$hide=mobile

[Solutions] Sharygin Geometry Mathematical Olympiad 2019 (Final Round)

Grade 8

  1. A trapezoid with bases $AB$ and $CD$ is inscribed into a circle centered at $O$. Let $AP$ and $AQ$ be the tangents from $A$ to the circumcircle of triangle $CDO$. Prove that the circumcircle of triangle $APQ$ passes through the midpoint of $AB$. 
  2. A point $M$ inside triangle $ABC$ is such that $AM=AB/2$ and $CM=BC/2$. Points $C_0$ and $A_0$ lying on $AB$ and $CB$ respectively are such that $BC_0:AC_0 = BA_0:CA_0 = 3$. Prove that the distances from $M$ to $C_0$ and $A_0$ are equal. 
  3. Construct a regular triangle using a plywood square. (You can draw a line through pairs of points lying on the distance less than the side of the square, construct a perpendicular from a point to the line the distance between them does not exceed the side of the square, and measure segments on the constructed lines equal to the side or to the diagonal of the square) 
  4. Let $O$, $H$ be the orthocenter and circumcenter of of an acute-angled triangke $ABC$ with $AB<AC$. Let $K$ be the midpoint of $AH$. The line through $K$ perpendicular to $OK$ meet $AB$ and the tangent to the circumcircle at $A$ at $X$ and $Y$ respectively. Prove that $\angle XOY=\angle AOB$ 
  5. A point $H$ lies on the side $AB$ of regular polygon $ABCDE$. A circle with center $H$ and radius $HE$ meets the segments $DE$ and $CD$ at points $G$ and $F$ respectively. It is known that $DG=AH$. Prove that $CF=AH$. 
  6. Let points $M$ and $N$ lie on sides $AB$ and $BC$ of triangle $ABC$ in such a way that $MN||AC$. Points $M'$ and $N'$ are the reflections of $M$ and $N$ about $BC$ and $AB$ respectively. Let $M'A$ meet $BC$ at $X$, and let $N'C$ meet $AB$ at $Y$. Prove that $A$, $C$, $X$, $Y$ are concyclic. 
  7. What is the least positive integer $k$ such that, in every convex 1001-gon, the sum of any k diagonals is greater than or equal to the sum of the remaining diagonals? 

Grade 9

  1. 1 A triangle $OAB$ with $\angle A=90^{\circ}$ lies inside another triangle with vertex $O$. The altitude of $OAB$ from $A$ until it meets the side of angle $O$ at $M$. The distances from $M$ and $B$ to the second side of angle $O$ are $2$ and $1$ respectively. Find the length of $OA$. 
  2. Let $P$ be a point on the circumcircle of triangle $ABC$. Let $A_1$ be the reflection of the orthocenter of triangle $PBC$ about the reflection of the perpendicular bisector of $BC$. Points $B_1$ and $C_1$ are defined similarly. Prove that $A_1,B_1,C_1$ are collinear. 
  3. Let $ABCD$ be a cyclic quadrilateral such that $AD=BD=AC$. A point $P$ moves along the circumcircle $\omega$ of triangle $ABCD$. The lined $AP$ and $DP$ meet the lines $CD$ and $AB$ at points $E$ and $F$ respectively. The lines $BE$ and $CF$ meet point $Q$. Find the locus of $Q$. 
  4. A ship tries to land in the fog. The crew does not know the direction to the land. They see a lighthouse on a little island, and they understand that the distance to the lighthouse does not exceed $10 km$ (the exact distance is not known). The distance from the lighthouse to the land equals $10 km$. The lighthouse is surrounded by reefs, hence the ship cannot approach it. Can the ship land having sailed the distance not greater than $75 km$?. (The waterside is a straight line, the trajectory has to be given before the beginning of the motion, after that the autopilot navigates the ship.) 
  5. Let $R $ be the circumradius of a circumscribed quadrilateral $ABCD $. Let $h_1$ and $h_2$ be the altitudes from $A $ to $BC $ and $CD $ respectively. Similarly $h_3$ and $h_4$ are the altitudes from $C $ to $AB $ and $AD$. Prove that $$\frac {h_1+h_2- 2R}{h_1h_2}=\frac {h_3+h_4-2R}{h_3h_4}.$$
  6. A non-convex polygon has the property that every three consecutive its vertices from a right-angled triangle. Is it true that this polygon has always an angle equal to $90^{\circ} $ or to $270^{\circ} $? 
  7. Let the incircle $\omega $ of $\triangle ABC $ touch $AC $ and $AB $ at points $E $ and $F $ respectively. Points $X $, $Y $ of $\omega $ are such that $\angle BXC=\angle BYC=90^{\circ} $. Prove that $EF $ and $XY $ meet on the medial line of $ABC $. 
  8. A hexagon $A_1A_2A_3A_4A_5A_6$ has no four concyclic vertices, and its diagonals $A_1A_4$, $A_2A_5$ and $A_3A_6$ concur. Let $l_i $ be the radical axis of circles $A_iA_{i+1}A_{i-2} $ and $A_iA_{i-1}A_{i+2} $ (the points $A_i $ and $A_{i+6} $ coincide). Prove that $l_i, i=1,\cdots,6$, concur.

