$hide=mobile$type=ticker$c=12$cols=3$l=0$sr=random$b=0

Mathematics and Youth Magazine Problems 2021

This article has
views, Facebook comments and 0 Blogger comments. Leave a comment.

Issue 523

  1. Find all prime numbers $p$, $q$ and positive integers $n$ so that $$p(p+1)+q(q+1)=n(n+1).$$
  2. Find all prime numbers $a, b, c, d$ satisfying $$\begin{cases}a+b^{2} &=c d \\ c+d^{2} &=17 b \end{cases}.$$
  3. Find all solutions which are prime numbers of the following equation $$x^{y}+y^{x}+(x+y+1)^{3}=x^{3}+y^{3}+z+1.$$
  4. Let $M$ be a point inside a square $A B C D$. The rays $A M$, $B M$, $C M$, $D M$ respectively intersect the circle circumscribing the square at $E$, $F$, $G$, $H$. The tangents of the circle at $F$ and $H$ meet at $K$ Show that three points $K$, $G$, $E$ are collinear.
  5. Given positive numbers $a, b, c$ satisfying $a+b+c=3$. Show that $$\frac{a^{3}+b^{2}+c^{2}}{a^{2}+1}+\frac{b^{3}+c^{2}+a^{2}}{b^{2}+1}+\frac{c^{3}+a^{2}+b^{2}}{c^{2}+1} \geq \frac{9}{2}.$$
  6. Solve the system of equations $$\begin{cases} x^{z}+y^{z}-2 &=z^{3}-z \\ y^{x}+z^{x}-2 &=x^{3}-x \\ z^{y}+x^{y}-2 &=y^{3}-y\end{cases}$$ where $x, y, z$ are integers.
  7. Find real solutions of the equation $$x 2^{x^{2}}=2^{2 x+1}.$$
  8. Given a triangle $A B C$ inscribed in a circle $(O)$. Let $M$ be a point on the arc $B C$ which does not contain $A$ ($M$ is different from $B$ and $C$). Draw $B E$ perpendicular to $A M$ ($E$ is on $A M$). Let $N$ be the intersection hetween $A M$ and $B C$, and $H$ the orthocenter of the triangle $C M N$. Show that the line $H E$ always passes through a fixed point when $M$ varies.
  9. Given $n$ positive numbers $x_{1}, x_{2}, \ldots, x_{n}$. Find the minimum value of the expression $$S=\frac{\left(x_{1}+x_{2}+\ldots+x_{n}\right)^{1+2+\ldots+n}}{x_{1} x_{2}^{2} \ldots x_{n}^{n}}.$$
  10. Find all functions $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$ satisfying $$f(x f(y))+f\left(y^{2021} f(x)\right)=x y+x y^{2021},\, \forall x, y \in \mathbb{R}^{+}.$$
  11. Consider the sequence $\left\{a_{n}\right\}$ with $$a_{1}=1,\, a_{2}=\frac{1}{2},\quad n a_{n}=(n-1) a_{n-1}+(n-2) a_{n-2} .$$ Find $\displaystyle\lim_{n\to\infty} \frac{a_{n}}{a_{n-1}}$.
  12. Given a triangle $A B C$ and a point $M$ on the line passes through $B$, $C$ ($M$ is different from $B$, $C$). Let $K$, $L$ respectively be the second intersections between the circumcircles of the triangles $A M B$, $A M C$ and another line which passes through $M$ and different from $M A$ and $B C$. Let $P$, $Q$ respectively be the perpendicular projections of $A$ on $B K$, $C L$. $B K$ and $C L$ meet at $R$, $P O$ and $M K$ meet at $N$. Show that
    a) $\dfrac{N P}{N Q}=\dfrac{M B}{M C}$.
    b) If $M$ is the midpoint of $B C$ then $A K R L$ is a harmonic quadrilateral (a harmonic quadrilateral is a cyclic quadrilateral in which the products of the lengths of opposite sides are equal).

Issue 524

  1. Find all prime numbers $x, y$ satisfying $x^{2}-2 y^{2}-1=0$.
  2. Given a triangle $A B C$ $(A B < B C)$, the bisector of the angles $B A C$, $A B C$ intersect at $I$. Draw $ID$ perpendicular to $A B$ at $D$, $I E$ perpendicular to $A C$ at $E$. Let $M$, $N$ respectively be the midpoints of $B C$, $A C$. Denote $K$ the intersection between $D E$ and $M N$. Show that the points $B$, $I$, $K$ are collinear.
  3. Find all pairs of integers $(x ; y)$ satisfying $$2025^{x}=y^{3}+3 y^{2}+2 y+6.$$
  4. Given a triangle $A B C$ with the altitude $A H$. The incircle $I$ of the triangle is tangent to $B C$, $C A$, $A B$ respectively at $D$, $E$, $F$. Let $G$ be the intersection between $E F$ and $B I$, and $P$ the intersection between $A I$ and $F D$. Show that $G D$ is perpendicular to $H P$.
  5. Suppose that $a, b, c, d$ are positive integers which satisfy $a b=cd$ and $c>a$, $d>a$. Show that $$\sqrt{b}-\sqrt{a} \geq 1.$$
  6. Solve the system of equations $$\begin{cases} x^{3}+y^{3}+3 y &=x^{2}+2 y^{2}+x+8 \\ y^{3}+z^{3}+3 z &=y^{2}+2 z^{2}+y+8 \\ z^{3}+x^{3}+3 x &=z^{2}+2 x^{2}+z+8 \end{cases}$$
  7. Given real numbers $a, b, c>\dfrac{1}{2}$. Show that $$\frac{1}{2 a-1}+\frac{1}{2 b-1}+\frac{1}{2 c-1}+\frac{4 a b}{1+a b}+\frac{4 b c}{1+b c}+\frac{4 c a}{1+c a} \geq 9.$$
  8. Given a triangle $A B C$. Show that $$\cos ^{2} \frac{A}{2}+\cos ^{2} \frac{B}{2}+\cos ^{2} \frac{C}{2} \geq 18 \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}.$$
  9. Given positive numbers $x, y$ with $x<y$. Prove the following inequalities $$\sqrt{x^{2}-2 \sqrt{2} x+4} \cdot \sqrt{y^{2}-2 \sqrt{2} y+4} + \sqrt{x^{2}+2 \sqrt{2} x+4} \cdot \sqrt{y^{2}+2 \sqrt{2} y+4} \geq 4(x+y).$$
  10. Show that $$\left(\frac{3+\sqrt{5}}{2}\right)^{3^{n}}+\left(\frac{3-\sqrt{5}}{2}\right)^{3^{n}}$$ is an integer which is greater or equal to $3^{n+1}$ and is divisible by 3 for every $n \in \mathbb{N}$.
  11. Given positive numbers $\alpha$ and $\beta$. Consider the following sequences $\left(x_{n}\right)$, $\left(y_{n}\right)$ $$x_{1}=\alpha,\, y_{1}=\beta,\quad x_{n+1}=\frac{5 x_{n} y_{n}}{2 y_{n}+3 x_{n}},\, y_{n+1}=\frac{5 x_{n+1} y_{n}}{2 y_{n}+3 x_{n+1}},\, \forall n=1,2, \ldots$$ Find $\lim _{n \rightarrow \infty} x_{n}$ and $\lim _{n \rightarrow \infty} y_{n}$.
  12. Given an acute triangle $A B C$ inscribed in a circle $(O)$ and suppose that $A D$ is the altitude. The tangent lines of $(O)$ at $B$ $C$ intersect at $T .$ On the line segment $A D$, choose $K$ so that $\widehat{B K C}=90^{\circ}$. Let $G$ be the centroid of $A B C . K G$ intersects $O T$ at $L .$ The points $P$, $Q$ are on the line segments $B C$ so that $L P || O B$, $L Q || O C$. The points $E$, $F$ respectively on the line segments $C A$, $A B$ so that $Q E$, $P F$ are both perpendicular to $B C$. Let $(T)$ be the circle with center $T$ which passes through $B$, $C$. Show that the circumcircle of $A E F$ is tangent to $(T)$.

