D C$. Prove that the circle with diameter $E F$ passes through a fixed point when $P$ moves on the line $B C$.
    7. Let $A B C$ be a triangle with $A B=A C=a$. Construct a circle with center $A$, with radius $R$ $(R<a)$. From $B$ and $C$, draw the tangents $B M$, $C N$ to this circle ($M$ and $N$ are touching points) so that they are not symmetric with respect to the altitude $A H$ of triangle $A B C$. Let $I$ be the point of intersection of $B M$ and $C N$.
      a) Find the locus of $I$ when $R$ varies.
      b) Prove that $I B \cdot I C=\left|a^{2}-d^{2}\right|$ where $A I=d$.
    8. Let be given $n$ real positive numbers $a_{1}, a_{2}, \ldots, a_{n}$ satisfying the condition $$\sum_{i=1}^{k} a_{i} \leq \sum_{i=1}^{k} i(i+1),\,\forall k=1,2, \ldots, n.$$ Prove that $$\frac{1}{a_{1}}+\frac{1}{a_{2}}+\ldots+\frac{1}{a_{n}} \geq \frac{n}{n+1}$$
    9. Determine the number of distinct real roots belonging to the interval $(0 ; 2 \pi)$ of the equation $$e^{2 \cos ^{2} x}\left(8 \sin ^{6} x-12 \sin ^{4} x+10 \sin ^{2} x\right)=e+\frac{5}{2}.$$
    10. Find all polynomials $P(x)$ with real coefficients satisfying the condition $$P(x) \cdot P\left(2 x^{2}\right)=P\left(x^{3}+x\right),\,\forall x \in \mathbb{R}.$$
    11. Let $O$ be the point of intersection of the diagonals $A C, B D$ of a convex quadrilateral $A B C D$. Let $G_{1}$ and $G_{2}$ be the centroids respectively of the triangles $O A B$ and $O C D$. Let $H_{1}$ and $H_{2}$ be the orthocenters respectively of the triangles $O B C$ and $O D A$. Prove that $G_{1} G_{2}$ is perpendicular to $H_{1} H_{2}$
    12. Let $I$ and $r$ be respectively the center and the radius of the sphere inscribed in al tetrahedron $A B C D$. Let $r_{A}$, $r_{B}$, $r_{C}$, $r_{D}$ be the radii of the spheres inscribed respectivelly in the tetrahedra $I B C D$, $I A C D$, $I A B D$, $I A B C$. Prove the inequality $$\frac{1}{r_{A}}+\frac{1}{r_{B}}+\frac{1}{r_{C}}+\frac{1}{r_{D}} \leq \frac{4+\sqrt{6}}{r}.$$

    Issue 349


    1. Let $S$ be the following sum of $2006$ terms $$S=\frac{2}{2^{1}}+\frac{3}{2^{2}}+\ldots+\frac{n+1}{2^{n}}+\ldots+\frac{2007}{2^{2006}} .$$ Compare $S$ with $3$.
    2. Let $A B C$ be a triangle with its two medians $A D$, $B E$ meeting at $M$. Prove that if $$\widehat{A M B} \leq 90^{\circ}$ then $A C+B C>3 A B.$$
    3. Prove that for every given positive integer $r$ less than $59$, there exists a unique positive integer $n$ less than $59$ such that $\left(2^{n}-r\right)$ is divisible by $59$.
    4. Solve the equation $$2 x^{2}-5 x+2=4 \sqrt{2\left(x^{3}-21 x-20\right)}.$$
    5. Prove that $$4 a b c \left[\frac{1}{(a+b)^{2} c}+\frac{1}{(b+c)^{2} a}+\frac{1}{(c+a)^{2} b}\right]+\frac{a+c}{b}+\frac{b+c}{a}+\frac{a+b}{c} \geq 9$$ for arbitrary positive real numbers $a, b, c$.
    6. Let $A B C$ be a right-angled triangle, right at $B$ and $A B=2 B C$. Let $D$ be the point on side $A C$ such that $B C=C D$, let $E$ be the point on side $A B$ such that $A D=A E$. Prove that $A D^{2}=A B \cdot B E$.
    7. In plane, let be given two lines $\Delta_{1}$, $\Delta_{2}$ intersecting at $O$. A point $M$ moves in plane so that $O M$ is equal to a constant $R$ and $M$ does not lie on $\Delta_{1}$, $\Delta_{2}$. Let $H$, $K$ be the orthogonal projections of $M$ on $\Delta_{1}$, $\Delta_{2}$ respectively. Find the locus of the incenter of triangle $M H K$.
    8. Let be given three prime numbers $p_{1}$, $p_{2}, p_{3}$ $\left(p_{1}<p_{2}<p_{3}\right)$. Put $$A=\left\{n \mid n \in \mathbb{N}^{*}, 1 \leq n \leq p_{1} p_{2} p_{3}, p_{1} \nmid n, p_{2} \nmid n, p_{3} \nmid n\right\}.$$ Prove that $|A| \geq 8$ ($|A|$ denotes the number of elements of the set $A$). When does equality occur?
    9. Let be given six real numbers $a, b, c$, $a_{1}$, $b_{1}$, $c_{1}$ $\left(a a_{1} \neq 0\right)$ satisfying the condition $$\left(\frac{c}{a}-\frac{c_{1}}{a_{1}}\right)^{2}+\left(\frac{b}{a}-\frac{b_{1}}{a_{1}}\right) \cdot \frac{b c_{1}-c b_{1}}{a a_{1}}<0.$$ Prove that each of the following equations $a x^{2}+b x+c=0$ and $a_{1} x^{2}+b_{1} x+c_{1}=0$ has two distinct roots and by representing these roots on the number line, the roots of one equation alternate with the roots of the other equation.
    10. Find all polynomials with real coefficients $P(x)$ satisfying the condition $$P(x) \cdot P(x+1)=P\left(x^{2}+2\right),\,\forall x \in \mathbb{R}$$
    11. Let $A A_{1}$, $B B_{1}$, $C C_{1}$ be the inner angled bisectors of triangle $A B C$ and $A_{2}$, $B_{2}$, $C_{2}$ be the touching points of the incircle of triangle $A B C$ with the sides $B C$, $C A$, $A B$ respectively. Let $S$, $S_{1}$, $S_{2}$ be the areas of triangles $A B C$, $A_{1} B_{1} C_{1}$, $A_{2} B_{2} C_{2}$ respectively. Prove that $$\frac{3}{S_{1}}-\frac{2}{S_{2}} \leq \frac{4}{S}.$$
    12. Let $Sxyz$ be a trihedral angle with $\widehat{x S y}=121^{\circ}$, $\widehat{x S z}=59^{\circ}$. $A$ is a point on $S x$, $O A=a$. On the ray bisecting the angle $\widehat{z S y}$, take the point $B$ such that $S B=a \sqrt{3}$. Calculate the measures of the angles of triangle $S A B$.