Grade 10

  1. Given a triangle $ABC$ with $\angle A = 45^\circ$. Let $A'$ be the antipode of $A$ in the circumcircle of $ABC$. Points $E$ and $F$ on segments $AB$ and $AC$ respectively are such that $A'B = BE$, $A'C = CF$. Let $K$ be the second intersection of circumcircles of triangles $AEF$ and $ABC$. Prove that $EF$ bisects $A'K$. 
  2. Let $A_1$, $B_1$, $C_1$ be the midpoints of sides $BC$, $AC$ and $AB$ of triangle $ABC$, $AK$ be the altitude from $A$, and $L$ be the tangency point of the incircle $\gamma$ with $BC$. Let the circumcircles of triangles $LKB_1$ and $A_1LC_1$ meet $B_1C_1$ for the second time at points $X$ and $Y$ respectively, and $\gamma$ meet this line at points $Z$ and $T$. Prove that $XZ = YT$. 
  3. Let $P$ and $Q$ be isogonal conjugates inside triangle $ABC$. Let $\omega$ be the circumcircle of $ABC$. Let $A_1$ be a point on arc $BC$ of $\omega$ satisfying $\angle BA_1P = \angle CA_1Q$. Points $B_1$ and $C_1$ are defined similarly. Prove that $AA_1$, $BB_1$, $CC_1$ are concurrent. 
  4. Prove that the sum of two nagelians is greater than the semiperimeter of a triangle. (The nagelian is the segment between the vertex of a triangle and the tangency point of the opposite side with the correspondent excircle.) 
  5. Let $AA_1$, $BB_1$, $CC_1$ be the altitudes of triangle $ABC$, and $A_0$, $C_0$ be the common points of the circumcircle of triangle $A_1BC_1$ with the lines $A_1B_1$ and $C_1B_1$ respectively. Prove that $AA_0$ and $CC_0$ meet on the median of ABC or are parallel to it.
  6. Let $AK$ and $AT$ be the bisector and the median of an acute-angled triangle $ABC$ with $AC > AB$. The line $AT$ meets the circumcircle of $ABC$ at point $D$. Point $F$ is the reflection of $K$ about $T$. If the angles of $ABC$ are known, find the value of angle $FDA$. 
  7. Let $P$ be an arbitrary point on side $BC$ of triangle $ABC$. Let $K$ be the incenter of triangle $PAB$. Let the incircle of triangle $PAC$ touch $BC$ at $F$. Point $G$ on $CK$ is such that $FG || PK$. Find the locus of $G$. 
  8. Several points and planes are given in the space. It is known that for any two of given points there exactly two planes containing them, and each given plane contains at least four of given points. Is it true that all given points are collinear?.

