[Shortlists] International Mathematical Olympiad 2009


  1. Find the largest possible integer $k$, such that the following statement is true: Let $2009$ arbitrary non-degenerated triangles be given. In every triangle the three sides are coloured, such that one is blue, one is red and one is white. Now, for every colour separately, let us sort the lengths of the sides. We obtain \[ \left. \begin{array}{rcl} & b_1 \leq b_2\leq\ldots\leq b_{2009} & \textrm{the lengths of the blue sides }\\ & r_1 \leq r_2\leq\ldots\leq r_{2009} & \textrm{the lengths of the red sides }\\  & w_1 \leq w_2\leq\ldots\leq w_{2009} & \textrm{the lengths of the white sides }\\ \end{array}\right.\] Then there exist $k$ indices $j$ such that we can form a non-degenerated triangle with side lengths $b_j$, $r_j$, $w_j$.
  2. Let $a$, $b$, $c$ be positive real numbers such that $$\dfrac{1}{a} + \dfrac{1}{b} + \dfrac{1}{c} = a+b+c.$$ Prove that \[\frac{1}{(2a+b+c)^2}+\frac{1}{(a+2b+c)^2}+\frac{1}{(a+b+2c)^2}\leq \frac{3}{16}.\]
  3. Determine all functions $ f$ from the set of positive integers to the set of positive integers such that, for all positive integers $ a$ and $ b$, there exists a non-degenerate triangle with sides of lengths  $a$, $f(b)$, and $f(b + f(a) - 1)$. (A triangle is non-degenerate if its vertices are not collinear.)
  4. Let $a$, $b$, $c$ be positive real numbers such that $ab+bc+ca\leq 3abc$. Prove that \[\sqrt{\frac{a^2+b^2}{a+b}}+\sqrt{\frac{b^2+c^2}{b+c}}+\sqrt{\frac{c^2+a^2}{c+a}}+3\leq \sqrt{2}\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)\]
  5. Let $f$ be any function that maps the set of real numbers into the set of real numbers. Prove that there exist real numbers $x$ and $y$ such that \[f\left(x-f(y)\right)>yf(x)+x\]
  6. Suppose that $ s_1,s_2,s_3, \ldots$ is a strictly increasing sequence of positive integers such that the sub-sequences \[s_{s_1},\, s_{s_2},\, s_{s_3},\, \ldots\qquad\text{and}\qquad s_{s_1+1},\, s_{s_2+1},\, s_{s_3+1},\, \ldots\] are both arithmetic progressions. Prove that the sequence $ s_1, s_2, s_3, \ldots$ is itself an arithmetic progression.
  7. Find all functions $f$ from the set of real numbers into the set of real numbers which satisfy for all $x$, $y$ the identity \[ f\left(xf(x+y)\right) = f\left(yf(x)\right) +x^2.\]


  1. Consider $2009$ cards, each having one gold side and one black side, lying on parallel on a long table. Initially all cards show their gold sides. Two player, standing by the same long side of the table, play a game with alternating moves. Each move consists of choosing a block of $50$ consecutive cards, the leftmost of which is showing gold, and turning them all over, so those which showed gold now show black and vice versa. The last player who can make a legal move wins.
    a) Does the game necessarily end?
    b) Does there exist a winning strategy for the starting player?
  2. For any integer $n\geq 2$, let $N(n)$ be the maxima number of triples $(a_i, b_i, c_i)$, $i=1, \ldots, N(n)$, consisting of nonnegative integers $a_i$, $b_i$ and $c_i$ such that the following two conditions are satisfied:
    • $a_i+b_i+c_i=n$ for all $i=1, \ldots, N(n)$,
    • If $i\neq j$ then $a_i\neq a_j$, $b_i\neq b_j$ and $c_i\neq c_j$.
    Determine $N(n)$ for all $n\geq 2$.