    Issue 350

    1. Prove that $2005^{2007^{2006}}+2006^{2005^{2007}}+2007^{2006^{2005}}$ is divisible by $102$.
    2. Consider the sum of $n$ terms $$S_{n}=1+\frac{1}{1+2}+\frac{1}{1+2+3}+\ldots+\frac{1}{1+2+\ldots+n}$$ for $n \in \mathbb{N}^{*}$. Find the least rational number $a$ such that $S_{n}<a$ for all $\in \mathbb{N}^{*}$.
    3. Find all solutions $(x, y)$ of the equation $$\left(x^{2}+4 y^{2}+28\right)^{2}=17\left(x^{4}+y^{4}+14 y^{2}+49\right)$$ such that $x, y$ are natural numbers.
    4. Solve the following system of equations $$\begin{cases}\dfrac{1}{x}+\dfrac{1}{y+z} &=\dfrac{1}{2} \\ \dfrac{1}{y}+\dfrac{1}{x+z} &=\dfrac{1}{3} \\ \dfrac{1}{z}+\dfrac{1}{x+y} &=\dfrac{1}{4}\end{cases}$$
    5. Find the greatest value and the least value of the expression $$P=\sqrt{2 x+1}+\sqrt{3 y+1}+\sqrt{4 z+1}$$ where $x, y, z$ are arbitrary non negative real numbers satisfying the condition $x+y+z=4$. 
    6. Let $M$ be a point inside an acute triangle $A B C$ satisfying the condition $\widehat{M B A}=\widehat{M C A}$. Let $K$ and $L$ be the feet of the perpendiculars respectively to $A B$ and $A C$ passing through $M$. Prove that $K$ and $L$ are in equal distances from the midpoint of $B C$ and the median issued from $M$ of triangle $M K L$ passes through a fixed point when $M$ moves inside triangle $A B C .$
    7. Let be given a right-angled triangle $A B C$, right at $A$ and $A H$ be its altitude issued from $A$. A circle passing through $B$ and $C$ cuts $A B$ and $A C$ at $M$ and $N$ respectively. Consider the rectangle $A M D C$. Prove that $H N$ is perpendicular to $H D$.
    8. Let $a$ be a natural number greater than 1. Consider a non empty subset $A$ of $N$ satysfying the condition: If $k \in A$ then $k+2 a \in A$ and $\left[\frac{k}{a}\right] \in A([x]$ denotes the integral part of $x$). Prove that $A=N$.
    9. Find all continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying the condition $$9 f(8 x)-9 f(4 x)+2 f(2 x)=100 x,\,\forall x \in \mathbb{R}.$$
    10. Find the greatest value and the least value of the expression $$P=a(b-c)^{3}+b(c-a)^{3}+c(a-b)^{3}$$ where $a, b, c$ are arbitrary non negative real numbers satisfying the condition $a+b+c=1$.
    11. Let $I$ and $G$ be respectively the incenter and the centroid of a triangle $A B C$. Let $R_{1}$, $R_{2}$, $R_{3}$ be the circumradii respectively of the triangles $I B C$, $I C A$, $I A B$ and let $R_{1}^{\prime}$, $R_{2}^{\prime}$, $R_{3}^{\prime}$ be the circumradii respectively of the triangles $G B C$, $G C A$, $G A B$. Prove that $$R_{1}^{\prime}+R_{2}^{\prime}+R_{3}^{\prime} \geq R_{1}+R_{2}+R_{3} .$$
    12. Let $A B C D$ be a tetrahedron, the measures of its sides are: $B C=a$, $D A=a_{1}$, $C A=b$, $D B=b_{1}$, $A B=c$, $D C=c_{1}$ and let $G$ be its centroid. The sphere circumscribing $A B C D$ cuts $A G$, $B G$, $C G$, $D G$ respectively at $A_{1}$, $B_{1}$, $C_{1}$, $D_{1}$; let $R$ be its radius. Prove that $$\frac{4}{R} \leq \frac{1}{G A_{1}}+\frac{1}{G B_{1}}+\frac{1}{G C_{1}}+\frac{1}{G D_{1}} \leq \frac{2 \sqrt{3}}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{a_{1}}+\frac{1}{b_{1}}+\frac{1}{c_{1}}\right).$$

    Issue 351

    1. Consider the product of $11$ factors $$T=(5 a+2006 b)(6 a+2005 b)(7 a+2004 b) \ldots(15 a+1996 b)$$ where $a$, $b$ are given integers. Prove that if $T$ is divisible by $2011$ then $T$ is divisible by $2011^{11}$.
    2. Calculate the sum of 2006 terms $$S=\frac{3^{3}+1^{3}}{2^{3}-1^{3}}+\frac{5^{3}+2^{3}}{3^{3}-2^{3}}+\frac{7^{3}+3^{3}}{4^{3}-3^{3}}+\ldots+\frac{4013^{3}+2006^{3}}{2007^{3}-2006^{3}}$$
    3. Find the prime number $p$ such that $2005^{2005}-p^{2006}$ is divisible by $2005+p$
    4. Solve the system of equations $$\begin{cases}x+y+z+t & =12 \\ x^{2}+y^{2}+z^{2}+t^{2} & =50 \\ x^{3}+y^{3}+z^{3}+t^{3} & =252 \\ x^{2} t^{2}+y^{2} z^{2} & =2 x y z t\end{cases}$$
    5. Find the least value of the expression $$P=\frac{a b+b c+c a}{a^{2}+b^{2}+c^{2}}+\frac{(a+b+c)^{3}}{a b c},$$ where $a, b, c$ are positive real numbers.
    6. Let be given a not obtuse triangle $A B C$ with its three altitudes $A A_{1}$, $B B_{1}$, $C C_{1}$ and its orthocenter $H$. Prove that $$H A^{2}+H A_{1}^{2}+H B^{2}+H B_{1}^{2}+H C^{2}+H C_{1}^{2} \geq \frac{5}{2}\left(H A \cdot H A_{1}+H B \cdot H B_{1}+H C \cdot H C_{1}\right)$$
    7. Let be given five concyclic points $A$, $B$, $C$, $D$, $E$ and let $M$, $N$, $P$, $Q$ be the orthogonal projections of $E$ respectively on the lines $A B$, $B C$, $C D$, $D A$. Prove that the orthogonal projections of $E$ on the lines $M N$, $N P$, $P Q$, $Q M$ are collinear.
    8. Prove that $(2 n+1)^{n+1} \leq(2 n+1) ! ! \pi^{n}$ for every natural number $n$, where $(2 n+1) ! !$ denotes the product of the first $n+1$ positive odd integers.
    9. Solve the equation $$x^{3}-3 x=\sqrt{x+2}.$$
    10. Let $f(x)$ be a continuous function defined on $[0 ; 1]$ satisfying the conditions $$f(0)=0,\, f(1)=1,\quad 6 f\left(\frac{2 x+y}{3}\right)=5 f(x)+f(y),\,\forall x \geq y ; x, y \in[0 ; 1].$$ Calculate $f\left(\dfrac{8}{23}\right)$.
    11. Calculate the measures of the angles of a triangle $A B C$ satisfying the condition $$\frac{h_{a}}{m_{b}}+\frac{h_{b}}{m_{a}}=\frac{4}{\sqrt{3}}$$ where $m_{a}, m_{b}$ are the measures of its two medians and $h_{a}$, $h_{a}$ are the measures of its two altitudes issued respectively from the vertices $A$, $B$.
    12. Let be given an equifaced tetrahedron $A B C D$ ($A B=C D$, $A C=B D$, $B C=A D$) and let $V$, $R$, $r$ be respectively its volume, its circumradius, its inradius. Prove that $$\frac{243 V^{2}}{512 R^{6}} \leq \cos A \cdot \cos B \cdot \cos C \leq \frac{9}{8}\left(\frac{r}{R}\right)^{2}$$ where $A$, $B$, $C$ are the angles of triangle $A B C$. When do equalities occur?