$hide=mobile

$hide=mobile

$hide=mobile

$show=post$type=three$count=6$sr=random$t=oot$h=1$l=0$meta=hide$rm=hide$sn=0

Kỷ Yếu$cl=violet$type=three$count=6$sr=random$t=oot$h=1$l=0$meta=hide$rm=hide$sn=0$hide=mobile

Journals$cl=green$type=three$count=6$sr=random$t=oot$h=1$l=0$meta=hide$rm=hide$sn=0$hide=mobile

Name

Ả-rập Xê-út,1,Abel,5,Albania,2,AMM,3,Amsterdam,5,Ấn Độ,2,An Giang,23,Andrew Wiles,1,Anh,2,Áo,1,APMO,19,Ba Đình,2,Ba Lan,1,Bà Rịa Vũng Tàu,52,Bắc Giang,50,Bắc Kạn,1,Bạc Liêu,9,Bắc Ninh,48,Bắc Trung Bộ,7,Bài Toán Hay,5,Balkan,38,Baltic Way,30,BAMO,1,Bất Đẳng Thức,66,Bến Tre,46,Benelux,14,Bình Định,45,Bình Dương,23,Bình Phước,38,Bình Thuận,34,Birch,1,Booklet,11,Bosnia Herzegovina,3,BoxMath,3,Brazil,2,Bùi Đắc Hiên,1,Bùi Thị Thiện Mỹ,1,Bùi Văn Tuyên,1,Bùi Xuân Diệu,1,Bulgaria,6,Buôn Ma Thuột,1,BxMO,13,Cà Mau,14,Cần Thơ,14,Canada,40,Cao Bằng,7,Cao Quang Minh,1,Câu Chuyện Toán Học,36,Caucasus,2,CGMO,10,China,10,Chọn Đội Tuyển,353,Chu Tuấn Anh,1,Chuyên Đề,124,Chuyên Sư Phạm,31,Chuyên Trần Hưng Đạo,3,Collection,8,College Mathematic,1,Concours,1,Cono Sur,1,Contest,618,Correspondence,1,Cosmin Poahata,1,Crux,2,Czech-Polish-Slovak,26,Đà Nẵng,39,Đa Thức,2,Đại Số,20,Đắk Lắk,56,Đắk Nông,7,Đan Phượng,1,Danube,7,Đào Thái Hiệp,1,ĐBSCL,2,Đề Thi,1,Đề Thi HSG,1769,Đề Thi JMO,1,Điện Biên,8,Định Lý,1,Định Lý Beaty,1,Đỗ Hữu Đức Thịnh,1,Do Thái,3,Doãn Quang Tiến,4,Đoàn Quỳnh,1,Đoàn Văn Trung,1,Đống Đa,4,Đồng Nai,49,Đồng Tháp,52,Du Hiền Vinh,1,Đức,1,Duyên Hải Bắc Bộ,25,E-Book,33,EGMO,17,ELMO,19,EMC,9,Epsilon,1,Estonian,5,Euler,1,Evan Chen,1,Fermat,3,Finland,4,Forum Of Geometry,2,Furstenberg,1,G. Polya,3,Gặp Gỡ Toán Học,26,Gauss,1,GDTX,3,Geometry,12,Gia Lai,26,Gia Viễn,2,Giải Tích Hàm,1,Giảng Võ,1,Giới hạn,2,Goldbach,1,Hà Giang,2,Hà Lan,1,Hà Nam,29,Hà Nội,232,Hà Tĩnh,73,Hà Trung Kiên,1,Hải Dương,50,Hải Phòng,42,Hàn Quốc,5,Hậu Giang,4,Hậu Lộc,1,Hilbert,1,Hình Học,33,HKUST,7,Hòa Bình,13,Hoài Nhơn,1,Hoàng Bá Minh,1,Hoàng Minh Quân,1,Hodge,1,Hojoo Lee,2,HOMC,5,HongKong,8,HSG 10,101,HSG 11,91,HSG 12,586,HSG 9,425,HSG Cấp Trường,78,HSG Quốc Gia,106,HSG Quốc Tế,16,Hứa Lâm Phong,1,Hứa Thuần Phỏng,1,Hùng Vương,2,Hưng Yên,33,Hương Sơn,2,Huỳnh Kim Linh,1,Hy Lạp,1,IMC,26,IMO,56,IMT,1,India,45,Inequality,13,InMC,1,International,315,Iran,11,Jakob,1,JBMO,41,Jewish,1,Journal,20,Junior,38,K2pi,1,Kazakhstan,1,Khánh Hòa,17,KHTN,54,Kiên Giang,64,Kim Liên,1,Kon Tum,18,Korea,5,Kvant,2,Kỷ Yếu,42,Lai Châu,4,Lâm