  3. Let $n$ be a positive integer. Given a sequence $\varepsilon_1$, $\dots$, $\varepsilon_{n - 1}$ with $\varepsilon_i = 0$ or $\varepsilon_i = 1$ for each $i = 1$, $\dots$, $n - 1$, the sequences $a_0$, $\dots$, $a_n$ and $b_0$, $\dots$, $b_n$ are constructed by the following rules: \[a_0 = b_0 = 1, \quad a_1 = b_1 = 7,\] \[\begin{array}{lll} a_{i+1} = \begin{cases} 2a_{i-1} + 3a_i, \\ 3a_{i-1} + a_i, \end{cases} & \begin{array}{l} \text{if } \varepsilon_i = 0, \\ \text{if } \varepsilon_i = 1, \end{array} & \text{for each } i = 1, \dots, n - 1, \\[15pt] b_{i+1}= \begin{cases} 2b_{i-1} + 3b_i, \\ 3b_{i-1} + b_i, \end{cases} & \begin{array}{l} \text{if } \varepsilon_{n-i} = 0, \\ \text{if } \varepsilon_{n-i} = 1, \end{array} & \text{for each } i = 1, \dots, n - 1. \end{array}\] Prove that $a_n = b_n$.
  4. For an integer $m\geq 1$, we consider partitions of a $2^m\times 2^m$ chessboard into rectangles consisting of cells of chessboard, in which each of the $2^m$ cells along one diagonal forms a separate rectangle of side length $1$. Determine the smallest possible sum of rectangle perimeters in such a partition.
  5. Five identical empty buckets of $2$-liter capacity stand at the vertices of a regular pentagon. Cinderella and her wicked Stepmother go through a sequence of rounds: At the beginning of every round, the Stepmother takes one liter of water from the nearby river and distributes it arbitrarily over the five buckets. Then Cinderella chooses a pair of neighbouring buckets, empties them to the river and puts them back. Then the next round begins. The Stepmother goal's is to make one of these buckets overflow. Cinderella's goal is to prevent this. Can the wicked Stepmother enforce a bucket overflow?
  6. On a $999\times 999$ board a limp rook can move in the following way: From any square it can move to any of its adjacent squares, i.e. a square having a common side with it, and every move must be a turn, i.e. the directions of any two consecutive moves must be perpendicular. A non-intersecting route of the limp rook consists of a sequence of pairwise different squares that the limp rook can visit in that order by an admissible sequence of moves. Such a non-intersecting route is called cyclic, if the limp rook can, after reaching the last square of the route, move directly to the first square of the route and start over. How many squares does the longest possible cyclic, non-intersecting route of a limp rook visit?
  7. Let $ a_1, a_2, \ldots , a_n$ be distinct positive integers and let $ M$ be a set of $ n - 1$ positive integers not containing $ s = a_1 + a_2 + \ldots + a_n.$ A grasshopper is to jump along the real axis, starting at the point $ 0$ and making $ n$ jumps to the right with lengths $ a_1, a_2, \ldots , a_n$ in some order. Prove that the order can be chosen in such a way that the grasshopper never lands on any point in $ M.$
  8. For any integer $n\geq 2$, we compute the integer $h(n)$ by applying the following procedure to its decimal representation. Let $r$ be the rightmost digit of $n$.
    • If $r=0$, then the decimal representation of $h(n)$ results from the decimal representation of $n$ by removing this rightmost digit $0$.
    • If $1\leq r \leq 9$ we split the decimal representation of $n$ into a maximal right part $R$ that solely consists of digits not less than $r$ and into a left part $L$ that either is empty or ends with a digit strictly smaller than $r$. Then the decimal representation of $h(n)$ consists of the decimal representation of $L$, followed by two copies of the decimal representation of $R-1$. For instance, for the number $17,151,345,543$, we will have $L=17,151$, $R=345,543$ and $h(n)=17,151,345,542,345,542$.
    Prove that, starting with an arbitrary integer $n\geq 2$, iterated application of $h$ produces the integer $1$ after finitely many steps.


  1. Let $ ABC$ be a triangle with $ AB = AC$ . The angle bisectors of $ \angle C AB$ and $ \angle AB C$ meet the sides $ B C$ and $ C A$ at $ D$ and $ E$ , respectively. Let $ K$ be the incentre of triangle $ ADC$. Suppose that $ \angle B E K = 45^\circ$ . Find all possible values of $ \angle C AB$ .