    Issue 352

    1. Find a $5$-digit number such that by multiplying it by $2$ we obtain a $6$-digit number with six distinct nonzero digits and by multiplying it respectively by $5,6,7,8,11$ we obtain five $6$-digit numbers such that the digits of each number are the six above mentioned nonzero digits but written in another order.
    2. Let $a, b, c, d, m, n$ be positive integers such that $a b=c d$. Prove that the number $$A=a^{2 n+1}+b^{2 m+1}+c^{2 n+1}+d^{2 m+1}$$ is a composite number.
    3. Find integral solutions of the equation $$x^{5}-y^{5}-x y=32 .$$
    4. Let be given positive numbers $a, b, c$ satisfying the condition $a b c \geq 1$. Prove that $$\frac{a}{\sqrt{b+\sqrt{a c}}}+\frac{b}{\sqrt{c+\sqrt{a b}}}+\frac{c}{\sqrt{a+\sqrt{b c}}} \geq \frac{3}{\sqrt{2}}.$$
    5. Find real numbers $x, y$ satisfying the conditions $$x+y \geq 4,\quad \left(x^{3}+y^{3}\right)\left(x^{7}+y^{7}\right)=x^{11}+y^{11}.$$
    6. Let $A B C D$ be a convex quadrilateral and let $E$, $F$ be the midpoints respectively of $A D$, $B C$. The lines $A F$, $B E$ intersect at $M$, the lines $C E$, $D F$ intersect at $N$. Find the least value of $$P=\frac{M A}{M F}+\frac{M B}{M E}+\frac{N C}{N E}+\frac{N D}{N F} .$$
    7. Let $A$, $B$, $C$ be three points lying on a circle with center $O$ and radius $R$ so that $$C B-C A=R,\quad C A \cdot C B=R^{2} .$$ Calculate the measures of the angles of triangle $A B C$.
    8. The sequence of numbers $\left(a_{i}\right)$ $(i=1,2,3, \ldots)$ is defined by $$a_{1}=1,\, a_{2}=-1,\quad a_{n}=-a_{n-1}-2 a_{n-2},\,\forall n=3,4, \ldots$$ Calculate the value of the expression $$A=2 a_{2006}^{2}+a_{2006} \cdot a_{2007}+a_{2007}^{2}.$$
    9. Let $N_{m}$ be the set of all integers not less then a given integer $m$. Find all functions $f: N_{m} \rightarrow N_{m}$ satisfying the condition $$f\left(x^{2}+f(y)\right)=y+(f(x))^{2},\,\forall x, y \in N_{m}.$$
    10. Suppose that the system of equations $$\begin{cases}x^{2}+x y+x &=1 \\ y^{2}+x y+x+y &=1\end{cases}$$ has a unique solution $\left(x_{0}, y_{0}\right)$ with $x_{0}>0$, $y_{0}>0$. Prove that $$\frac{1}{x_{0}}+\frac{1}{y_{0}}=8 \cos ^{3} \frac{\pi}{7}.$$
    11. The measures of the sides of a triangle $A B C$ are $B C=a$, $C A=b$, $A B=c$ and the measures of its altitudes issued respectively from $A$, $B$, $C$ are $h_{a}$, $h_{b}$, $h_{c}$. Take $A_{1}$ on the side $B C$ so that the incircles of triangles $A B A_{1}$, $A C A_{1}$ have equal radii $r_{A}$. One defines $r_{B}$, $r_{C}$ analogously. Prove that $$2\left(r_{A}+r_{B}+r_{C}\right)+p \leq h_{a}+h_{b}+h_{c}$$ where $p$ is the semiperimeter of triangle $A B C$.
    12. Let be given a triangular pyramid $S.MNP$ such that $$\widehat{M S N}+\widehat{N S P}+\widehat{P S M}=180^{\circ}.$$ Prove that $\cos \alpha+\cos \beta+\cos \gamma=1$ where $\alpha$, $\beta$, $\gamma$ are the measures of the dihedral angles with sides $S M$, $S N$, $S P$ respectively.

    Issue 353

    1. Find $2 n$-digit number of the form $\overline{a_{1} a_{2} \ldots a_{2 n-1} a_{2 n}}$ satisfying the condition $$\overline{a_{1} a_{2} \ldots a_{2 n-1} a_{2 n}}=a_{1} \cdot a_{2}+\ldots+a_{2 n-1} \cdot a_{2 n}+2006.$$
    2. Do there exist three numbers $a, b, c$ satisfying $$\frac{a}{b^{2}-c a}=\frac{b}{c^{2}-a b}=\frac{c}{a^{2}-b c}$$
    3. Find all positive integers $x, y, z$ satisfying simultaneously the two conditions
      • $\dfrac{x-y \sqrt{2006}}{y-z \sqrt{2006}}$ is a rational number,
      • $x^{2}+y^{2}+z^{2}$ is a prime number.
    4. Find the greatest value and the least value of the expression $P=x y z$ where $x, y, z$ are real numbers satisfying $$\frac{8-x^{4}}{16+x^{4}}+\frac{8-y^{4}}{16+y^{4}}+\frac{8-z^{4}}{16+z^{4}} \geq 0.$$
    5. Prove that $$\frac{2}{9} \leq a^{3}+b^{3}+c^{3}+3 a b c < \frac{1}{4}$$ where $a, b, c$ are the measures of three sides of a triangle with perimeter $a+b+c=1$.
    6. Consider convex quadrilateral $A A^{\prime} C^{\prime} C$ such that the lines $A C$, $A^{\prime} C^{\prime}$ intersect at a point $I$. Take a point $B$ on the side $A C$ and a point $B^{\prime}$ on the side $A^{\prime} C^{\prime}$. Let $O$ be the point of intersection of the lines $A C^{\prime}$, $A^{\prime} C$; let $P$ be that of $A B^{\prime}$, $A^{\prime} B$; let $Q$ be that of $B C^{\prime} \cdot B^{\prime} C$. Prove that the points $P$, $O$, $Q$ are collinear.
    7. Let be given an isosceles triangle $A B C$ with $A B=A C$. Take a point $D$ on the side $A B$ and a point $E$ on the side $A C$ so that $D E=B D+C E$. The bisector of angle $B D E$ cuts the side $B C$ at $I$. a) Find the measure of angle $\angle D I E$. b) Prove that the line $D I$ passes through a fixed point when $D$ moves on $A B$ and $E$ moves on $A C$.
    8. Find all positive integers $n$ greater than 1 such that every integer $k$, $1<k<n$ satisfying $\gcd(k, n)=1$, is a prime.
    9. Find all polynomials $P(x)$ satisfying the condition $$P\left(x^{2006}+y^{2006}\right)=(P(x))^{2006}+(P(y))^{2006}$$ for all real numbers $x, y$.
    10. Solve the equation $$2 \sqrt{x^{2}-\frac{1}{4}+\sqrt{x^{2}-\frac{1}{4}+\sqrt{\ldots+\sqrt{x^{2}-\frac{1}{4}+\sqrt{x^{2}+x+\frac{1}{4}}}}}}=2 x^{3}+3 x^{2}+3 x+1$$ where on the left side there are $2006$ signs of radical.
    11. Let be given a quadrilateral $A B C D$ inscribed in a circle with center $O$, radius $R$. The lines $A B$, $C D$ intersect at $P$, the lines $A D$, $B C$ intesect at $Q$. Prove that $$\overrightarrow{O P} \cdot \overrightarrow{O Q}=R^{2}.$$
    12. Let $M$ be a point lying inside the tetrahedron $A B C D$. The lines $M A$, $M B$, $M C$, $M D$ cut the faces $B C D$, $C D A$, $D A B$, $A B C$ respectively at $A^{\prime}$, $B^{\prime}$, $C^{\prime}$, $D^{\prime}$. Prove that the volume of the tetrahedron $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ does not exceed $\dfrac{1}{27}$ that of the tetrahedron $A B C D$.