Issue 525

  1. Find prime numbers $a, b, c, d$ so that $a>3 b>6 c>12 d$ and $$a^{2}-b^{2}+c^{2}-d^{2}=1749.$$
  2. Given an isosceles triangle $A B C$ with the vertex angle $A$ $(\hat{A}=20^{\circ})$. Let $D$, $E$ be the points on $A C$ so that $D$ is in between $A$ and $E$, and $A D=C E=B C$. Find the measurement of the angle $\widehat{D B E}$.
  3. Given a polynomial $f(x)=x^{2}+a x+b$ where $a$, $b$ are integers. Prove that there always exist integers $m$ so that $f(m)=f(2021) \cdot f(2022)$.
  4. Let $M$ be a point lying inside the triangle $A B C$ so that $\widehat{M B A}=\widehat{M C A}$. Draw the parallelogram $B M C D$. Show that the angle bisector of $\widehat{B A C}$ and the angle bisector of $\widehat{M C D}$ are perpendicular to each other.
  5. Solve the system of equations $$\begin{cases} x y z+x+y+z &=x y+y z+z x+2 \\ \dfrac{1}{x^{2}-x+1}+\dfrac{1}{y^{2}-y+1}+\dfrac{1}{z^{2}-z+1} &=1\end{cases}$$
  6. Given numbers $x, y, z$ which are greater than 1 and satisfy $x+y+z+2=x y z$. Prove that $$\sqrt{x^{2}-1}+\sqrt{y^{2}-1}+\sqrt{z^{2}-1} \geq 3 \sqrt{3}.$$ When does the equality happen?
  7. Find all triangles $A B C$ whose lengths of the sides are positive integers and the length of $A C$ is equal to the length of the internal angle bisector of the angle $A$.
  8. Two circles $(O)$ and $\left(O^{\prime}\right)$ intersect at two points $A$ and $B$. Through a point $C$ lying on the opposite ray of the ray $B A$ draw the tangents $C D$ and $C E$ with $(O)$. The line segment $D E$ intersects $\left(O^{\prime}\right)$ at $F$. The tangent of $\left(O^{\prime}\right)$ at $F$ intersects $C D$ and $C E$ respectively at $M$ and $N$. Show that $A B M N$ is a cyclic quadrilateral.
  9. Show that, for every positive integer $n$, we have $$\frac{1}{1} C_{8 n-1}^{1}-\frac{1}{2} C_{8 n-1}^{3}+\frac{1}{3} C_{8 n-1}^{\delta}-\ldots-\frac{1}{2 n-1} C_{8 n-1}^{4 n-5}+\frac{1}{2 n-1} C_{8 n-1}^{4 n-3} \leq \frac{(8 n-1) !}{((4 n) !)^{2}}-\frac{7}{4}.$$
  10. The sequence $\left(a_{n}\right)$ is determined as follows $$a_{1}=1,\, a_{2}=3,\quad \log _{2} a_{n+2}=\log _{3}\left(a_{n}+1\right),\, \forall n=1,2, \ldots.$$ Show that the sequence $\left(a_{n}\right)$ converges and find its limit.
  11. Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ so that $$f\left(x+y^{4}\right)=f(x)+y f\left(y^{3}\right),\, \forall x, y \in \mathbb{R}$$
  12. Given a quadrilateral $A B C D$ and a point $E$ is on $A B$. A point $F$ varies on $C D$. The points $M$ and $N$ respectively are the perpendicular projections of $C$ and $D$ on $E F$. Assume that $P$ is the intersection between the line passing through $M$ and perpendicular to $A D$ and the line passing through $N$ and perpendicular to $B C$. Show that the incenter of the triangle $M N P$ belongs to a fixed circle.

Issue 526

  1. Given positive integers $m, n$ which are coprime and satisfy $m+n \neq 90$. Find the maximal value of the product $mn$.
  2. Find all positive integers $n$ so that $n^{2021}+n+1$ is a prime.
  3. Solve the equation $$x^{4}-6 x-1=2(x+4) \sqrt{2 x^{3}+8 x^{2}+6 x+1}.$$
  4. Given acute triangle $A B C$ with $A B+A C=2 B C$ which is inscribed in the circle $(O)$ and is circumscribed the circle $(I)$. Let $M$ be the midpoint of the major arc $B C$. The line $M I$ intersects the circumcircle of $B I C$ at $N$. The line $OI$ intersects $B C$ at $P$. Show that the line $P N$ is tangent to the circumcircle of $B I C$.
  5. Find all pairs of integers $(a ; b)$ so that the following system of equations $$\begin{cases}x^{2}+2 a x-3 a-1 &=0 \\ y^{2}-2 b y+x &=0\end{cases}$$ has exactly $3$ different real roots $(x ; y)$.
  6. Given positive numbers $a, b, c$. Show that $$\dfrac{(a-b)^{2}}{(b+c)(c+a)}+\dfrac{(b-c)^{2}}{(c+a)(a+b)}+\dfrac{(c-a)^{2}}{(a+b)(b+c)} \geq \frac{3\left(a^{2}+b^{2}+c^{2}\right)}{(a+b+c)^{2}}-1.$$
  7. Given a triangle $A B C$ with the lengths of the altitudes $h_{a}$, $h_{b}$, $h_{c}$ and its half perimeter $p$ satisfying $h_{a}^{2}+h_{b}^{2}+h_{c}^{2}=p^{2}$. Show that the triangle $A B C$ is equilateral.
  8. Given a tetrahedron $S.ABC$ whose base is a right triangle with the right angle $A$ and $A C > A B$. Let $A M$ be the median and $I$ the incenter of the base. Suppose that $I M$ is perpendicular to $B I$. Compute the value of the expression $$T = \frac{V_{S . AI B}}{V_{S . A I C}}+\frac{V_{S . A I C}}{V_{S . B I C}}+\frac{V_{S . B I C}}{V_{S . A B}}.$$
  9. Suppose that $a, b, c$ are the lengths of three sides of a triangle and $n \in \mathbb{N}^{*}$. Prove that $$\frac{a^{n}}{(b+c)^{n}-a^{n}}+\frac{b^{n}}{(c+a)^{n}-b^{n}}+\frac{c^{n}}{(a+b)^{n}-c^{n}} \geq \frac{3}{2^{n}-1}.$$
  10. For each positive integer $n$, let $S_{n}=\sum_{k=1}^{n}\left[\sqrt{k^{2}+4 \sqrt{k^{2}+2 k+2}}\right]$, where $[x]$ is the greatest integer which does not exceed $x .$ Find all the positive integers $n$ so that $S_{n}$ is a power of a prime.
  11. Find all functions $f: \mathbb{Z} \rightarrow \mathbb{Z}$ satisfying $$f(x+f(y))=f(x),\, \forall x, y \in \mathbb{Z}.$$
  12. Given an acute triangle $A B C$ and $(O ; R)$ is its circumcircle. The altitude $A D=\sqrt{2} R$. Let $M, N$ respectively be the intersections between $A B$, $A C$ and the circle with the diameter $A D$. Let $P$ be the second intersection between $(O ; R)$ the circle with the diameter $A D$ and $Q$ the reflection point of $P$ in $M N$. Show that
    a) $2 S_{A M N}=S_{A B C}$.
    b) $\widehat{B Q N}=\widehat{C Q M}=\dfrac{\pi}{2}$.

Issue 527

  1. Find natural numbers $a$ and $b$ given that the sum of four numbers $a+b$, $a-b$, $ab$, $a: b$ is equal to $1575$.
  2. Given triangle $A B C$ with $\widehat{A}=120^{\circ}$, $\widehat{B}=40^{\circ}$. On the side $A C$ choose the point $M$ such that $A B=A M$. On the opposite ray of $A B$ choose the point $N$ such that $\widehat{A M N}=40^{\circ}$. Find the measurement of the angle $\widehat{B N C}$.
  3. Find all pairs of integers $(x ; y)$ satisfying $0 \leq x+y \leq 6$ and $$x-\frac{1}{x^{3}}=y-\frac{1}{y^{3}}.$$
  4. Given an acute triangle $A B C$ inscribed in a circle $(O ; R)$. The altitudes $A D$, $B E$, $C F$ meet at $H$. Let $M$ be the midpoint of $A H$. Draw $M N$ perpendicular to $B M$, $N$ is on $A C$. Show that $O N || B C$ and $E M=R \cos A$.
  5. Solve the equation $$x^{2} \sqrt[4]{2-x^{4}}-x^{4}+x^{3}-1=0.$$
  6. Given real numbers $x, y, z$ such that $x^{2}+y^{2}+z^{2}=3$. Prove that $$8(2-x)(2-y)(2-z) \geq(x+y z)(y+x z)(z+x y)$$
  7. Find all triangles $A B C$ such that the lengths of all sides are positive integers and the length of $A C$ is equal to the length of the interior angle bisector of the angle $A$.
  8. Given an acute triangle $A B C$ inscribed in a circle $(O)$. Let $I_{a}$, $I_{b}$, $I_{c}$  respectively be the centers of the excircles of the angles $A$, $B$, $C$. The line $A I_{a}$ intersects $(O)$ at $D$ which is different from $A$. On $I_{b} D$, $I_{c} D$ respectively choose the points $E$, $F$ such that $\widehat{A B C}=2 \widehat{I_{a} B E}$, $\widehat{A C B}=2 \widehat{I_{a} C F}$, $E$, $F$ are inside the trangle $I_{a} B C$. Show that $E F$ intersects $I_{b} I_{c}$ at some point on $(O)$.
  9. Given a function $$f(x)=\frac{x^{2}+a x+b}{x^{2}+1}$$ with $a, b$ are integers. Suppose the range of $f(x)$ is the set of $11$ integers. Find the maximum and minimum values of the expression $M=a^{2}+b^{2}$.
  10. For each positive integer $n$, let $f(n)=\left(n^{2}+n+1\right)^{2}+1$. Find the smallest positive integer $k$ such that$$f(n) \cdot f(n+1) \ldots f(n+k-1)$$ is a perfect square for some positive integer $n$.
  11. Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying $$f(f(x)+y)=f(f(x))-y f(x)+f(-y)-2,\, \forall x, y \in \mathbb{R}.$$
  12. Given an isosceles triangle $A B C$ with the vertex angle $A$ inscribed in a circle $(O)$. Suppose that $A D$ is a diameter of $(O)$. The points $E$, $F$ respectively on $D C$, $D B$. Let $G$ be on $E F$ such that $\dfrac{G F}{G E}=\dfrac{F B}{C E}$. Show that $C G$ and $A F$ meets each other at some point on $(O)$.