Đồng,34,Lạng Sơn,21,Langlands,1,Lào Cai,17,Lê Hải Châu,1,Lê Hải Khôi,1,Lê Hoành Phò,4,Lê Khánh Sỹ,3,Lê Minh Cường,1,Lê Phúc Lữ,1,Lê Phương,1,Lê Quý Đôn,1,Lê Viết Hải,1,Lê Việt Hưng,1,Leibniz,1,Long An,42,Lớp 10,10,Lớp 10 Chuyên,455,Lớp 10 Không Chuyên,229,Lớp 11,1,Lục Ngạn,1,Lượng giác,1,Lương Tài,1,Lưu Giang Nam,2,Lý Thánh Tông,1,Macedonian,1,Malaysia,1,Margulis,2,Mark Levi,1,Mathematical Excalibur,1,Mathematical Reflections,1,Mathematics Magazine,1,Mathematics Today,1,Mathley,1,MathLinks,1,MathProblems Journal,1,Mathscope,8,MathsVN,5,MathVN,1,MEMO,11,Metropolises,4,Mexico,1,MIC,1,Michael Guillen,1,Mochizuki,1,Moldova,1,Moscow,1,Mỹ,10,MYM,227,MYTS,4,Nam Định,33,Nam Phi,1,Nam Trung Bộ,1,National,249,Nesbitt,1,Newton,4,Nghệ An,52,Ngô Bảo Châu,2,Ngô Việt Hải,1,Ngọc Huyền,2,Nguyễn Anh Tuyến,1,Nguyễn Bá Đang,1,Nguyễn Đình Thi,1,Nguyễn Đức Tấn,1,Nguyễn Đức Thắng,1,Nguyễn Duy Khương,1,Nguyễn Duy Tùng,1,Nguyễn Hữu Điển,3,Nguyễn Mình Hà,1,Nguyễn Minh Tuấn,8,Nguyễn Phan Tài Vương,1,Nguyễn Phú Khánh,1,Nguyễn Phúc Tăng,1,Nguyễn Quản Bá Hồng,1,Nguyễn Quang Sơn,1,Nguyễn Tài Chung,5,Nguyễn Tăng Vũ,1,Nguyễn Tất Thu,1,Nguyễn Thúc Vũ Hoàng,1,Nguyễn Trung Tuấn,8,Nguyễn Tuấn Anh,2,Nguyễn Văn Huyện,3,Nguyễn Văn Mậu,25,Nguyễn Văn Nho,1,Nguyễn Văn Quý,2,Nguyễn Văn Thông,1,Nguyễn Việt Anh,1,Nguyễn Vũ Lương,2,Nhật Bản,4,Nhóm $\LaTeX$,4,Nhóm Toán,1,Ninh Bình,43,Ninh Thuận,15,Nội Suy Lagrange,2,Nội Suy Newton,1,Nordic,19,Olympiad Corner,1,Olympiad Preliminary,2,Olympic 10,99,Olympic 10/3,5,Olympic 11,92,Olympic 12,30,Olympic 24/3,7,Olympic 27/4,20,Olympic 30/4,69,Olympic KHTN,6,Olympic Sinh Viên,73,Olympic Tháng 4,12,Olympic Toán,304,Olympic Toán Sơ Cấp,3,PAMO,1,Phạm Đình Đồng,1,Phạm Đức Tài,1,Phạm Huy Hoàng,1,Pham Kim Hung,3,Phạm Quốc Sang,2,Phan Huy Khải,1,Phan Thành Nam,1,Pháp,2,Philippines,8,Phú Thọ,30,Phú Yên,29,Phùng Hồ Hải,1,Phương Trình Hàm,11,Phương Trình Pythagoras,1,Pi,1,Polish,32,Problems,1,PT-HPT,14,PTNK,45,Putnam,25,Quảng Bình,44,Quảng Nam,32,Quảng Ngãi,34,Quảng Ninh,43,Quảng Trị,27,Quỹ Tích,1,Riemann,1,RMM,12,RMO,24,Romania,36,Romanian Mathematical,1,Russia,1,Sách Thường Thức Toán,7,Sách Toán,69,Sách Toán Cao Học,1,Sách Toán THCS,7,Saudi Arabia,7,Scholze,1,Serbia,17,Sharygin,24,Shortlists,56,Simon Singh,1,Singapore,1,Số Học - Tổ Hợp,27,Sóc Trăng,28,Sơn La,12,Spain,8,Star Education,5,Stars of Mathematics,11,Swinnerton-Dyer,1,Talent Search,1,Tăng Hải Tuân,2,Tạp Chí,14,Tập San,6,Tây Ban