    Issue 354

    1. a) Find all natural number, each of which can be written as the sum of two relatively prime integers greater than $1$.
      b) Find all natural numbers, each of which can be written as the sum of three pairwise relatively prime integers greater than $1$.
    2. Let $A B C$ be a triangle with acute angle $\widehat{A B C}$. Let $K$ be a point on the side $A B$, and $H$ be its orthogonal projection on the line $B C$. A ray $B x$ cuts the segment $KH$ at $E$ and cuts the line passing through $K$ parallel to $B C$ at $F$. Prove that $\widehat{A B C}=3 \widehat{C B F}$ when and only when $E F=$ $2 B K$.
    3. Find all natural numbers $n$ such that the product of the digits of $n$ is equal to $$(n-86)^{2}\left(n^{2}-85 n+40\right).$$
    4. Prove that $a b+b c+c a<\sqrt{3} d^{2}$, where $a, b, c, d$ are real numbers satisfying the following conditions $$0<a, b, c<d,\quad \frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\sqrt{\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}}=\frac{2}{d}.$$
    5. Solve the equation $$x^{4}+2 x^{3}+2 x^{2}-2 x+1=\left(x^{3}+x\right) \sqrt{\frac{1-x^{2}}{x}}.$$
    6. Let $A B C D$ be a square with sides equal to $a$. On the side $A D$, take the point $M$ such that $A M=3 M D$. Draw the ray $B x$ cutting the side $C D$ at $I$ such that $\widehat{A B M}=\widehat{M B I}$. The angle bisector of $\widehat{C B I}$ cuts the side $C D$ at $N$. Calculate the area of triangle $B M N$.
    7. Let $B C$ be a fixed chord (which is not a diameter) of a circle. On the major arc $B C$ of the circle, take a point $A$ not coinciding with $B$, $C$. Let $H$ be the orthocenter of triangle $A B C$. The second points of intersection of the line $B C$ with the circumcircles of triangles $A B H$ and $A C H$ are $E$ and $F$ respectively. The line $E H$ cuts the side $A C$ at $M$ and the line $F H$ cuts the side $A B$ at $N$. Determine the position of $A$ so that the measure of the segment $M N$ attains its least value.
    8. How many are there natural $9$-digit numbers with $3$ distinct odd digits, $3$ distinct even digits and every even digit in each number appears exactly two times (in this number).
    9. For every positive integer $n$, consider the function $f_{n}$ defined on $\mathbb{R}$ by $$f_{n}(x)=x^{2 n}+x^{2 n-1}+\ldots+x^{2}+x+1$$ a) Prove that the function $f_{n}$ attains its least value at a unique value $x_{n}$ of $x$.
      b) Let $S_{n}$ be the least value of $f_{n}$. Prove that
      • $S_{n}>\dfrac{1}{2}$ for all $n$ and there does not exist a real number $a>\dfrac{1}{2}$ such that $S_{n}>a$ for all $n$.
      • $\left(S_{n}\right)$ $(n=1,2, \ldots)$ is a decreasing sequence and $\lim S_{n}=\dfrac{1}{2}$.
      • $\displaystyle\lim_{n\to\infty} x_{n}=-1$.
    10. Let $$A=\sqrt{x^{2}+\sqrt{4 x^{2}+\sqrt{16 x^{2}+\sqrt{100 x^{2}+39 x+\sqrt{3}}}}}.$$ Find the greatest integer not exceeding $A$ when $x=20062007$.
    11. Let $A B C$ be a triangle with $B C=d$ $C A=b$, $A B=c$, with inradius $r$ and with incenter $I$. Let $A_{1}$, $B_{1}$, $C_{1}$ be respectively the touching points of the sides $B C$, $C A$, $A B$ with the incircle. The rays $I A$, $I B$, $I C$ cut the incircle respectively at $A_{2}$, $B_{2}$, $C_{2}$. Let $B_{i} C_{i}=a_{1}$, $C_{1} A_{i}=b_{i}$, $A_{i} B_{i}=c_{i}$ $(\mathrm{i}=1,2)$. Prove that $$\frac{a_{2}^{3} b_{2}^{3} c_{2}^{3}}{a_{1}^{2} b_{1}^{2} c_{1}^{2}} \geq \frac{216 r^{6}}{a b c}.$$ When does equality occur?
    12. Let $O A B C$ be a tetrahedron with $$\widehat{A O B}+\widehat{B O C}+\widehat{C O A}=180^{\circ}.$$ $O A_{1}$, $O B_{1}$, $O C_{1}$ are internal angle bisectors respectively of the triangles $O B C$, $O C A$, $O A B$; $O A_{2}$, $O B_{2}$, $O C_{2}$ are internal angle bisectors respectively of the triangles $O A A_{1}$, $O B B_{1}$, $O C C_{1}$. Prove that $$\left(\frac{A A_{1}}{A_{2} A_{1}}\right)^{2}+\left(\frac{B B_{1}}{B_{2} B_{1}}\right)^{2}+\left(\frac{C C_{1}}{C_{2} C_{1}}\right)^{2} \geq(2+\sqrt{3})^{2}.$$ When does equality occur?