  2. Let $ ABC$ be a triangle with circumcentre $ O$. The points $ P$ and $ Q$ are interior points of the sides $ CA$ and $ AB$ respectively. Let $ K,L$ and $ M$ be the midpoints of the segments $ BP,CQ$ and $ PQ$. respectively, and let $ \Gamma$ be the circle passing through $ K,L$ and $ M$. Suppose that the line $ PQ$ is tangent to the circle $ \Gamma$. Prove that $ OP = OQ.$
  3. Let $ABC$ be a triangle. The incircle of $ABC$ touches the sides $AB$ and $AC$ at the points $Z$ and $Y$, respectively. Let $G$ be the point where the lines $BY$ and $CZ$ meet, and let $R$ and $S$ be points such that the two quadrilaterals $BCYR$ and $BCSZ$ are parallelogram. Prove that $GR=GS$.
  4. Given a cyclic quadrilateral $ABCD$, let the diagonals $AC$ and $BD$ meet at $E$ and the lines $AD$ and $BC$ meet at $F$. The midpoints of $AB$ and $CD$ are $G$ and $H$, respectively. Show that $EF$ is tangent at $E$ to the circle through the points $E$, $G$ and $H$.
  5. Let $P$ be a polygon that is convex and symmetric to some point $O$. Prove that for some parallelogram $R$ satisfying $P\subset R$ we have \[\frac{|R|}{|P|}\leq \sqrt 2\] where $|R|$ and $|P|$ denote the area of the sets $R$ and $P$, respectively.
  6. Let the sides $AD$ and $BC$ of the quadrilateral $ABCD$ (such that $AB$ is not parallel to $CD$) intersect at point $P$. Points $O_1$ and $O_2$ are circumcenters and points $H_1$ and $H_2$ are orthocenters of triangles $ABP$ and $CDP$, respectively. Denote the midpoints of segments $O_1H_1$ and $O_2H_2$ by $E_1$ and $E_2$, respectively. Prove that the perpendicular from $E_1$ on $CD$, the perpendicular from $E_2$ on $AB$ and the lines $H_1H_2$ are concurrent.
  7. Let $ABC$ be a triangle with incenter $I$ and let $X$, $Y$ and $Z$ be the incenters of the triangles $BIC$, $CIA$ and $AIB$, respectively. Let the triangle $XYZ$ be equilateral. Prove that $ABC$ is equilateral too.
  8. Let $ABCD$ be a circumscribed quadrilateral. Let $g$ be a line through $A$ which meets the segment $BC$ in $M$ and the line $CD$ in $N$. Denote by $I_1$, $I_2$ and $I_3$ the incenters of $\triangle ABM$, $\triangle MNC$ and $\triangle NDA$, respectively. Prove that the orthocenter of $\triangle I_1I_2I_3$ lies on $g$.

Number Theory

  1. Let $ n$ be a positive integer and let $ a_1,a_2,a_3,\ldots,a_k$ $ ( k\ge 2)$ be distinct integers in the set $ { 1,2,\ldots,n}$ such that $ n$ divides $ a_i(a_{i + 1} - 1)$ for $ i = 1,2,\ldots,k - 1$. Prove that $ n$ does not divide $ a_k(a_1 - 1).$
  2. A positive integer $N$ is called balanced, if $N=1$ or if $N$ can be written as a product of an even number of not necessarily distinct primes. Given positive integers $a$ and $b$, consider the polynomial $P$ defined by $P(x)=(x+a)(x+b)$.
    a) Prove that there exist distinct positive integers $a$ and $b$ such that all the number $P(1)$, $P(2)$,$\ldots$, $P(50)$ are balanced.
    b) Prove that if $P(n)$ is balanced for all positive integers $n$, then $a=b$.
  3. Let $f$ be a non-constant function from the set of positive integers into the set of positive integer, such that $a-b$ divides $f(a)-f(b)$ for all distinct positive integers $a$, $b$. Prove that there exist infinitely many primes $p$ such that $p$ divides $f(c)$ for some positive integer $c$.
  4. Find all positive integers $n$ such that there exists a sequence of positive integers $a_1$, $a_2$,$\ldots$, $a_n$ satisfying: \[a_{k+1}=\frac{a_k^2+1}{a_{k-1}+1}-1\] for every $k$ with $2\leq k\leq n-1$.
  5. Let $P(x)$ be a non-constant polynomial with integer coefficients. Prove that there is no function $T$ from the set of integers into the set of integers such that the number of integers $x$ with $T^n(x)=x$ is equal to $P(n)$ for every $n\geq 1$, where $T^n$ denotes the $n$-fold application of $T$.