Issue 528

  1. Assume that $A$ is a natural number which has two prime factors $p$ and $q$ only. Let $S$ be the sum of all positive factors of $A$. Show that $S < 2 A$.
  2. Denote $a_{n}$ the integer which is closest to $\sqrt{n}$ $(n \in \mathbb{N}^{*})$, for example $$\sqrt{1}=1=a_{1} ; \quad \sqrt{2} \approx 1,4 \Rightarrow a_{2}=1 ; \quad \sqrt{3} \approx 1,7 \Rightarrow a_{3}=2 ; \ldots.$$ Compute $$\frac{1}{a_{1}}+\frac{1}{a_{2}}+\ldots+\frac{1}{2020}+\frac{1}{2021}.$$
  3. Find all $4$-tuples of positive integers $(x ; y, z, t)$ satisfying $$\begin{cases}x+y+z+t=54 \\ \dfrac{x z}{(x+y)(z+t)} =\dfrac{23}{104} \\ x>z, x+y>z+t \end{cases}.$$
  4. Given an acute triangle $A B C$ ($CA < CB$) with the orthocenter $H$. Let $D$ be the second intersection between $B C$ and the circumcircle of $A B H$. Denote $P$ the intersection between $D H$ and $A C$. Let $M$ be the second intersection between $A H$ and the circumcircle of $A P D$; and $N$ the second intersection between the circumcircle of $A B C$ and the circumcircle of $A P D$. Show that three points $C, M$, and $N$ are collinear.
  5. Given positive numbers $a, b, c$ satisfying $4 b^{2}+c^{2}=a c$. Find the minimum value of the expression $$P=\frac{2 a}{a+2 b}+\frac{b}{b+c}+\frac{c}{c+a} .$$
  6. Solve the equation $$\sin 3 x-\cos 3 x+\sin x+\cos x=\frac{1}{\sin 3 x+\cos x}-\frac{1}{\cos 3 x-\sin x} .$$
  7. Given positive numbers $a, b, c$ satisfying $a^{2}+b^{2}+c^{2} \geq 2(a b+b c+c a)$. Find the minimum value of the expression $$P=a+b+c+\frac{8}{a b c} .$$
  8. Given two circles $(O ; R)$ and $\left(O^{\prime} ; R^{\prime}\right)\left(R>R^{\prime}\right)$ which is internally tangent to each other at $A$. Let $M$ be a point on $\left(O^{\prime} ; R^{\prime}\right)(M \neq A) .$ The tangent of $\left(O^{\prime} ; R^{\prime}\right)$ at $M$ intersects $(O ; R)$ at $P$ and $Q .$ The circumcircle of $O^{\prime} P Q$ intersects $\left(O^{\prime} ; R^{\prime}\right)$ at $B$ and $C$. Show that $A B M C$ is a harmonic quadrilateral, i.e. a cyclic quadrilateral of which the products of opposite sides are equal.
  9. Given a triangle $A B C$ and $x, y, z$ positive numbers. Show that $$\frac{x}{y+z}(1+\cos A)+\frac{y}{z+x}(1+\cos B)+\frac{z}{x+y}(1+\cos C) \geq \frac{\sqrt{3}}{2}(\sin A+\sin B+\sin C) .$$
  10. Two boxes contain $25$ small white and black balls. From each box, pick randomly $1$ ball. Find the probability that we get $2$ balls with different colors assuming that the box with more balls has more black balls and the probability to get two black balls is $0,42$.
  11. Find all functions $f: \mathbb{R} \rightarrow(0+\infty)$ satisfying $$\frac{1}{2015} \leq\left(\frac{f(x)}{f(r)}\right)^{\frac{1}{(x-r)^{2}}} \leq 2015, \forall x \in \mathbb{R}, \forall r \in \mathbb{Q}, x \neq r$$
  12. Outside a triangle $A B C$, draw pairwise similar triangles $B C P$, $A C Q$, $A B R$, and $B A S$. Let $K$, $L$ respectively be the midpoints of $B C$ and $C A .$ Prove that two triangles $R P K$ and $S Q L$ have the same area.

Issue 529

  1. Given $$A=\frac{1.2022+2.2021+3.2020+\ldots+20221}{2^{2}+6^{\prime}+12^{4}+\ldots+(k \cdot(k+1))^{1.2}+\ldots+4090506^{2033}}.$$ Compare $A$ and $\dfrac{1}{2}$.
  2. Given an isosceles triangle $A B C$ with the vertex angle $A$. Choose $2$ different points $M$, $N$ inside the triangle so that $A M=C N$, $B M=A N$. The lines $B M$ and $A N$ intersect at $E$, the lines $C N$ and $A M$ intersect at $F$. Show that $A E=A F$.
  3. Given real numbers $x, y, z$ satisfying $x \geq 1$, $y \geq 2$, $z \geq 3$. Prove that $$x^{2}+y^{2}+z^{2}+x y+y z+z x+25 \geq 7 x+8 y+9 z.$$
  4. Given a right triangle $A B C$ with the right angle $A$ and the altitude $A H$. On the ray $H C$ we choose $D$ so that $H D=H A$. On the ray $A B$ we choose $E$ so that $A E=A C$. Prove that the distance from $E$ to $B C$ is equal to the length $D C$.
  5. Solve the equation $$8 x^{4}+32 x^{3}+32 x^{2}-x-3=0.$$
  6. Given a triangle $A B C$. Let $B C=a$, $C A=b$, $A B=c$. Show that $$3\left(a^{3}+b^{3}+c^{3}\right)+4 a b c \geq \frac{13}{27}(a+b+c)^{3}.$$
  7. Given the numbers $x, y \in(0 ; 1)$. Find the minimum value of the expression $$P=\sqrt{x}+\sqrt{y}+\sqrt[4]{12} \sqrt{x \sqrt{1-y^{2}}+y \sqrt{1-x^{2}}} .$$
  8. Given an equilateral triangle $A B C$ with the length of a side $a$ inscribed in the circle $(O)$. A point $M$ lies on the circle $(O)$. Find the minimum value of the expression $$P=\frac{1}{16} M A^{8}+M B^{8}+M C^{8} .$$
  9. Given a triangle $A B C$. Assume that the measurements of the angles $A$, $B$, $C$ form a geometric sequence with the common ratio $q=2$. Let $R$, $m_{o}$, $m_{b}$, $m_{c}$ respectively be the circumradius, and the lengths of the medians $m_{a}$, $m_{b}$, $m_{c}$ of the triangle. Suppose that $x_{0}$ is a root of the equation $$x^{3}+m_{a} x^{2}+m_{b} x+m_{c}=0.$$ Show that $x_{0}^{2}<\dfrac{21 R^{2}+4}{4}$.
  10. Find the positive integral solutions of the equation $$x^{2}+y^{2}=19^{5^{4}}(6-z).$$
  11. Given a function $f: \mathbb{R} \rightarrow S$ where $S$ is a bounded set. Suppose furthermore that $f^{2}(0)+f(0)=0$ and $$\left|f\left(x+y^{2}+z^{3}\right)-f(x)-f^{2}(y)-f^{3}(z)\right| \leq \frac{1}{2},\,\forall x, y, z \in \mathbb{R}.$$ Show that $$|f(x)-f(-x)| \leq 2,\,\forall x \in \mathbb{R}.$$
  12. Given a triangle $A B C$ inscribed in a circle $(O)$. The points $X, Y$ belong to $(O)$ so that $A X || B C$, $B Y || A C$. Let $Z$, $T$ respectively be the intersections between $X Y$ and $A C$, $B C$. Let $O_{1}$, $O_{2}$, $O_{3}$, $O_{4}$ respectively be the circumcenters of the triangles $A X Z$, $B Y T$, $CYT$, $CXZ$. Show that $O_{1} O_{2} O_{3} O_{4}$ is a parallelogram.