    $hide=mobile$type=ticker$c=36$cols=2$l=0$sr=random$b=0

    Name

    Abel,5,Albania,2,AMM,2,Amsterdam,4,An Giang,45,Andrew Wiles,1,Anh,2,APMO,21,Austria (Áo),1,Ba Lan,1,Bà Rịa Vũng Tàu,77,Bắc Bộ,2,Bắc Giang,62,Bắc Kạn,4,Bạc Liêu,18,Bắc Ninh,53,Bắc Trung Bộ,3,Bài Toán Hay,5,Balkan,41,Baltic Way,32,BAMO,1,Bất Đẳng Thức,69,Bến Tre,72,Benelux,16,Bình Định,65,Bình Dương,38,Bình Phước,52,Bình Thuận,42,Birch,1,BMO,41,Booklet,12,Bosnia Herzegovina,3,BoxMath,3,Brazil,2,British,16,Bùi Đắc Hiên,1,Bùi Thị Thiện Mỹ,1,Bùi Văn Tuyên,1,Bùi Xuân Diệu,1,Bulgaria,6,Buôn Ma Thuột,2,BxMO,15,Cà Mau,22,Cần Thơ,27,Canada,40,Cao Bằng,12,Cao Quang Minh,1,Câu Chuyện Toán Học,43,Caucasus,3,CGMO,11,China - Trung Quốc,25,Chọn Đội Tuyển,515,Chu Tuấn Anh,1,Chuyên Đề,125,Chuyên SPHCM,7,Chuyên SPHN,30,Chuyên Trần Hưng Đạo,3,Collection,8,College Mathematic,1,Concours,1,Cono Sur,1,Contest,675,Correspondence,1,Cosmin Poahata,1,Crux,2,Czech-Polish-Slovak,28,Đà Nẵng,50,Đa Thức,2,Đại Số,20,Đắk Lắk,76,Đắk Nông,15,Danube,7,Đào Thái Hiệp,1,ĐBSCL,2,Đề Thi,1,Đề Thi HSG,2249,Đề Thi JMO,1,DHBB,30,Điện Biên,15,Định Lý,1,Định Lý Beaty,1,Đỗ Hữu Đức Thịnh,1,Do Thái,3,Doãn Quang Tiến,5,Đoàn Quỳnh,1,Đoàn Văn Trung,1,Đồng Nai,64,Đồng Tháp,63,Du Hiền Vinh,1,Đức,1,Dương Quỳnh Châu,1,Dương Tú,1,Duyên Hải Bắc Bộ,30,E-Book,31,EGMO,30,ELMO,19,EMC,11,Epsilon,1,Estonian,5,Euler,1,Evan Chen,1,Fermat,3,Finland,4,Forum Of Geometry,2,Furstenberg,1,G. Polya,3,Gặp Gỡ Toán Học,30,Gauss,1,GDTX,3,Geometry,14,GGTH,30,Gia Lai,40,Gia Viễn,2,Giải Tích Hàm,1,Giới hạn,2,Goldbach,1,Hà Giang,5,Hà Lan,1,Hà Nam,45,Hà Nội,255,Hà Tĩnh,91,Hà Trung Kiên,1,Hải Dương,70,Hải Phòng,57,Hậu Giang,14,Hélènne Esnault,1,Hilbert,2,Hình Học,33,HKUST,7,Hòa Bình,33,Hoài Nhơn,1,Hoàng Bá Minh,1,Hoàng Minh Quân,1,Hodge,1,Hojoo Lee,2,HOMC,5,HongKong,8,HSG 10,126,HSG 10 2010-2011,4,HSG 10 2011-2012,7,HSG 10 2012-2013,8,HSG 10 2013-2014,7,HSG 10 2014-2015,6,HSG 10 2015-2016,2,HSG 10 2016-2017,8,HSG 10 2017-2018,4,HSG 10 2018-2019,4,HSG 10 2019-2020,7,HSG 10 2020-2021,3,HSG 10 2021-2022,4,HSG 10 2022-2023,11,HSG 10 2023-2024,1,HSG 10 Bà Rịa Vũng Tàu,2,HSG 10 Bắc Giang,1,HSG 10 Bạc Liêu,2,HSG 10 Bình Định,1,HSG 10 Bình Dương,1,HSG 10 Bình Thuận,4,HSG 10 Chuyên SPHN,5,HSG 10 Đắk Lắk,2,HSG 10 Đồng Nai,4,HSG 10 Gia Lai,2,HSG 10 Hà Nam,4,HSG 10 Hà Tĩnh,15,HSG 10 Hải Dương,10,HSG 10 KHTN,9,HSG 10 Nghệ An,1,HSG 10 Ninh Thuận,1,HSG 10 Phú Yên,2,HSG 10 PTNK,10,HSG 10 Quảng Nam,1,HSG 10 Quảng Trị,2,HSG 10 Thái Nguyên,9,HSG 10 Vĩnh Phúc,14,HSG 1015-2016,3,HSG 11,135,HSG 11 2009-2010,1,HSG 11 2010-2011,6,HSG 11 2011-2012,10,HSG 11 2012-2013,9,HSG 11 2013-2014,7,HSG 11 2014-2015,10,HSG 11 2015-2016,6,HSG 11 2016-2017,8,HSG 11 2017-2018,7,HSG 11 2018-2019,8,HSG 11 2019-2020,5,HSG 11 2020-2021,8,HSG 11 2021-2022,4,HSG 11 2022-2023,7,HSG 11 2023-2024,1,HSG 11 An Giang,2,HSG 11 Bà Rịa Vũng Tàu,1,HSG 11 Bắc Giang,4,HSG 11 Bạc Liêu,3,HSG 11 Bắc Ninh,2,HSG 11 Bình Định,12,HSG 11 Bình Dương,3,HSG 11 Bình Thuận,1,HSG 11 Cà Mau,1,HSG 11 Đà Nẵng,9,HSG 11 Đồng Nai,1,HSG 11 Hà Nam,2,HSG 11 Hà Tĩnh,12,HSG 11 Hải Phòng,1,HSG 11 Kiên Giang,4,HSG 11 Lạng Sơn,11,HSG 11 Nghệ An,6,HSG 11 Ninh Bình,2,HSG 11 Quảng Bình,12,HSG 11 Quảng Nam,1,HSG 11 Quảng Ngãi,9,HSG 11 Quảng Trị,3,HSG 11 Sóc Trăng,1,HSG 11 Thái Nguyên,8,HSG 11 Thanh Hóa,3,HSG 11 Trà Vinh,1,HSG 11 Tuyên Quang,1,HSG 11 Vĩnh Long,3,HSG 11 Vĩnh Phúc,11,HSG 12,668,HSG 12 2009-2010,2,HSG 12 2010-2011,39,HSG 12 2011-2012,44,HSG 12 2012-2013,58,HSG 12 2013-2014,53,HSG 12 2014-2015,44,HSG 12 2015-2016,37,HSG 12 2016-2017,46,HSG 12 2017-2018,55,HSG 12 2018-2019,43,HSG 12 2019-2020,43,HSG 12 2020-2021,52,HSG 12 2021-2022,35,HSG 12 2022-2023,42,HSG 12 2023-2024,23,HSG 12 2023-2041,1,HSG 12 An Giang,8,HSG 12 Bà Rịa Vũng Tàu,13,HSG 12 Bắc Giang,18,HSG 12 Bạc Liêu,3,HSG 12 Bắc Ninh,13,HSG 12 Bến Tre,19,HSG 12 Bình