  6. Let $k$ be a positive integer. Show that if there exists a sequence $a_0,a_1,\ldots$ of integers satisfying the condition \[a_n=\frac{a_{n-1}+n^k}{n}\text{ for all } n\geq 1,\]then $k-2$ is divisible by $3$.
  7. Let $a$ and $b$ be distinct integers greater than $1$. Prove that there exists a positive integer $n$ such that $(a^n-1)(b^n-1)$ is not a perfect square.

Post a Comment





Kỷ Yếu$cl=violet$type=three$count=6$sr=random$t=oot$h=1$l=0$meta=hide$rm=hide$sn=0$hide=mobile



Ả-rập Xê-út,1,Abel,5,Albania,2,AMM,3,Amsterdam,5,Ấn Độ,2,An Giang,23,Andrew Wiles,1,Anh,2,Áo,1,APMO,19,Ba Đình,2,Ba Lan,1,Bà Rịa Vũng Tàu,53,Bắc Giang,50,Bắc Kạn,1,Bạc Liêu,9,Bắc Ninh,48,Bắc Trung Bộ,7,Bài Toán Hay,5,Balkan,38,Baltic Way,30,BAMO,1,Bất Đẳng Thức,66,Bến Tre,46,Benelux,14,Bình Định,46,Bình Dương,23,Bình Phước,38,Bình Thuận,34,Birch,1,Booklet,11,Bosnia Herzegovina,3,BoxMath,3,Brazil,2,Bùi Đắc Hiên,1,Bùi Thị Thiện Mỹ,1,Bùi Văn Tuyên,1,Bùi Xuân Diệu,1,Bulgaria,6,Buôn Ma Thuột,1,BxMO,13,Cà Mau,14,Cần Thơ,14,Canada,40,Cao Bằng,7,Cao Quang Minh,1,Câu Chuyện Toán Học,36,Caucasus,2,CGMO,10,China,10,Chọn Đội Tuyển,355,Chu Tuấn Anh,1,Chuyên Đề,124,Chuyên Sư Phạm,31,Chuyên Trần Hưng Đạo,3,Collection,8,College Mathematic,1,Concours,1,Cono Sur,1,Contest,618,Correspondence,1,Cosmin Poahata,1,Crux,2,Czech-Polish-Slovak,26,Đà Nẵng,39,Đa Thức,2,Đại Số,20,Đắk Lắk,56,Đắk Nông,7,Đan Phượng,1,Danube,7,Đào Thái Hiệp,1,ĐBSCL,2,Đề Thi,1,Đề Thi HSG,1773,Đề Thi JMO,1,Điện Biên,8,Định Lý,1,Định Lý Beaty,1,Đỗ Hữu Đức Thịnh,1,Do Thái,3,Doãn Quang Tiến,4,Đoàn Quỳnh,1,Đoàn Văn Trung,1,Đống Đa,4,Đồng Nai,50,Đồng Tháp,52,Du Hiền Vinh,1,Đức,1,Duyên Hải Bắc Bộ,25,E-Book,33,EGMO,17,ELMO,19,EMC,9,Epsilon,1,Estonian,5,Euler,1,Evan Chen,1,Fermat,3,Finland,4,Forum Of Geometry,2,Furstenberg,1,G. Polya,3,Gặp Gỡ Toán Học,26,Gauss,1,GDTX,3,Geometry,12,Gia Lai,26,Gia Viễn,2,Giải Tích Hàm,1,Giảng Võ,1,Giới hạn,2,Goldbach,1,Hà Giang,2,Hà Lan,1,Hà Nam,29,Hà Nội,232,Hà Tĩnh,73,Hà Trung Kiên,1,Hải Dương,50,Hải Phòng,42,Hàn Quốc,5,Hậu Giang,4,Hậu Lộc,1,Hilbert,1,Hình Học,33,HKUST,7,Hòa Bình,13,Hoài Nhơn,1,Hoàng Bá Minh,1,Hoàng Minh Quân,1,Hodge,1,Hojoo Lee,2,HOMC,5,HongKong,8,HSG 10,101,HSG 11,91,HSG 12,588,HSG 9,425,HSG Cấp Trường,78,HSG Quốc Gia,106,HSG Quốc Tế,16,Hứa Lâm Phong,1,Hứa Thuần Phỏng,1,Hùng Vương,2,Hưng Yên,33,Hương Sơn,2,Huỳnh Kim Linh,1,Hy