Issue 530

  1. Find integers $x, y, z$ satisfying $$35(x y z+x+z)=52(x y+1).$$
  2. We mark $n$ different real numbers on a circle $(n \geq 3)$ such that each number is the product of its two adjacent numbers. If the first two numbers are $a$ and $b$, then determine $n$ and all other numbers.
  3. Given positive integers $a, b, c$ satisfying $a<b<c$ and $$\frac{1}{[a ; b]}+\frac{1}{[b ; c]}=\frac{1}{2020}.$$ Find the maximum value of $a$.
  4. Given an acute triangle $A B C$ inscribed in a circle $(O)$. Let $H$ be the orthocenter of $A B C$. The perpendicular bisector of $A H$ respectively intersects the sides $A B, A C$ at $P$ and $Q$. On the opposite ray of the ray $A O$ choose a point $D$ ($D$ is different from $A$). The rays $D B$, $D C$ respectively intersect $(O)$ at $E$ and $F$ other than $B$ and $C$. Through $D$ draw perpendicular line to $D O$, this line intersects $B F$, $C E$, $O P$, $O Q$ respectively at $M$, $N$, $S$, $T$. Prove that $M T=N S$.
  5. Find all pairs of integers $(x ; y)$ satisfying $$x^{2}-2 x y+2 \sqrt{2 x y-y^{2}}=1.$$
  6. Consider all numbers $a, b, c$ satisfying $a \geq 0$, $b \geq 0$, $c \geq 1$ and $a+b+c=2$. Find the maximum value of the expression $$P=(a b+b c+c a)\left(a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}+1\right) .$$
  7. For an arbitrary triangle $A B C$, show that $$\left|m_{a}-m_{b}\right|+\left|m_{b}-m_{c}\right|+\left|m_{c}-m_{a}\right| \geq \sqrt{a^{2}+b^{2}+c^{2}-a b-b c-c a}$$ where $a, b, c, m_{a}, m_{b}, m_{c}$ respectively are the lengths of the sides $B C$, $C A$, $A B$ and the medians from the vertices $A$, $B$, $C$.
  8. Given an acute triangle $A B C$ $(A B<A C)$ inscribed in a circle $O$. Let $B E$, $C F$ be two altitudes of the triangle. The line $E F$ intersects the line $B C$ at $S$, $O A$ intersects $E F$ at $K$. Let $N$ be the midpoint of $F C$. Show that $\widehat{S A C}=\widehat{N K F}$.
  9. Consider all pairs of real numbers $a, b$ such that $\sin a+\sqrt{3} \cos b=2$. Find the minimum value of the expression $$P=\sin b+\sqrt{3} \cos a.$$
  10. Suppose that $x, y, z$ are positive numbers and $p$ is a prime number satisfying $0<x<y<z<p$. Given that $x^{3}$, $y^{3}$, $z^{3}$ have the same remainder when dividing by $p$. Show that $x^{2}+y^{2}+z^{2}$ is divisible by $x+y+z$
  11. Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $$(x-y) f(x+y)-(x+y) f(x-y)=4 x y\left(x^{2}-y^{2}\right)$$ for all real numbers $x, y$.
  12. Given the square $A B C D$. On the side $A B$ choose an arbitrary point $K$. The angle bisectors of the angles $\widehat{A D K}$ and $\widehat{B C K}$ intersect $A B$ respectively at $E$ and $F .$ On $A C$, choose the point $M$ such that $M F$ is parallel to $B D$. From $M$ draw the line parallel to $A B$ and it intersects $D E$ at $N$. Show that $$A E^{2}+B F^{2}=2 M N^{2} .$$

Issue 531

  1. For an arbitrary natural number $m$, show that $$3 \mid \left(2^{m+1}+1\right) \cdot\left(2^{m}+1\right).$$
  2. Find all positive integer $n$ so that all the digits of the number $6^{n}+1$, written in the decimal system, are equal.
  3. Given positive numbers $a$ and $b$ satisfying $[a]=[b]$, $a<b$. Show that $$\frac{1+b^{2}}{1+a^{2}}<2,5.$$ (The notation $[x]$ denotes the integral part of the number $x$.)
  4. Given a square $A B C D$. A right angle $x A y$ rotates about $A$. The ray $A x$ intersects $B C$ and $C D$ respectively at $M$ and $N$. The ray $A y$ intersects $B C$ and $C D$ respectively at $P$ and $Q$. The line $Q M$ meets $N P$ at $R$. Let $I$ and $K$ respectively be the midpoints of $P N$ and $Q M$. Prove that $I$, $B$, $K$, $D$ are collinear.
  5. Given positive numbers $a$, $b$, $c$, $d$. Prove that $$a^{4} b+b^{4} c+c^{4} a+a b c\left(a^{3}+b^{3}+c^{3}\right) \geq (a+b+c)(3 a b c-1).$$
  6. Given positive numbers $a$, $b$, $c$. Show that at least one of the following equations does not have solution $$\begin{align}\sqrt{a+b} x^{2}-2 \sqrt{a} x+\sqrt{c} &=0 \\ \sqrt{b+c} x^{2}-2 \sqrt{b} x+\sqrt{a} &=0 \\ \sqrt{c+a} x^{2}-2 \sqrt{c} x+\sqrt{b} &=0 \end{align}$$
  7. Given a triangle $A B C$ with $A B=c$, $B C=a$, $C A=b$. Let $G$ be the centroid of the triangle. Prove that \[ \frac{G A^{2}}{b c}+\frac{G B^{2}}{c a}+\frac{G C^{2}}{a b} \geq 1 \text {. } \]
  8. Given a triangle $A B C$ $(AB <A C)$ inscribed in a circle $(O)$. The angle bisector of $A$ intersects $(O)$ at $D$, intersect $B C$ at $E$. Let $M$ be the midpoint of $B C$, and $H$ the perpendicular prejection of $M$ on $A D$. Prove that $$\sqrt{A D \cdot E H}=\frac{A C-A B}{2}.$$
  9. Solve the equation $$2021^{x}=1+2019 x+\log _{2021}(1+2020 x) .$$
  10. Find all pair of co-prime positive integers $(m, n)$ so that $\left(2^{m}-1\right)\left(2^{n}-1\right)$ is a perfect square.
  11. Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying $$f(x f(y))+y+f(x)=f(f(x+y))+y f(x)$$ for all arbitrary real numbers $x, y$.
  12. Given a convex quadrilateral $A B C D$. Let $\left(I_{1}\right)$, $\left(I_{2}\right)$ respectively be the incircles of $A D C$, $B D C$. Assume that $T_{1} T_{2}$ is the other external tangent of $\left(I_{1}\right),\left(I_{2}\right)$ (where $T$, belongs to $\left(I_{1}\right)$ and $T_{2}$ belongs to $\left.\left(I_{2}\right)\right)$. Show that $A T_{1}, B T_{2}$, $I_{1} I_{2}$ are concurrent.

Issue 532

  1. Find integral solutions of the equation $$x^{2}+(x+1)^{2}=y^{4}+(y+1)^{4}.$$
  2. Given a triangle $A B C$ with $\widehat{A}=120^{\circ}$, $\widehat{B}=40^{\circ}$. On the side $A C$ choose $M$ so that $A B=A M$. On the opposite ray of the ray $A B$ choose $N$ so that $\widehat{A M N}=40^{\circ}$. Find the size of the angle $\widehat{B N C}$.
  3. Find integral part of the expression $$A=(\sqrt{n}+\sqrt{n+1}+\sqrt{n+2})^{2}$$ where $n$ is an positive integer.
  4. Given a quadrilateral $A B C D$ inscribed in a semicircle $(O)$ with the diameter $A D$. Let $I$ be the intersection between $A C$ and $B D$. The external angle bisector of the angle $I$ of BIC intersects $A B$, $C D$ respectively at $E$ and $F$. Show that the line perpendicular to $A B$ at $E$, the line perpendicular to $C D$ at $F$, and the line $O I$ are concurrent.
  5. Solve the system of equations \[\begin{cases}x^{2}(x-y)+3 y^{2}+x(1-3 y) &=y \\ 3 \sqrt{3 x^{2}-9 y+2}+\sqrt[3]{y^{3}-21}+3 &=x\end{cases}. \]
  6. Given $n$ positive numbers $a_{1}, a_{2}, \ldots, a_{n}$ $(n \in \mathbb{N}, n \geq 3)$. Prove that $$\frac{a_{1}^{2}}{a_{2}\left(a_{1}+a_{2}\right)}+\frac{a_{2}^{2}}{a_{3}\left(a_{2}+a_{3}\right)}+\ldots+\frac{a_{n}^{2}}{a_{1}\left(a_{n}+a_{1}\right)} \geq \frac{n}{2} .$$
  7. Given real numbers $x, y, z$ satisfying $x^{2}+y^{2}+z^{2}=1$. Find the maximum and minimum values of the expression $$P=x y(x+y)+y z(y+z)+z x(z+x).$$
  8. Given a pyramid $S.ABCD$. Let $O$ be the intersection between $A C$ and $B D$. Let $h_{1}$, $h_{2}$, $h_{3}$, $h_{4}$ respectively be the distances from $O$ to the planes $(S A B)$, $(S B C)$, $(S C D)$, $(S D A)$. Show that two planes $(S A C)$ and $(S B D)$ are perpendicular if and only if $$\frac{1}{h_{1}^{2}}+\frac{1}{h_{3}^{2}}=\frac{1}{h_{2}^{2}}+\frac{1}{h_{4}^{2}}.$$
  9. Given a triangle $A B C$ with the lengths of the sides $B C$, $C A$, $A B$ respectively are $a$, $b$, $c$. Let $r_{a}$, $r_{b}$, $r_{c}$ respectively be the radii of the escribed circles opposite to the angles $A$, $B$, $C$. Show that $$\frac{r_{a}}{a \sin A}+\frac{r_{b}}{b \sin B}+\frac{r_{c}}{c \sin C} \geq 3.$$
  10. Find all positive integers $n$ so that $n !$ is divisible by $2^{n-1}$.
  11. Given a continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying $f(x+y)=f(f(x)) \cdot f(y)$ for any pair of real numbers $x$ and $y$. Show that $f$ is a constant function.
  12. Let $(O)$, $(I)$ respectively be the circumcircle and the incircle of $A B C$. Let $(D)$ be the circle which is internally tangent to $(O)$ at $X$ and is tangent to the sides $A B$, $A C$. Let $M$ be the intersection between the line perpendicular to $A X$ at $X$ and the tangent of $(D)$ parallel to $B C$ (this tangent is in the same side with $X$ determining by $B C$). Show that $A M$, $B C$ and $O F$ are concurrent.