Định,17,HSG 12 Bình Dương,8,HSG 12 Bình Phước,9,HSG 12 Bình Thuận,8,HSG 12 Cà Mau,7,HSG 12 Cần Thơ,7,HSG 12 Cao Bằng,5,HSG 12 Chuyên SPHN,11,HSG 12 Đà Nẵng,3,HSG 12 Đắk Lắk,21,HSG 12 Đắk Nông,1,HSG 12 Điện Biên,3,HSG 12 Đồng Nai,20,HSG 12 Đồng Tháp,18,HSG 12 Gia Lai,14,HSG 12 Hà Nam,5,HSG 12 Hà Nội,17,HSG 12 Hà Tĩnh,16,HSG 12 Hải Dương,16,HSG 12 Hải Phòng,20,HSG 12 Hậu Giang,4,HSG 12 Hòa Bình,10,HSG 12 Hưng Yên,10,HSG 12 Khánh Hòa,4,HSG 12 KHTN,26,HSG 12 Kiên Giang,12,HSG 12 Kon Tum,3,HSG 12 Lai Châu,4,HSG 12 Lâm Đồng,11,HSG 12 Lạng Sơn,8,HSG 12 Lào Cai,17,HSG 12 Long An,18,HSG 12 Nam Định,7,HSG 12 Nghệ An,13,HSG 12 Ninh Bình,12,HSG 12 Ninh Thuận,7,HSG 12 Phú Thọ,18,HSG 12 Phú Yên,13,HSG 12 Quảng Bình,14,HSG 12 Quảng Nam,11,HSG 12 Quảng Ngãi,6,HSG 12 Quảng Ninh,20,HSG 12 Quảng Trị,10,HSG 12 Sóc Trăng,4,HSG 12 Sơn La,5,HSG 12 Tây Ninh,6,HSG 12 Thái Bình,11,HSG 12 Thái Nguyên,13,HSG 12 Thanh Hóa,17,HSG 12 Thừa Thiên Huế,19,HSG 12 Tiền Giang,3,HSG 12 TPHCM,13,HSG 12 Tuyên Quang,3,HSG 12 Vĩnh Long,7,HSG 12 Vĩnh Phúc,20,HSG 12 Yên Bái,6,HSG 9,573,HSG 9 2009-2010,1,HSG 9 2010-2011,21,HSG 9 2011-2012,42,HSG 9 2012-2013,41,HSG 9 2013-2014,35,HSG 9 2014-2015,41,HSG 9 2015-2016,38,HSG 9 2016-2017,42,HSG 9 2017-2018,45,HSG 9 2018-2019,41,HSG 9 2019-2020,18,HSG 9 2020-2021,50,HSG 9 2021-2022,53,HSG 9 2022-2023,55,HSG 9 2023-2024,15,HSG 9 An Giang,9,HSG 9 Bà Rịa Vũng Tàu,8,HSG 9 Bắc Giang,14,HSG 9 Bắc Kạn,1,HSG 9 Bạc Liêu,1,HSG 9 Bắc Ninh,12,HSG 9 Bến Tre,9,HSG 9 Bình Định,11,HSG 9 Bình Dương,7,HSG 9 Bình Phước,13,HSG 9 Bình Thuận,5,HSG 9 Cà Mau,2,HSG 9 Cần Thơ,4,HSG 9 Cao Bằng,2,HSG 9 Đà Nẵng,11,HSG 9 Đắk Lắk,12,HSG 9 Đắk Nông,3,HSG 9 Điện Biên,5,HSG 9 Đồng Nai,8,HSG 9 Đồng Tháp,10,HSG 9 Gia Lai,9,HSG 9 Hà Giang,4,HSG 9 Hà Nam,10,HSG 9 Hà Nội,15,HSG 9 Hà Tĩnh,13,HSG 9 Hải Dương,16,HSG 9 Hải Phòng,8,HSG 9 Hậu Giang,6,HSG 9 Hòa Bình,4,HSG 9 Hưng Yên,11,HSG 9 Khánh Hòa,6,HSG 9 Kiên Giang,16,HSG 9 Kon Tum,9,HSG 9 Lai Châu,2,HSG 9 Lâm Đồng,14,HSG 9 Lạng Sơn,10,HSG 9 Lào Cai,4,HSG 9 Long An,10,HSG 9 Nam Định,9,HSG 9 Nghệ An,21,HSG 9 Ninh Bình,14,HSG 9 Ninh Thuận,4,HSG 9 Phú Thọ,13,HSG 9 Phú Yên,9,HSG 9 Quảng Bình,14,HSG 9 Quảng Nam,12,HSG 9 Quảng Ngãi,13,HSG 9 Quảng Ninh,17,HSG 9 Quảng Trị,10,HSG 9 Sóc Trăng,9,HSG 9 Sơn La,5,HSG 9 Tây Ninh,16,HSG 9 Thái Bình,11,HSG 9 Thái Nguyên,5,HSG 9 Thanh Hóa,12,HSG 9 Thừa Thiên Huế,9,HSG 9 Tiền Giang,7,HSG 9 TPHCM,11,HSG 9 Trà Vinh,2,HSG 9 Tuyên Quang,6,HSG 9 Vĩnh Long,12,HSG 9 Vĩnh Phúc,12,HSG 9 Yên Bái,5,HSG Cấp Trường,80,HSG Quốc Gia,113,HSG Quốc Tế,16,Hứa Lâm Phong,1,Hứa Thuần Phỏng,1,Hùng Vương,2,Hưng Yên,43,Huỳnh Kim Linh,1,Hy Lạp,1,IMC,26,IMO,58,IMT,2,IMU,2,India - Ấn Độ,47,Inequality,13,InMC,1,International,349,Iran,13,Jakob,1,JBMO,41,Jewish,1,Journal,30,Junior,38,K2pi,1,Kazakhstan,1,Khánh Hòa,30,KHTN,64,Kiên Giang,74,Kon Tum,24,Korea - Hàn Quốc,5,Kvant,2,Kỷ Yếu,46,Lai Châu,12,Lâm Đồng,47,Lăng Hồng Nguyệt Anh,1,Lạng Sơn,37,Langlands,1,Lào Cai,35,Lê Hải Châu,1,Lê Hải Khôi,1,Lê Hoành Phò,4,Lê Hồng Phong,5,Lê Khánh Sỹ,3,Lê Minh Cường,1,Lê Phúc Lữ,1,Lê Phương,1,Lê Viết Hải,1,Lê Việt Hưng,2,Leibniz,1,Long An,52,Lớp 10 Chuyên,709,Lớp 10 Không Chuyên,355,Lớp 11,1,Lục Ngạn,1,Lượng giác,1,Lưu Giang Nam,2,Lưu Lý Tưởng,1,Macedonian,1,Malaysia,1,Margulis,2,Mark Levi,1,Mathematical Excalibur,1,Mathematical Reflections,1,Mathematics Magazine,1,Mathematics Today,1,Mathley,1,MathLinks,1,MathProblems Journal,1,Mathscope,8,MathsVN,5,MathVN,1,MEMO,13,Menelaus,1,Metropolises,4,Mexico,1,MIC,1,Michael Atiyah,1,Michael Guillen,1,Mochizuki,1,Moldova,1,Moscow,1,MYM,25,MYTS,4,Nam Định,45,Nam Phi,1,National,276,Nesbitt,1,Newton,4,Nghệ An,73,Ngô Bảo Châu,2,Ngô Việt Hải,1,Ngọc Huyền,2,Nguyễn Anh Tuyến,1,Nguyễn Bá Đang,1,Nguyễn Đình Thi,1,Nguyễn Đức Tấn,1,Nguyễn Đức Thắng,1,Nguyễn Duy Khương,1,Nguyễn Duy Tùng,1,Nguyễn Hữu Điển,3,Nguyễn Minh