Lạp,1,IMC,26,IMO,56,IMT,1,India,45,Inequality,13,InMC,1,International,315,Iran,11,Jakob,1,JBMO,41,Jewish,1,Journal,20,Junior,38,K2pi,1,Kazakhstan,1,Khánh Hòa,17,KHTN,54,Kiên Giang,64,Kim Liên,1,Kon Tum,18,Korea,5,Kvant,2,Kỷ Yếu,42,Lai Châu,4,Lâm Đồng,33,Lạng Sơn,21,Langlands,1,Lào Cai,17,Lê Hải Châu,1,Lê Hải Khôi,1,Lê Hoành Phò,4,Lê Khánh Sỹ,3,Lê Minh Cường,1,Lê Phúc Lữ,1,Lê Phương,1,Lê Quý Đôn,1,Lê Viết Hải,1,Lê Việt Hưng,1,Leibniz,1,Long An,42,Lớp 10,10,Lớp 10 Chuyên,455,Lớp 10 Không Chuyên,229,Lớp 11,1,Lục Ngạn,1,Lượng giác,1,Lương Tài,1,Lưu Giang Nam,2,Lý Thánh Tông,1,Macedonian,1,Malaysia,1,Margulis,2,Mark Levi,1,Mathematical Excalibur,1,Mathematical Reflections,1,Mathematics Magazine,1,Mathematics Today,1,Mathley,1,MathLinks,1,MathProblems Journal,1,Mathscope,8,MathsVN,5,MathVN,1,MEMO,11,Metropolises,4,Mexico,1,MIC,1,Michael Guillen,1,Mochizuki,1,Moldova,1,Moscow,1,Mỹ,10,MYM,227,MYTS,4,Nam Định,33,Nam Phi,1,Nam Trung Bộ,1,National,249,Nesbitt,1,Newton,4,Nghệ An,52,Ngô Bảo Châu,2,Ngô Việt Hải,1,Ngọc Huyền,2,Nguyễn Anh Tuyến,1,Nguyễn Bá Đang,1,Nguyễn Đình Thi,1,Nguyễn Đức Tấn,1,Nguyễn Đức Thắng,1,Nguyễn Duy Khương,1,Nguyễn Duy Tùng,1,Nguyễn Hữu Điển,3,Nguyễn Mình Hà,1,Nguyễn Minh Tuấn,8,Nguyễn Phan Tài Vương,1,Nguyễn Phú Khánh,1,Nguyễn Phúc Tăng,1,Nguyễn Quản Bá Hồng,1,Nguyễn Quang Sơn,1,Nguyễn Tài Chung,5,Nguyễn Tăng Vũ,1,Nguyễn Tất Thu,1,Nguyễn Thúc Vũ Hoàng,1,Nguyễn Trung Tuấn,8,Nguyễn Tuấn Anh,2,Nguyễn Văn Huyện,3,Nguyễn Văn Mậu,25,Nguyễn Văn Nho,1,Nguyễn Văn Quý,2,Nguyễn Văn Thông,1,Nguyễn Việt Anh,1,Nguyễn Vũ Lương,2,Nhật Bản,4,Nhóm $\LaTeX$,4,Nhóm Toán,1,Ninh Bình,43,Ninh Thuận,15,Nội Suy Lagrange,2,Nội Suy Newton,1,Nordic,19,Olympiad Corner,1,Olympiad Preliminary,2,Olympic 10,99,Olympic 10/3,5,Olympic 11,92,Olympic 12,30,Olympic 24/3,7,Olympic 27/4,20,Olympic 30/4,69,Olympic KHTN,6,Olympic Sinh Viên,73,Olympic Tháng 4,12,Olympic Toán,304,Olympic Toán Sơ Cấp,3,PAMO,1,Phạm Đình Đồng,1,Phạm Đức Tài,1,Phạm Huy Hoàng,1,Pham Kim Hung,3,Phạm Quốc Sang,2,Phan Huy Khải,1,Phan Thành Nam,1,Pháp,2,Philippines,8,Phú Thọ,30,Phú Yên,29,Phùng Hồ Hải,1,Phương Trình Hàm,11,Phương Trình Pythagoras,1,Pi,1,Polish,32,Problems,1,PT-HPT,14,PTNK,45,Putnam,25,Quảng Bình,44,Quảng Nam,32,Quảng Ngãi,34,Quảng Ninh,43,Quảng Trị,27,Quỹ Tích,1,Riemann,1,RMM,12,RMO,24,Romania,36,Romanian Mathematical,1,Russia,1,Sách Thường Thức Toán,7,Sách Toán,69,Sách