Issue 533

  1. Given $$A=\frac{1}{2021}+\frac{1}{2022}+\frac{1}{2023}+\ldots+\frac{1}{8082}+\frac{1}{8083}$$ where the denominators are consecutive integers from $2021$ to $8083$. Compare $A$ and $\dfrac{11}{6}$.
  2. Find all prime numbers $p, q$ so that $p+4 q$ and $q+4 p$ are both perfect squares.
  3. Find all triples $(x ; y ; p)$ satisfying $x^{5}+x^{4}+1=p^{y}$, where $x$, $y$ are positive integers and $p$ is a prime number.
  4. Suppose that $A B$ is a fixed chord which is not a diameter of a circle $(O ; R)$. Let $M$ be a point moving on the major arc $A B$ ($M A < M B)$, and $N$ be the perpendicular projection of $O$ on the angle bisector of the angle $A M B$. The circumcircle of $A M N$ intersects $M B$ at $K$, intersects $A B$ at $D$. Show that the perpendicular through $K$ and parallel to $M N$ always passes through a fixed point.
  5. Given positive numbers $a$, $b$, $c$, $d$ satisfying $$\frac{1}{a+3}+\frac{1}{b+3}+\frac{1}{c+3}+\frac{1}{d+3}=1.$$ Show that $$\sqrt{a b}+\sqrt{a c}+\sqrt{a d}+\sqrt{b c}+\sqrt{b d}+\sqrt{c d} \leq 6 .$$
  6. Solve the system of equations $$\left\{\begin{array}{l}\sqrt{x^{2}+1} &=y+2 \sqrt{2} \\ 9 y^{2}(x+3 y) &=1-x^{3} y^{3}\end{array}\right.$$
  7. Given positive numbers $a, b, c$ satisfying $a b c=1$. Show that $$\frac{3}{2} \max \{a, b, c\} \geq \frac{1}{1+a^{2}}+\frac{1}{1+b^{2}}+\frac{1}{1+c^{2}}  \geq \frac{3}{2} \min \{a, b, c\} .$$
  8. Given a triangle $A B C$ inscribed in a circle $(O)$. The incircle $(I)$ of $A B C$ are tangent to $B C$, $C A$, $A B$ at $D$, $E$, $F$ respectively. Suppose that $A I$ intersects $B C$ at $S$ and intersects $(O)$ at the second point $M$. The circumcircles of the triangles $B S M$, $C S M$ intersect $M F$, $M E$ at $K$ and $L$ respectively.
    a) Show that four points $I$, $L$, $S$, $K$ both lie on a circle.
    b) Let $T$ be the second intersection between $M D$ and $(O)$. Prove that the circumcircle of the triangle $T K L$ is tangent to $(O)$.
  9. Find real numbers $a$ and $b$ satisfying the following conditions
    • $a<b \leq 2000\cdot 2001$;
    • $(x+y+z-2000\cdot 2001)^{2} \leq \dfrac{x y z}{500 \cdot 2001}$ for all $x, y, z \in[a, b] $;
    • $b-a$ obtains the maximum value.
  10. Suppose that $a$, $b$, $c$ are positive numbers so that $a+10 b$, $b+10 c$, $c+10 a$ are either a power of $2$ or a power of $5$ . Show that $a b c$ is divisible by 10 but not divisible by $100$.
  11. Show that we can choose some $a, b, c$ $(a, b, c \in \mathbb{R}^{+}; a, b, c \notin \mathbb{Z})$  so that the following conditions hold
    • $x_{n}<1$, $\forall n \geq 1$;
    • $\dfrac{x_{n+3}}{x_{n}}<1$, $\forall n \geq 1$;
    • $\displaystyle\lim_{n \rightarrow+\infty}\left(x_{1}+x_{2}+\ldots+x_{n}\right)$ exists.
  12. Given a scalene triangle $A B C$. Suppose that $(O)$, $(I)$ respectively are the circumcircle and the incircle of. Let $A_{0}$, $B_{0}$, $C_{0}$ respectively be the touch point between $(I)$ and $B C$, $C A$, $A B$. Let $A_{1}$, $B_{1}$, $C_{1}$ respectively be the perpendicular projections of $A_{0}$, $B_{0}$, $C_{0}$ on $B_{0} C_{0}$, $C_{0} A_{0}$, $A_{0} B_{0}$; and $A_{2}$, $B_{2}$, $C_{2}$ respectively the second intersections between $A A_{1}$, $B B_{1}$, $C C_{1}$ and $(O)$. Show that the circles $\left(A_{0} A_{1} A_{2}\right)$, $\left(B_{0} B_{1} B_{2}\right)$, $\left(C_{0} C_{1} C_{2}\right)$ have the same radical axis.

Issue 534

  1. Consider the number $$A=2021^{x y}+y^{5}+3 y^{4}+4 y+12,$$ where $x$ and $y$ are non-negative integers. Find the minimum value, if exists, of the sum of all digits of $A$.
  2. Given an equilateral triangle $A B C$. Let $M$ be the midpoint of $A B$. On the opposite ray of the ray $C M$, choose the point $D$ so that $C D=C A$ and on the ray $B C$, choose the point $E$ so that $E B$ is the angle bisector of $\widehat{A E D}$. Find the measurement of $\widehat{A E D}$.
  3. Find the sum $S$ of all odd numbers which are less than $2022$, are not divisible by $5$ and are not divisible by $9$.
  4. Given a triangle $A B C$ inscribed in a circle (O). Let $D$ be the midpoint of the $\operatorname{arc} B C$ which does not contant $A$, and $E$ the midpoint of the arc $A C$ which does not contant $B$. $E D$ intersects $A C$, $B C$ respectively at $F$ and $G$. The line which passes through $F$ and is perpendicular to $A D$ intersects the line passing through $G$ and perpendicular to $B E$ at $H$. Let $O^{\prime}$, $O^{n}$ respectively be the circumcenters of the triangles $A F E$ and $B G D$. Show that $H O || O^{\prime} O^{\prime \prime}$.
  5. Given positive numbers $a, b, c$ satisfying $a^{2}+b^{2}+c^{2}=12$. Find the minimum value of the expression $$P=\frac{1}{4-a}+\frac{1}{4-b}+\frac{1}{4-c}.$$
  6. Solve the equation $$\sqrt{1-2 x}+\sqrt{x^{2}-3 x+1}+\sqrt{7 x^{2}-5 x+1}=x^{2}-5 x+3$$
  7. Given $a_{k}, b_{k}>0, k=\overline{1, n}, n \in \mathbb{N}, n \geq 2$. Prove that $$\frac{1}{\frac{1}{\sum_{k=1}^{n} a_{k}}+\frac{1}{\sum_{k=1}^{n} b_{k}}} \geq \sum_{k=1}^{n} \frac{1}{\frac{1}{a_{k}}+\frac{1}{b_{k}}}$$
  8. Given a triangle $A B C$ with the centroid $G$. The lines $A G$, $B G$, $C G$ intersects the circumcircle of $A B C$ at $A_{1}$, $B_{1}$, $C_{1}$. Show that
    a) $A B_{1} \cdot A C_{1} \cdot B C_{1} \cdot B A_{1} \cdot C A_{1} \cdot C B_{1} \leq 4 R^{4} r^{2}$;
    b) $B A_{1} \cdot C A_{1}+C B_{1} \cdot A B_{1}+A C_{1} \cdot B C_{1} \leq 2 R(2 R-r)$ where $R$, $r$ respectively is the circumradius and inradius of the triangle $A B C$.
  9. Suppose that $a, b, c$ are the lengths of 3 sides of a triangle and $p$ is the triangle's half perimeter. Show that $$\frac{\sqrt{b c}}{p-a}+\frac{\sqrt{c a}}{p-b}+\frac{\sqrt{a h}}{p-c} \geq 6 .$$
  10. Find all non-negative integers $a,b,c$ satisfying $a^{2}+1$, $b^{2}+2$ are prime numbers, $c$ is not divisible by $5$, and $$\left(a^{2}+1\right)\left(b^{2}+2\right)=c^{2}+9.$$
  11. Given an even positive integer $n$ and a prime number even positive integer $p>n^n$ polynomial $$Q(x)=(x-1)(x-2) \ldots(x-n)+p$$ cannot be presented as a product of two non-constant polynomials with integral coefficients.
  12. Given an oblique triangle $ABC$ and $(O)$ is its circumcircle. $A D$, $B E$, $C F$ are the altitudes. $A_{b}$, $A_{c}$ respectively are the points of reflection of $B$, in $F$, $E$. $A_{a}$ is the intersection between $E F$ and $A_bA_c$. The points $B_b$, $C_c$ are determined similarly. Show that $A A_{c}$, $B B_{b}$, $C C_{c}$ are concurrent at a point on $(O)$.