Hà,1,Nguyễn Minh Tuấn,9,Nguyễn Nhất Huy,1,Nguyễn Phan Tài Vương,1,Nguyễn Phú Khánh,1,Nguyễn Phúc Tăng,2,Nguyễn Quản Bá Hồng,1,Nguyễn Quang Sơn,1,Nguyễn Song Thiên Long,1,Nguyễn Tài Chung,5,Nguyễn Tăng Vũ,1,Nguyễn Tất Thu,1,Nguyễn Thúc Vũ Hoàng,1,Nguyễn Trung Tuấn,8,Nguyễn Tuấn Anh,2,Nguyễn Văn Huyện,3,Nguyễn Văn Mậu,25,Nguyễn Văn Nho,1,Nguyễn Văn Quý,2,Nguyễn Văn Thông,1,Nguyễn Việt Anh,1,Nguyễn Vũ Lương,2,Nhật Bản,4,Nhóm $\LaTeX$,4,Nhóm Toán,1,Ninh Bình,61,Ninh Thuận,26,Nội Suy Lagrange,2,Nội Suy Newton,1,Nordic,21,Olympiad Corner,1,Olympiad Preliminary,2,Olympic 10,134,Olympic 10/3,6,Olympic 10/3 Đắk Lắk,6,Olympic 11,122,Olympic 12,52,Olympic 23/3,2,Olympic 24/3,10,Olympic 24/3 Quảng Nam,10,Olympic 27/4,24,Olympic 30/4,61,Olympic KHTN,8,Olympic Sinh Viên,78,Olympic Tháng 4,12,Olympic Toán,344,Olympic Toán Sơ Cấp,3,Ôn Thi 10,2,PAMO,1,Phạm Đình Đồng,1,Phạm Đức Tài,1,Phạm Huy Hoàng,1,Pham Kim Hung,3,Phạm Quốc Sang,2,Phan Huy Khải,1,Phan Quang Đạt,1,Phan Thành Nam,1,Pháp,2,Philippines,8,Phú Thọ,32,Phú Yên,42,Phùng Hồ Hải,1,Phương Trình Hàm,11,Phương Trình Pythagoras,1,Pi,1,Polish,32,Problems,1,PT-HPT,14,PTNK,64,Putnam,27,Quảng Bình,64,Quảng Nam,57,Quảng Ngãi,49,Quảng Ninh,60,Quảng Trị,42,Quỹ Tích,1,Riemann,1,RMM,14,RMO,24,Romania,38,Romanian Mathematical,1,Russia,1,Sách Thường Thức Toán,7,Sách Toán,70,Sách Toán Cao Học,1,Sách Toán THCS,7,Saudi Arabia - Ả Rập Xê Út,9,Scholze,1,Serbia,17,Sharygin,28,Shortlists,56,Simon Singh,1,Singapore,1,Số Học - Tổ Hợp,28,Sóc Trăng,36,Sơn La,22,Spain,8,Star Education,1,Stars of Mathematics,11,Swinnerton-Dyer,1,Talent Search,1,Tăng Hải Tuân,2,Tạp Chí,17,Tập San,3,Tây Ban Nha,1,Tây Ninh,37,Thái Bình,45,Thái Nguyên,61,Thái Vân,2,Thanh Hóa,69,THCS,2,Thổ Nhĩ Kỳ,5,Thomas J. Mildorf,1,Thông Tin Toán Học,43,THPT Chuyên Lê Quý Đôn,1,THPT Chuyên Nguyễn Du,9,THPTQG,16,THTT,31,Thừa Thiên Huế,56,Tiền Giang,30,Tin Tức Toán Học,1,Titu Andreescu,2,Toán 12,7,Toán Cao Cấp,3,Toán Rời Rạc,5,Toán Tuổi Thơ,3,Tôn Ngọc Minh Quân,2,TOT,1,TPHCM,158,Trà Vinh,10,Trắc Nghiệm,1,Trắc Nghiệm Toán,2,Trại Hè,39,Trại Hè Hùng Vương,30,Trại Hè Phương Nam,7,Trần Đăng Phúc,1,Trần Minh Hiền,2,Trần Nam Dũng,12,Trần Phương,1,Trần Quang Hùng,1,Trần Quốc Anh,2,Trần Quốc Luật,1,Trần Quốc Nghĩa,1,Trần Tiến Tự,1,Trịnh Đào Chiến,2,Trường Đông,23,Trường Hè,10,Trường Thu,1,Trường Xuân,3,TST,544,TST 2008-2009,1,TST 2010-2011,22,TST 2011-2012,23,TST 2012-2013,32,TST 2013-2014,29,TST 2014-2015,27,TST 2015-2016,26,TST 2016-2017,41,TST 2017-2018,42,TST 2018-2019,30,TST 2019-2020,34,TST 2020-2021,30,TST 2021-2022,38,TST 2022-2023,42,TST 2023-2024,23,TST An Giang,8,TST Bà Rịa Vũng Tàu,11,TST Bắc Giang,5,TST Bắc Ninh,11,TST Bến Tre,10,TST Bình Định,5,TST Bình Dương,7,TST Bình Phước,9,TST Bình Thuận,9,TST Cà Mau,7,TST Cần Thơ,6,TST Cao Bằng,2,TST Đà Nẵng,8,TST Đắk Lắk,12,TST Đắk Nông,2,TST Điện Biên,2,TST Đồng Nai,13,TST Đồng Tháp,12,TST Gia Lai,4,TST Hà Nam,8,TST Hà Nội,12,TST Hà Tĩnh,15,TST Hải Dương,11,TST Hải Phòng,13,TST Hậu Giang,1,TST Hòa Bình,4,TST Hưng Yên,10,TST Khánh Hòa,8,TST Kiên Giang,11,TST Kon Tum,6,TST Lâm Đồng,12,TST Lạng Sơn,3,TST Lào Cai,4,TST Long An,6,TST Nam Định,8,TST Nghệ An,7,TST Ninh Bình,11,TST Ninh Thuận,4,TST Phú Thọ,13,TST Phú Yên,5,TST PTNK,15,TST Quảng Bình,12,TST Quảng Nam,7,TST Quảng Ngãi,8,TST Quảng Ninh,9,TST Quảng Trị,10,TST Sóc Trăng,5,TST Sơn La,7,TST Thái Bình,6,TST Thái Nguyên,8,TST Thanh Hóa,9,TST Thừa Thiên Huế,4,TST Tiền Giang,6,TST TPHCM,14,TST Trà Vinh,1,TST Tuyên Quang,1,TST Vĩnh Long,7,TST Vĩnh Phúc,7,TST Yên Bái,8,Tuyên Quang,14,Tuyển Sinh,4,Tuyển Sinh 10,1064,Tuyển Sinh 10 An Giang,18,Tuyển Sinh 10 Bà Rịa Vũng Tàu,22,Tuyển Sinh 10 Bắc Giang,19,Tuyển Sinh 10 Bắc Kạn,3,Tuyển Sinh 10 Bạc Liêu,9,Tuyển Sinh 10 Bắc Ninh,15,Tuyển Sinh 10 Bến Tre,34,Tuyển Sinh 10 Bình Định,19,Tuyển Sinh 10 Bình Dương,12,Tuyển Sinh 10 