Nha,1,Tây Ninh,29,Thạch Hà,1,Thái Bình,39,Thái Nguyên,49,Thái Vân,2,Thanh Hóa,62,THCS,2,Thổ Nhĩ Kỳ,5,Thomas J. Mildorf,1,THPT Chuyên Lê Quý Đôn,1,THPTQG,15,THTT,7,Thừa Thiên Huế,36,Tiền Giang,19,Tin Tức Toán Học,1,Titu Andreescu,2,Toán 12,7,Toán Cao Cấp,3,Toán Chuyên,2,Toán Rời Rạc,5,Toán Tuổi Thơ,3,Tôn Ngọc Minh Quân,2,TOT,1,TPHCM,126,Trà Vinh,6,Trắc Nghiệm,1,Trắc Nghiệm Toán,2,Trại Hè,34,Trại Hè Hùng Vương,25,Trại Hè Phương Nam,5,Trần Đăng Phúc,1,Trần Minh Hiền,2,Trần Nam Dũng,9,Trần Phương,1,Trần Quang Hùng,1,Trần Quốc Anh,2,Trần Quốc Luật,1,Trần Quốc Nghĩa,1,Trần Tiến Tự,1,Trịnh Đào Chiến,2,Trung Quốc,14,Trường Đông,19,Trường Hè,7,Trường Thu,1,Trường Xuân,2,TST,56,Tuyên Quang,6,Tuyển Sinh,3,Tuyển Sinh 10,680,Tuyển Tập,44,Tuymaada,4,Undergraduate,67,USA,44,USAJMO,10,USATST,7,Uzbekistan,1,Vasile Cîrtoaje,4,Vật Lý,1,Viện Toán Học,2,Vietnam,4,Viktor Prasolov,1,VIMF,1,Vinh,27,Vĩnh Long,21,Vĩnh Phúc,64,Virginia Tech,1,VLTT,1,VMEO,4,VMF,12,VMO,47,VNTST,22,Võ Anh Khoa,1,Võ Quốc Bá Cẩn,26,Võ Thành Văn,1,Vojtěch Jarník,6,Vũ Hữu Bình,7,Vương Trung Dũng,1,WFNMC Journal,1,Wiles,1,Yên Bái,18,Yên Định,1,Yên Thành,1,Zhautykov,11,Zhou Yuan Zhe,1,
ltr
item
MOlympiad: [Solutions] Sharygin Geometry Mathematical Olympiad 2019 (Final Round)
[Solutions] Sharygin Geometry Mathematical Olympiad 2019 (Final Round)
MOlympiad
https://www.molympiad.net/2019/08/solutions-sharygin-geometry-mathematical-olympiad-2019-final-round.html
https://www.molympiad.net/
https://www.molympiad.net/
https://www.molympiad.net/2019/08/solutions-sharygin-geometry-mathematical-olympiad-2019-final-round.html
true
2506595080985176441
UTF-8
Loaded All Posts Not found any posts VIEW ALL Readmore Reply Cancel reply Delete By Home PAGES POSTS View All RECOMMENDED FOR YOU LABEL ARCHIVE SEARCH ALL POSTS Not found any post match with your request Back Home Sunday Monday Tuesday Wednesday Thursday Friday Saturday Sun Mon Tue Wed Thu Fri Sat January February March April May June July August September October November December Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec just now 1 minute ago $$1$$ minutes ago 1 hour ago $$1$$ hours ago Yesterday $$1$$ days ago $$1$$ weeks ago more than 5 weeks ago Followers Follow THIS PREMIUM CONTENT IS LOCKED Please share to unlock Copy All Code Select All Code All codes were copied to your clipboard Can not copy the codes / texts, please press [CTRL]+[C] (or CMD+C with Mac) to copy