$hide=mobile$type=ticker$c=36$cols=2$l=0$sr=random$b=0

Name

Abel,5,Albania,2,AMM,2,Amsterdam,4,An Giang,45,Andrew Wiles,1,Anh,2,APMO,21,Austria (Áo),1,Ba Lan,1,Bà Rịa Vũng Tàu,77,Bắc Bộ,2,Bắc Giang,62,Bắc Kạn,4,Bạc Liêu,18,Bắc Ninh,53,Bắc Trung Bộ,3,Bài Toán Hay,5,Balkan,41,Baltic Way,32,BAMO,1,Bất Đẳng Thức,69,Bến Tre,72,Benelux,16,Bình Định,65,Bình Dương,38,Bình Phước,52,Bình Thuận,42,Birch,1,BMO,41,Booklet,12,Bosnia Herzegovina,3,BoxMath,3,Brazil,2,British,16,Bùi Đắc Hiên,1,Bùi Thị Thiện Mỹ,1,Bùi Văn Tuyên,1,Bùi Xuân Diệu,1,Bulgaria,6,Buôn Ma Thuột,2,BxMO,15,Cà Mau,22,Cần Thơ,27,Canada,40,Cao Bằng,12,Cao Quang Minh,1,Câu Chuyện Toán Học,43,Caucasus,3,CGMO,11,China - Trung Quốc,25,Chọn Đội Tuyển,515,Chu Tuấn Anh,1,Chuyên Đề,125,Chuyên SPHCM,7,Chuyên SPHN,30,Chuyên Trần Hưng Đạo,3,Collection,8,College Mathematic,1,Concours,1,Cono Sur,1,Contest,675,Correspondence,1,Cosmin Poahata,1,Crux,2,Czech-Polish-Slovak,28,Đà Nẵng,50,Đa Thức,2,Đại Số,20,Đắk Lắk,76,Đắk Nông,15,Danube,7,Đào Thái Hiệp,1,ĐBSCL,2,Đề Thi,1,Đề Thi HSG,2249,Đề Thi JMO,1,DHBB,30,Điện Biên,15,Định Lý,1,Định Lý Beaty,1,Đỗ Hữu Đức Thịnh,1,Do Thái,3,Doãn Quang Tiến,5,Đoàn Quỳnh,1,Đoàn Văn Trung,1,Đồng Nai,64,Đồng Tháp,63,Du Hiền Vinh,1,Đức,1,Dương Quỳnh Châu,1,Dương Tú,1,Duyên Hải Bắc Bộ,30,E-Book,31,EGMO,30,ELMO,19,EMC,11,Epsilon,1,Estonian,5,Euler,1,Evan Chen,1,Fermat,3,Finland,4,Forum Of Geometry,2,Furstenberg,1,G. Polya,3,Gặp Gỡ Toán Học,30,Gauss,1,GDTX,3,Geometry,14,GGTH,30,Gia Lai,40,Gia Viễn,2,Giải Tích Hàm,1,Giới hạn,2,Goldbach,1,Hà Giang,5,Hà Lan,1,Hà Nam,45,Hà Nội,255,Hà Tĩnh,91,Hà Trung Kiên,1,Hải Dương,70,Hải Phòng,57,Hậu Giang,14,Hélènne Esnault,1,Hilbert,2,Hình Học,33,HKUST,7,Hòa Bình,33,Hoài Nhơn,1,Hoàng Bá Minh,1,Hoàng Minh Quân,1,Hodge,1,Hojoo Lee,2,HOMC,5,HongKong,8,HSG 10,126,HSG 10 2010-2011,4,HSG 10 2011-2012,7,HSG 10 2012-2013,8,HSG 10 2013-2014,7,HSG 10 2014-2015,6,HSG 10 2015-2016,2,HSG 10 2016-2017,8,HSG 10 2017-2018,4,HSG 10 2018-2019,4,HSG 10 2019-2020,7,HSG 10 2020-2021,3,HSG 10 2021-2022,4,HSG 10 2022-2023,11,HSG 10 2023-2024,1,HSG 10 Bà Rịa Vũng Tàu,2,HSG 10 Bắc Giang,1,HSG 10 Bạc Liêu,2,HSG 10 Bình Định,1,HSG 10 Bình Dương,1,HSG 10 Bình Thuận,4,HSG 10 Chuyên SPHN,5,HSG 10 Đắk Lắk,2,HSG 10 Đồng Nai,4,HSG 10 Gia Lai,2,HSG 10 Hà Nam,4,HSG 10 Hà Tĩnh,15,HSG 10 Hải Dương,10,HSG 10 KHTN,9,HSG 10 Nghệ An,1,HSG 10 Ninh Thuận,1,HSG 10 Phú Yên,2,HSG 10 PTNK,10,HSG 10 Quảng Nam,1,HSG 10 Quảng Trị,2,HSG 10 Thái Nguyên,9,HSG 10 Vĩnh Phúc,14,HSG 1015-2016,3,HSG 11,135,HSG 11 2009-2010,1,HSG 11 2010-2011,6,HSG 11 2011-2012,10,HSG 11 2012-2013,9,HSG 11 2013-2014,7,HSG 11 2014-2015,10,HSG 11 2015-2016,6,HSG 11 2016-2017,8,HSG 11 2017-2018,7,HSG 11 2018-2019,8,HSG 11 2019-2020,5,HSG 11 2020-2021,8,HSG 11 2021-2022,4,HSG 11 2022-2023,7,HSG 11 2023-2024,1,HSG 11 An Giang,2,HSG 11 Bà Rịa Vũng Tàu,1,HSG 11 Bắc Giang,4,HSG 11 Bạc Liêu,3,HSG 11 Bắc Ninh,2,HSG 11 Bình Định,12,HSG 11 Bình Dương,3,HSG 11 Bình Thuận,1,HSG 11 Cà Mau,1,HSG 11 Đà Nẵng,9,HSG 11 Đồng Nai,1,HSG 11 Hà Nam,2,HSG 11 Hà Tĩnh,12,HSG 11 Hải Phòng,1,HSG 11 Kiên Giang,4,HSG 11 Lạng Sơn,11,HSG 11 Nghệ An,6,HSG 11 Ninh Bình,2,HSG 11 Quảng Bình,12,HSG 11 Quảng Nam,1,HSG 11 Quảng Ngãi,9,HSG 11 Quảng Trị,3,HSG 11 Sóc Trăng,1,HSG 11 Thái Nguyên,8,HSG 11 Thanh Hóa,3,HSG 11 Trà Vinh,1,HSG 11 Tuyên Quang,1,HSG 11 Vĩnh Long,3,HSG 11 Vĩnh Phúc,11,HSG 12,668,HSG 12 2009-2010,2,HSG 12 2010-2011,39,HSG 12 2011-2012,44,HSG 12 2012-2013,58,HSG 12 2013-2014,53,HSG 12 2014-2015,44,HSG 12 2015-2016,37,HSG 12 2016-2017,46,HSG 12 2017-2018,55,HSG 12 2018-2019,43,HSG 12 2019-2020,43,HSG 12 2020-2021,52,HSG 12 2021-2022,35,HSG 12 2022-2023,42,HSG 12 2023-2024,23,HSG 12 2023-2041,1,HSG 12 An Giang,8,HSG 12 Bà Rịa Vũng Tàu,13,HSG 12 Bắc Giang,18,HSG 12 Bạc Liêu,3,HSG 12 Bắc Ninh,13,HSG 12 Bến Tre,19,HSG 12 Bình Định,17,HSG 12 Bình Dương,8,HSG 12 Bình Phước,9,HSG 12 Bình Thuận,8,HSG 12 Cà Mau,7,HSG 12 Cần Thơ,7,HSG 12 Cao Bằng,5,HSG 12 Chuyên SPHN,11,HSG 12 Đà Nẵng,3,HSG 12 Đắk Lắk,21,HSG 12 Đắk Nông,1,HSG 12 Điện Biên,3,HSG 12 Đồng Nai,20,HSG 12 Đồng Tháp,18,HSG 12 Gia Lai,14,HSG 12 Hà Nam,5,HSG 12 Hà Nội,17,HSG 12 Hà Tĩnh,16,HSG 12 Hải Dương,16,HSG 12 Hải Phòng,20,HSG 12 Hậu Giang,4,HSG 12 Hòa Bình,10,HSG 12 Hưng Yên,10,HSG 12 Khánh Hòa,4,HSG 12 KHTN,26,HSG 12 Kiên Giang,12,HSG 12 Kon Tum,3,HSG 12 Lai Châu,4,HSG 12 Lâm Đồng,11,HSG 12 Lạng Sơn,8,HSG 12 Lào Cai,17,HSG 12 Long An,18,HSG 12 Nam Định,7,HSG 12 Nghệ An,13,HSG 12 Ninh Bình,12,HSG 12 Ninh Thuận,7,HSG 12 Phú Thọ,18,HSG 12 Phú Yên,13,HSG 12 Quảng Bình,14,HSG 12 Quảng Nam,11,HSG 12 Quảng Ngãi,6,HSG 12 Quảng Ninh,20,HSG 12 Quảng Trị,10,HSG 12 Sóc Trăng,4,HSG 12 Sơn La,5,HSG 12 Tây Ninh,6,HSG 12 Thái Bình,11,HSG 12 Thái Nguyên,13,HSG 12 Thanh Hóa,17,HSG 12 Thừa Thiên Huế,19,HSG 12 Tiền Giang,3,HSG 12 TPHCM,13,HSG 12 Tuyên Quang,3,HSG 12 Vĩnh Long,7,HSG 12 Vĩnh Phúc,20,HSG 12 Yên Bái,6,HSG 9,573,HSG 9 2009-2010,1,HSG 9 2010-2011,21,HSG 9 2011-2012,42,HSG 9 2012-2013,41,HSG 9 2013-2014,35,HSG 9 2014-2015,41,HSG 9 2015-2016,38,HSG 9 2016-2017,42,HSG 9 2017-2018,45,HSG 9 2018-2019,41,HSG 9 