Bình Phước,21,Tuyển Sinh 10 Bình Thuận,15,Tuyển Sinh 10 Cà Mau,5,Tuyển Sinh 10 Cần Thơ,10,Tuyển Sinh 10 Cao Bằng,2,Tuyển Sinh 10 Chuyên SPHN,19,Tuyển Sinh 10 Đà Nẵng,18,Tuyển Sinh 10 Đại Học Vinh,13,Tuyển Sinh 10 Đắk Lắk,21,Tuyển Sinh 10 Đắk Nông,7,Tuyển Sinh 10 Điện Biên,5,Tuyển Sinh 10 Đồng Nai,18,Tuyển Sinh 10 Đồng Tháp,23,Tuyển Sinh 10 Gia Lai,10,Tuyển Sinh 10 Hà Giang,1,Tuyển Sinh 10 Hà Nam,16,Tuyển Sinh 10 Hà Nội,80,Tuyển Sinh 10 Hà Tĩnh,19,Tuyển Sinh 10 Hải Dương,17,Tuyển Sinh 10 Hải Phòng,15,Tuyển Sinh 10 Hậu Giang,3,Tuyển Sinh 10 Hòa Bình,15,Tuyển Sinh 10 Hưng Yên,12,Tuyển Sinh 10 Khánh Hòa,12,Tuyển Sinh 10 KHTN,21,Tuyển Sinh 10 Kiên Giang,31,Tuyển Sinh 10 Kon Tum,6,Tuyển Sinh 10 Lai Châu,6,Tuyển Sinh 10 Lâm Đồng,10,Tuyển Sinh 10 Lạng Sơn,6,Tuyển Sinh 10 Lào Cai,10,Tuyển Sinh 10 Long An,18,Tuyển Sinh 10 Nam Định,21,Tuyển Sinh 10 Nghệ An,23,Tuyển Sinh 10 Ninh Bình,20,Tuyển Sinh 10 Ninh Thuận,10,Tuyển Sinh 10 Phú Thọ,18,Tuyển Sinh 10 Phú Yên,12,Tuyển Sinh 10 PTNK,37,Tuyển Sinh 10 Quảng Bình,12,Tuyển Sinh 10 Quảng Nam,15,Tuyển Sinh 10 Quảng Ngãi,13,Tuyển Sinh 10 Quảng Ninh,12,Tuyển Sinh 10 Quảng Trị,7,Tuyển Sinh 10 Sóc Trăng,17,Tuyển Sinh 10 Sơn La,5,Tuyển Sinh 10 Tây Ninh,15,Tuyển Sinh 10 Thái Bình,17,Tuyển Sinh 10 Thái Nguyên,18,Tuyển Sinh 10 Thanh Hóa,27,Tuyển Sinh 10 Thừa Thiên Huế,24,Tuyển Sinh 10 Tiền Giang,14,Tuyển Sinh 10 TPHCM,23,Tuyển Sinh 10 Trà Vinh,6,Tuyển Sinh 10 Tuyên Quang,3,Tuyển Sinh 10 Vĩnh Long,12,Tuyển Sinh 10 Vĩnh Phúc,22,Tuyển Sinh 2008-2009,1,Tuyển Sinh 2009-2010,1,Tuyển Sinh 2010-2011,6,Tuyển Sinh 2011-2012,20,Tuyển Sinh 2012-2013,65,Tuyển Sinh 2013-2014,77,Tuyển Sinh 2013-2044,1,Tuyển Sinh 2014-2015,81,Tuyển Sinh 2015-2016,64,Tuyển Sinh 2016-2017,72,Tuyển Sinh 2017-2018,126,Tuyển Sinh 2018-2019,61,Tuyển Sinh 2019-2020,90,Tuyển Sinh 2020-2021,59,Tuyển Sinh 2021-202,1,Tuyển Sinh 2021-2022,69,Tuyển Sinh 2022-2023,113,Tuyển Sinh 2023-2024,49,Tuyển Sinh Chuyên SPHCM,7,Tuyển Sinh Yên Bái,6,Tuyển Tập,45,Tuymaada,6,UK - Anh,16,Undergraduate,69,USA - Mỹ,62,USA TSTST,6,USAJMO,12,USATST,8,USEMO,4,Uzbekistan,1,Vasile Cîrtoaje,4,Vật Lý,1,Viện Toán Học,6,Vietnam,4,Viktor Prasolov,1,VIMF,1,Vinh,32,Vĩnh Long,41,Vĩnh Phúc,86,Virginia Tech,1,VLTT,1,VMEO,4,VMF,12,VMO,58,VNTST,25,Võ Anh Khoa,1,Võ Quốc Bá Cẩn,26,Võ Thành Văn,1,Vojtěch Jarník,6,Vũ Hữu Bình,7,Vương Trung Dũng,1,WFNMC Journal,1,Wiles,1,Xác Suất,1,Yên Bái,25,Yên Thành,1,Zhautykov,14,Zhou Yuan Zhe,1,
    ltr
    item
    MOlympiad.NET: Mathematics and Youth Magazine Problems 2006
    Mathematics and Youth Magazine Problems 2006
    MOlympiad.NET
    https://www.molympiad.net/2022/04/mym-2006.html
    https://www.molympiad.net/
    https://www.molympiad.net/
    https://www.molympiad.net/2022/04/mym-2006.html
    true
    2506595080985176441
    UTF-8
    Loaded All Posts Not found any posts VIEW ALL Readmore Reply Cancel reply Delete By Home PAGES POSTS View All RECOMMENDED FOR YOU Tag ARCHIVE SEARCH ALL POSTS Not found any post match with your request Back Home Sunday Monday Tuesday Wednesday Thursday Friday Saturday Sun Mon Tue Wed Thu Fri Sat January February March April May June July August September October November December Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec just now 1 minute ago $$1$$ minutes ago 1 hour ago $$1$$ hours ago Yesterday $$1$$ days ago $$1$$ weeks ago more than 5 weeks ago Followers Follow THIS PREMIUM CONTENT IS LOCKED
    NỘI DUNG CAO CẤP NÀY ĐÃ BỊ KHÓA
    STEP 1: SHARE THIS ARTICLE TO A SOCIAL NETWORK
    BƯỚC 1: CHIA SẺ BÀI VIẾT NÀY LÊN MẠNG XÃ HỘI
    STEP 2: CLICK THE LINK ON YOUR SOCIAL NETWORK
    BƯỚC 2: BẤM VÀO ĐƯỜNG DẪN TRÊN MẠNG XÃ HỘI CỦA BẠN
    Copy All Code Select All Code All codes were copied to your clipboard Can not copy the codes / texts, please press [CTRL]+[C] (or CMD+C with Mac) to copy Table of Content