Toán Cao Học,1,Sách Toán THCS,7,Saudi Arabia,7,Scholze,1,Serbia,17,Sharygin,24,Shortlists,56,Simon Singh,1,Singapore,1,Số Học - Tổ Hợp,27,Sóc Trăng,28,Sơn La,12,Spain,8,Star Education,5,Stars of Mathematics,11,Swinnerton-Dyer,1,Talent Search,1,Tăng Hải Tuân,2,Tạp Chí,14,Tập San,6,Tây Ban Nha,1,Tây Ninh,29,Thạch Hà,1,Thái Bình,39,Thái Nguyên,49,Thái Vân,2,Thanh Hóa,62,THCS,2,Thổ Nhĩ Kỳ,5,Thomas J. Mildorf,1,THPT Chuyên Lê Quý Đôn,1,THPTQG,15,THTT,7,Thừa Thiên Huế,36,Tiền Giang,19,Tin Tức Toán Học,1,Titu Andreescu,2,Toán 12,7,Toán Cao Cấp,3,Toán Chuyên,2,Toán Rời Rạc,5,Toán Tuổi Thơ,3,Tôn Ngọc Minh Quân,2,TOT,1,TPHCM,126,Trà Vinh,6,Trắc Nghiệm,1,Trắc Nghiệm Toán,2,Trại Hè,34,Trại Hè Hùng Vương,25,Trại Hè Phương Nam,5,Trần Đăng Phúc,1,Trần Minh Hiền,2,Trần Nam Dũng,9,Trần Phương,1,Trần Quang Hùng,1,Trần Quốc Anh,2,Trần Quốc Luật,1,Trần Quốc Nghĩa,1,Trần Tiến Tự,1,Trịnh Đào Chiến,2,Trung Quốc,14,Trường Đông,19,Trường Hè,7,Trường Thu,1,Trường Xuân,2,TST,56,Tuyên Quang,6,Tuyển Sinh,3,Tuyển Sinh 10,680,Tuyển Tập,44,Tuymaada,4,Undergraduate,67,USA,44,USAJMO,10,USATST,7,Uzbekistan,1,Vasile Cîrtoaje,4,Vật Lý,1,Viện Toán Học,2,Vietnam,4,Viktor Prasolov,1,VIMF,1,Vinh,27,Vĩnh Long,21,Vĩnh Phúc,64,Virginia Tech,1,VLTT,1,VMEO,4,VMF,12,VMO,47,VNTST,22,Võ Anh Khoa,1,Võ Quốc Bá Cẩn,26,Võ Thành Văn,1,Vojtěch Jarník,6,Vũ Hữu Bình,7,Vương Trung Dũng,1,WFNMC Journal,1,Wiles,1,Yên Bái,20,Yên Định,1,Yên Thành,1,Zhautykov,11,Zhou Yuan Zhe,1,
MOlympiad: [Shortlists] International Mathematical Olympiad 2009
[Shortlists] International Mathematical Olympiad 2009
Loaded All Posts Not found any posts VIEW ALL Readmore Reply Cancel reply Delete By Home PAGES POSTS View All RECOMMENDED FOR YOU LABEL ARCHIVE SEARCH ALL POSTS Not found any post match with your request Back Home Sunday Monday Tuesday Wednesday Thursday Friday Saturday Sun Mon Tue Wed Thu Fri Sat January February March April May June July August September October November December Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec just now 1 minute ago $$1$$ minutes ago 1 hour ago $$1$$ hours ago Yesterday $$1$$ days ago $$1$$ weeks ago more than 5 weeks ago Followers Follow THIS PREMIUM CONTENT IS LOCKED Please share to unlock Copy All Code Select All Code All codes were copied to your clipboard Can not copy the codes / texts, please press [CTRL]+[C] (or CMD+C with Mac) to copy