2019-2020,18,HSG 9 2020-2021,50,HSG 9 2021-2022,53,HSG 9 2022-2023,55,HSG 9 2023-2024,15,HSG 9 An Giang,9,HSG 9 Bà Rịa Vũng Tàu,8,HSG 9 Bắc Giang,14,HSG 9 Bắc Kạn,1,HSG 9 Bạc Liêu,1,HSG 9 Bắc Ninh,12,HSG 9 Bến Tre,9,HSG 9 Bình Định,11,HSG 9 Bình Dương,7,HSG 9 Bình Phước,13,HSG 9 Bình Thuận,5,HSG 9 Cà Mau,2,HSG 9 Cần Thơ,4,HSG 9 Cao Bằng,2,HSG 9 Đà Nẵng,11,HSG 9 Đắk Lắk,12,HSG 9 Đắk Nông,3,HSG 9 Điện Biên,5,HSG 9 Đồng Nai,8,HSG 9 Đồng Tháp,10,HSG 9 Gia Lai,9,HSG 9 Hà Giang,4,HSG 9 Hà Nam,10,HSG 9 Hà Nội,15,HSG 9 Hà Tĩnh,13,HSG 9 Hải Dương,16,HSG 9 Hải Phòng,8,HSG 9 Hậu Giang,6,HSG 9 Hòa Bình,4,HSG 9 Hưng Yên,11,HSG 9 Khánh Hòa,6,HSG 9 Kiên Giang,16,HSG 9 Kon Tum,9,HSG 9 Lai Châu,2,HSG 9 Lâm Đồng,14,HSG 9 Lạng Sơn,10,HSG 9 Lào Cai,4,HSG 9 Long An,10,HSG 9 Nam Định,9,HSG 9 Nghệ An,21,HSG 9 Ninh Bình,14,HSG 9 Ninh Thuận,4,HSG 9 Phú Thọ,13,HSG 9 Phú Yên,9,HSG 9 Quảng Bình,14,HSG 9 Quảng Nam,12,HSG 9 Quảng Ngãi,13,HSG 9 Quảng Ninh,17,HSG 9 Quảng Trị,10,HSG 9 Sóc Trăng,9,HSG 9 Sơn La,5,HSG 9 Tây Ninh,16,HSG 9 Thái Bình,11,HSG 9 Thái Nguyên,5,HSG 9 Thanh Hóa,12,HSG 9 Thừa Thiên Huế,9,HSG 9 Tiền Giang,7,HSG 9 TPHCM,11,HSG 9 Trà Vinh,2,HSG 9 Tuyên Quang,6,HSG 9 Vĩnh Long,12,HSG 9 Vĩnh Phúc,12,HSG 9 Yên Bái,5,HSG Cấp Trường,80,HSG Quốc Gia,113,HSG Quốc Tế,16,Hứa Lâm Phong,1,Hứa Thuần Phỏng,1,Hùng Vương,2,Hưng Yên,43,Huỳnh Kim Linh,1,Hy Lạp,1,IMC,26,IMO,58,IMT,2,IMU,2,India - Ấn Độ,47,Inequality,13,InMC,1,International,349,Iran,13,Jakob,1,JBMO,41,Jewish,1,Journal,30,Junior,38,K2pi,1,Kazakhstan,1,Khánh Hòa,30,KHTN,64,Kiên Giang,74,Kon Tum,24,Korea - Hàn Quốc,5,Kvant,2,Kỷ Yếu,46,Lai Châu,12,Lâm Đồng,47,Lăng Hồng Nguyệt Anh,1,Lạng Sơn,37,Langlands,1,Lào Cai,35,Lê Hải Châu,1,Lê Hải Khôi,1,Lê Hoành Phò,4,Lê Hồng Phong,5,Lê Khánh Sỹ,3,Lê Minh Cường,1,Lê Phúc Lữ,1,Lê Phương,1,Lê Viết Hải,1,Lê Việt Hưng,2,Leibniz,1,Long An,52,Lớp 10 Chuyên,709,Lớp 10 Không Chuyên,355,Lớp 11,1,Lục Ngạn,1,Lượng giác,1,Lưu Giang Nam,2,Lưu Lý Tưởng,1,Macedonian,1,Malaysia,1,Margulis,2,Mark Levi,1,Mathematical Excalibur,1,Mathematical Reflections,1,Mathematics Magazine,1,Mathematics Today,1,Mathley,1,MathLinks,1,MathProblems Journal,1,Mathscope,8,MathsVN,5,MathVN,1,MEMO,13,Menelaus,1,Metropolises,4,Mexico,1,MIC,1,Michael Atiyah,1,Michael Guillen,1,Mochizuki,1,Moldova,1,Moscow,1,MYM,25,MYTS,4,Nam Định,45,Nam Phi,1,National,276,Nesbitt,1,Newton,4,Nghệ An,73,Ngô Bảo Châu,2,Ngô Việt Hải,1,Ngọc Huyền,2,Nguyễn Anh Tuyến,1,Nguyễn Bá Đang,1,Nguyễn Đình Thi,1,Nguyễn Đức Tấn,1,Nguyễn Đức Thắng,1,Nguyễn Duy Khương,1,Nguyễn Duy Tùng,1,Nguyễn Hữu Điển,3,Nguyễn Minh Hà,1,Nguyễn Minh Tuấn,9,Nguyễn Nhất Huy,1,Nguyễn Phan Tài Vương,1,Nguyễn Phú Khánh,1,Nguyễn Phúc Tăng,2,Nguyễn Quản Bá Hồng,1,Nguyễn Quang Sơn,1,Nguyễn Song Thiên Long,1,Nguyễn Tài Chung,5,Nguyễn Tăng Vũ,1,Nguyễn Tất Thu,1,Nguyễn Thúc Vũ Hoàng,1,Nguyễn Trung Tuấn,8,Nguyễn Tuấn Anh,2,Nguyễn Văn Huyện,3,Nguyễn Văn Mậu,25,Nguyễn Văn Nho,1,Nguyễn Văn Quý,2,Nguyễn Văn Thông,1,Nguyễn Việt Anh,1,Nguyễn Vũ Lương,2,Nhật Bản,4,Nhóm $\LaTeX$,4,Nhóm Toán,1,Ninh Bình,61,Ninh Thuận,26,Nội Suy Lagrange,2,Nội Suy Newton,1,Nordic,21,Olympiad Corner,1,Olympiad Preliminary,2,Olympic 10,134,Olympic 10/3,6,Olympic 10/3 Đắk Lắk,6,Olympic 11,122,Olympic 12,52,Olympic 23/3,2,Olympic 24/3,10,Olympic 24/3 Quảng Nam,10,Olympic 27/4,24,Olympic 30/4,61,Olympic KHTN,8,Olympic Sinh Viên,78,Olympic Tháng 4,12,Olympic Toán,344,Olympic Toán Sơ Cấp,3,Ôn Thi 10,2,PAMO,1,Phạm Đình Đồng,1,Phạm Đức Tài,1,Phạm Huy Hoàng,1,Pham Kim Hung,3,Phạm Quốc Sang,2,Phan Huy Khải,1,Phan Quang Đạt,1,Phan Thành Nam,1,Pháp,2,Philippines,8,Phú Thọ,32,Phú Yên,42,Phùng Hồ Hải,1,Phương Trình Hàm,11,Phương Trình Pythagoras,1,Pi,1,Polish,32,Problems,1,PT-HPT,14,PTNK,64,Putnam,27,Quảng Bình,64,Quảng Nam,57,Quảng Ngãi,49,Quảng Ninh,60,Quảng Trị,42,Quỹ Tích,1,Riemann,1,RMM,14,RMO,24,Romania,38,Romanian Mathematical,1,Russia,1,Sách Thường Thức Toán,7,Sách Toán,70,Sách Toán Cao Học,1,Sách Toán THCS,7,Saudi Arabia - Ả Rập Xê Út,9,Scholze,1,Serbia,17,Sharygin,28,Shortlists,56,Simon Singh,1,Singapore,1,Số Học - Tổ Hợp,28,Sóc Trăng,36,Sơn La,22,Spain,8,Star Education,1,Stars of Mathematics,11,Swinnerton-Dyer,1,Talent Search,1,Tăng Hải Tuân,2,Tạp Chí,17,Tập San,3,Tây Ban Nha,1,Tây Ninh,37,Thái Bình,45,Thái Nguyên,61,Thái Vân,2,Thanh Hóa,69,THCS,2,Thổ Nhĩ Kỳ,5,Thomas J. Mildorf,1,Thông Tin Toán Học,43,THPT Chuyên Lê Quý Đôn,1,THPT Chuyên Nguyễn Du,9,THPTQG,16,THTT,31,Thừa Thiên Huế,56,Tiền Giang,30,Tin Tức Toán Học,1,Titu Andreescu,2,Toán 12,7,Toán Cao Cấp,3,Toán Rời Rạc,5,Toán Tuổi Thơ,3,Tôn Ngọc Minh Quân,2,TOT,1,TPHCM,158,Trà Vinh,10,Trắc Nghiệm,1,Trắc Nghiệm Toán,2,Trại Hè,39,Trại Hè Hùng Vương,30,Trại Hè Phương Nam,7,Trần Đăng Phúc,1,Trần Minh Hiền,2,Trần Nam Dũng,12,Trần Phương,1,Trần Quang Hùng,1,Trần Quốc Anh,2,Trần Quốc Luật,1,Trần Quốc Nghĩa,1,Trần Tiến Tự,1,Trịnh Đào Chiến,2,Trường Đông,23,Trường Hè,10,Trường Thu,1,Trường Xuân,3,TST,544,TST 2008-2009,1,TST 2010-2011,22,TST 2011-2012,23,TST 2012-2013,32,TST 2013-2014,29,TST 2014-2015,27,TST 2015-2016,26,TST 2016-2017,41,TST 2017-2018,42,TST 2018-2019,30,TST 2019-2020,34,TST 2020-2021,30,TST 2021-2022,38,TST 2022-2023,42,TST 2023-2024,23,TST An Giang,8,TST Bà Rịa Vũng Tàu,11,TST Bắc Giang,5,TST Bắc Ninh,11,TST Bến Tre,10,TST Bình Định,5,TST Bình Dương,7,TST Bình Phước,9,TST Bình Thuận,9,TST Cà Mau,7,TST Cần Thơ,6,TST Cao Bằng,2,TST Đà Nẵng,8,TST Đắk Lắk,12,TST Đắk Nông,2,TST Điện Biên,2,TST Đồng Nai,13,TST Đồng Tháp,12,TST Gia Lai,4,TST Hà Nam,8,TST Hà Nội,12,TST Hà Tĩnh,15,TST Hải Dương,11,TST Hải Phòng,13,TST Hậu Giang,1,TST Hòa Bình,4,TST Hưng Yên,10,TST Khánh Hòa,8,TST Kiên Giang,11,TST Kon Tum,6,TST Lâm Đồng,12,TST Lạng Sơn,3,TST Lào Cai,4,TST Long An,6,TST Nam Định,8,TST Nghệ An,7,TST Ninh Bình,11,TST Ninh Thuận,4,TST Phú Thọ,13,TST Phú Yên,5,TST PTNK,15,TST Quảng Bình,12,TST Quảng Nam,7,TST Quảng Ngãi,8,TST Quảng Ninh,9,TST Quảng Trị,10,TST Sóc Trăng,5,TST Sơn La,7,TST Thái Bình,6,TST Thái Nguyên,8,TST Thanh Hóa,9,TST Thừa Thiên Huế,4,TST Tiền Giang,6,TST TPHCM,14,TST Trà Vinh,1,TST Tuyên Quang,1,TST Vĩnh Long,7,TST Vĩnh Phúc,7,TST Yên Bái,8,Tuyên Quang,14,Tuyển Sinh,4,Tuyển Sinh 10,1064,Tuyển Sinh 10 An Giang,18,Tuyển Sinh 10 Bà Rịa Vũng Tàu,22,Tuyển Sinh 10 Bắc Giang,19,Tuyển Sinh 10 Bắc Kạn,3,Tuyển Sinh 10 Bạc Liêu,9,Tuyển Sinh 10 Bắc Ninh,15,Tuyển Sinh 10 Bến Tre,34,Tuyển Sinh 10 Bình Định,19,Tuyển Sinh 10 Bình Dương,12,Tuyển Sinh 10 Bình Phước,21,Tuyển Sinh 10 Bình Thuận,15,Tuyển Sinh 10 Cà Mau,5,Tuyển Sinh 10 Cần Thơ,10,Tuyển Sinh 10 Cao Bằng,2,Tuyển Sinh 10 Chuyên SPHN,19,Tuyển Sinh 10 Đà Nẵng,18,Tuyển Sinh 10 Đại Học Vinh,13,Tuyển Sinh 10 Đắk Lắk,21,Tuyển Sinh 10 Đắk Nông,7,Tuyển Sinh 10 Điện Biên,5,Tuyển Sinh 10 Đồng Nai,18,Tuyển Sinh 10 Đồng Tháp,23,Tuyển Sinh 10 Gia Lai,10,Tuyển Sinh 10 Hà Giang,1,Tuyển Sinh 10 Hà Nam,16,Tuyển Sinh 10 Hà Nội,80,Tuyển Sinh 10 Hà Tĩnh,19,Tuyển Sinh 10 Hải Dương,17,Tuyển Sinh 10 Hải Phòng,15,Tuyển Sinh 10 Hậu Giang,3,Tuyển Sinh 10 Hòa Bình,15,Tuyển Sinh 10 Hưng Yên,12,Tuyển Sinh 10 Khánh Hòa,12,Tuyển Sinh 10 KHTN,21,Tuyển Sinh 10 Kiên Giang,31,Tuyển Sinh 10 Kon Tum,6,Tuyển Sinh 10 Lai Châu,6,Tuyển Sinh 10 Lâm Đồng,10,Tuyển Sinh 10 Lạng Sơn,6,Tuyển Sinh 10 Lào Cai,10,Tuyển Sinh 10 Long An,18,Tuyển Sinh 10 Nam Định,21,Tuyển Sinh 10 Nghệ An,23,Tuyển Sinh 10 Ninh Bình,20,Tuyển Sinh 10 Ninh Thuận,10,Tuyển Sinh 10 Phú Thọ,18,Tuyển Sinh 10 Phú Yên,12,Tuyển Sinh 10 PTNK,37,Tuyển Sinh 10 Quảng Bình,12,Tuyển Sinh 10 Quảng Nam,15,Tuyển Sinh 10 Quảng Ngãi,13,Tuyển Sinh 10 Quảng Ninh,12,Tuyển Sinh 10 Quảng Trị,7,Tuyển Sinh 10 Sóc Trăng,17,Tuyển Sinh 10 Sơn La,5,Tuyển Sinh 10 Tây Ninh,15,Tuyển Sinh 10 Thái Bình,17,Tuyển Sinh 10 Thái Nguyên,18,Tuyển Sinh 10 Thanh Hóa,27,Tuyển Sinh 10 Thừa Thiên Huế,24,Tuyển Sinh 10 Tiền Giang,14,Tuyển Sinh 10 TPHCM,23,Tuyển Sinh 10 Trà Vinh,6,Tuyển Sinh 10 Tuyên Quang,3,Tuyển Sinh 10 Vĩnh Long,12,Tuyển Sinh 10 Vĩnh Phúc,22,Tuyển Sinh 2008-2009,1,Tuyển Sinh 2009-2010,1,Tuyển Sinh 2010-2011,6,Tuyển Sinh 2011-2012,20,Tuyển Sinh 2012-2013,65,Tuyển Sinh 2013-2014,77,Tuyển Sinh 2013-2044,1,Tuyển Sinh 2014-2015,81,Tuyển Sinh 2015-2016,64,Tuyển Sinh 2016-2017,72,Tuyển Sinh 2017-2018,126,Tuyển Sinh 2018-2019,61,Tuyển Sinh 2019-2020,90,Tuyển Sinh 2020-2021,59,Tuyển Sinh 2021-202,1,Tuyển Sinh 2021-2022,69,Tuyển Sinh 2022-2023,113,Tuyển Sinh 2023-2024,49,Tuyển Sinh Chuyên SPHCM,7,Tuyển Sinh Yên Bái,6,Tuyển Tập,45,Tuymaada,6,UK - Anh,16,Undergraduate,69,USA - Mỹ,62,USA TSTST,6,USAJMO,12,USATST,8,USEMO,4,Uzbekistan,1,Vasile Cîrtoaje,4,Vật Lý,1,Viện Toán Học,6,Vietnam,4,Viktor Prasolov,1,VIMF,1,Vinh,32,Vĩnh Long,41,Vĩnh Phúc,86,Virginia Tech,1,VLTT,1,VMEO,4,VMF,12,VMO,58,VNTST,25,Võ Anh Khoa,1,Võ Quốc Bá Cẩn,26,Võ Thành Văn,1,Vojtěch Jarník,6,Vũ Hữu Bình,7,Vương Trung Dũng,1,WFNMC Journal,1,Wiles,1,Xác Suất,1,Yên Bái,25,Yên Thành,1,Zhautykov,14,Zhou Yuan Zhe,1,
ltr
item
MOlympiad.NET: Mathematics and Youth Magazine Problems 2021
Mathematics and Youth Magazine Problems 2021
MOlympiad.NET
https://www.molympiad.net/2022/01/mym-2021.html
https://www.molympiad.net/
https://www.molympiad.net/
https://www.molympiad.net/2022/01/mym-2021.html
true
2506595080985176441
UTF-8
Loaded All Posts Not found any posts VIEW ALL Readmore Reply Cancel reply Delete By Home PAGES POSTS View All RECOMMENDED FOR YOU Tag ARCHIVE SEARCH ALL POSTS Not found any post match with your request Back Home Sunday Monday Tuesday Wednesday Thursday Friday Saturday Sun Mon Tue Wed Thu Fri Sat January February March April May June July August September October November December Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec just now 1 minute ago $$1$$ minutes ago 1 hour ago $$1$$ hours ago Yesterday $$1$$ days ago $$1$$ weeks ago more than 5 weeks ago Followers Follow THIS PREMIUM CONTENT IS LOCKED
NỘI DUNG CAO CẤP NÀY ĐÃ BỊ KHÓA
STEP 1: SHARE THIS ARTICLE TO A SOCIAL NETWORK
BƯỚC 1: CHIA SẺ BÀI VIẾT NÀY LÊN MẠNG XÃ HỘI
STEP 2: CLICK THE LINK ON YOUR SOCIAL NETWORK
BƯỚC 2: BẤM VÀO ĐƯỜNG DẪN TRÊN MẠNG XÃ HỘI CỦA BẠN
Copy All Code Select All Code All codes were copied to your clipboard Can not copy the codes / texts, please press [CTRL]+[C] (or CMD+C with Mac) to copy Table of Content