[Shortlists & Solutions] Ego Loss May Occur 2019

Algebra

  1. Let $a$, $b$, $c$ be positive reals such that $\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1$. Show that $$a^abc+b^bca+c^cab\ge 27bc+27ca+27ab.$$
  2. A function $g$ is surjective over $\mathbb Z$ if for all integers $y$, there exists an integer $x$ such that $g(x)=y$. Find all functions $f:\mathbb Z\to \mathbb Z$ such that for all surjective functions $g:\mathbb Z\to \mathbb Z$, $f+g$ is also surjective.
  3. Let $m, n \ge 2$ be integers. Carl is given $n$ marked points in the plane and wishes to mark their centroid. He has no standard compass or straightedge. Instead, he has a device which, given marked points $A$ and $B$, marks the $m-1$ points that divide segment $\overline{AB}$ into $m$ congruent parts (but does not draw the segment). For which pairs $(m,n)$ can Carl necessarily accomplish his task, regardless of which $n$ points he is given?. Here, the centroid of $n$ points with coordinates $(x_1, y_1), \dots, (x_n, y_n)$ is the point with coordinates $\left( \frac{x_1 + \dots + x_n}{n}, \frac{y_1 + \dots + y_n}{n}\right)$.
  4. Find all nondecreasing functions $f:\mathbb R\to \mathbb R$ such that, for all $x,y\in \mathbb R$, $$f(f(x))+f(y)=f(x+f(y))+1.$$
  5. Carl chooses a functional expression $E$ which is a finite nonempty string formed from a set $x_1, x_2, \dots$ of variables and applications of a function $f$, together with addition, subtraction, multiplication (but not division), and fixed real constants. He then considers the equation $E = 0$, and lets $S$ denote the set of functions $f \colon \mathbb R \to \mathbb R$ such that the equation holds for any choices of real numbers $x_1, x_2, \dots$. (For example, if Carl chooses the functional equation $$f(2f(x_1)+x_2) - 2f(x_1)-x_2 = 0$$ then $S$ consists of one function, the identity function. a) Let $X$ denote the set of functions with domain $\mathbb R$ and image exactly $\mathbb Z$. Show that Carl can choose his functional equation such that $S$ is nonempty but $S \subseteq X$. b) Can Carl choose his functional equation such that $|S|=1$ and $S \subseteq X$?.

Combinatorics


  1. Elmo and Elmo's clone are playing a game. Initially, $n\geq 3$ points are given on a circle. On a player's turn, that player must draw a triangle using three unused points as vertices, without creating any crossing edges. The first player who cannot move loses. If Elmo's clone goes first and players alternate turns, who wins? (Your answer may be in terms of $n$.)
  2. Adithya and Bill are playing a game on a connected graph with $n > 2$ vertices, two of which are labeled $A$ and $B$, so that $A$ and $B$ are distinct and non-adjacent and known to both players. Adithya starts on vertex $A$ and Bill starts on $B$. Each turn, both players move simultaneously: Bill moves to an adjacent vertex, while Adithya may either move to an adjacent vertex or stay at his current vertex. Adithya loses if he is on the same vertex as Bill, and wins if he reaches $B$ alone. Adithya cannot see where Bill is, but Bill can see where Adithya is. Given that Adithya has a winning strategy, what is the maximum possible number of edges the graph may have? (Your answer may be in terms of $n$.)
  3. In the game of Ring Mafia, there are $2019$ counters arranged in a circle. $673$ of these counters are mafia, and the remaining $1346$ counters are town. Two players, Tony and Madeline, take turns with Tony going first. Tony does not know which counters are mafia but Madeline does. On Tony’s turn, he selects any subset of the counters (possibly the empty set) and removes all counters in that set. On Madeline’s turn, she selects a town counter which is adjacent to a mafia counter and removes it. Whenever counters are removed, the remaining counters are brought closer together without changing their order so that they still form a circle. The game ends when either all mafia counters have been removed, or all town counters have been removed. Is there a strategy for Tony that guarantees, no matter where the mafia counters are placed and what Madeline does, that at least one town counter remains at the end of the game?
  4. Let $n \ge 3$ be a fixed integer. A game is played by $n$ players sitting in a circle. Initially, each player draws three cards from a shuffled deck of $3n$ cards numbered $1, 2, \dots, 3n$. Then, on each turn, every player simultaneously passes the smallest-numbered card in their hand one place clockwise and the largest-numbered card in their hand one place counterclockwise, while keeping the middle card. Let $T_r$ denote the configuration after $r$ turns (so $T_0$ is the initial configuration). Show that $T_r$ is eventually periodic with period $n$, and find the smallest integer $m$ for which, regardless of the initial configuration, $T_m=T_{m+n}$.
  5. Given a permutation of $1,2,3,\dots,n$, with consecutive elements $a,b,c$ (in that order), we may perform either of the moves: If $a$ is the median of $a$, $b$, and $c$, we may replace $a,b,c$ with $b,c,a$ (in that order). If $c$ is the median of $a$, $b$, and $c$, we may replace $a,b,c$ with $c,a,b$ (in that order). What is the least number of sets in a partition of all $n!$ permutations, such that any two permutations in the same set are obtainable from each other by a sequence of moves?.

Geometry

  1. Let $ABC$ be an acute triangle with orthocenter $H$ and circumcircle $\Gamma$. Let $BH$ intersect $AC$ at $E$, and let $CH$ intersect $AB$ at $F$. Let $AH$ intersect $\Gamma$ again at $P \neq A$. Let $PE$ intersect $\Gamma$ again at $Q \neq P$. Prove that $BQ$ bisects segment $\overline{EF}$.
  2. Carl is given three distinct non-parallel lines $\ell_1, \ell_2, \ell_3$ and a circle $\omega$ in the plane. In addition to a normal straightedge, Carl has a special straightedge which, given a line $\ell$ and a point $P$, constructs a new line passing through $P$ parallel to $\ell$. (Carl does not have a compass.) Show that Carl can construct a triangle with circumcircle $\omega$ whose sides are parallel to $\ell_1,\ell_2,\ell_3$ in some order.
  3. Let $\triangle ABC$ be an acute triangle with incenter $I$ and circumcenter $O$. The incircle touches sides $BC,CA,$ and $AB$ at $D,E,$ and $F$ respectively, and $A'$ is the reflection of $A$ over $O$. The circumcircles of $ABC$ and $A'EF$ meet at $G$, and the circumcircles of $AMG$ and $A'EF$ meet at a point $H\neq G$, where $M$ is the midpoint of $EF$. Prove that if $GH$ and $EF$ meet at $T$, then $DT\perp EF$.
  4. Let triangle $ABC$ have altitudes $BE$ and $CF$ which meet at $H$. The reflection of $A$ over $BC$ is $A'$. Let $(ABC)$ meet $(AA'E)$ at $P$ and $(AA'F)$ at $Q$. Let $BC$ meet $PQ$ at $R$. Prove that $EF \parallel HR$.
  5. Given a triangle $ABC$ for which $\angle BAC \neq 90^{\circ}$, let $B_1, C_1$ be variable points on $AB,AC$, respectively. Let $B_2,C_2$ be the points on line $BC$ such that a spiral similarity centered at $A$ maps $B_1C_1$ to $C_2B_2$. Denote the circumcircle of $AB_1C_1$ by $\omega$. Show that if $B_1B_2$ and $C_1C_2$ concur on $\omega$ at a point distinct from $B_1$ and $C_1$, then $\omega$ passes through a fixed point other than $A$.
  6. Let $ABC$ be an acute scalene triangle and let $P$ be a point in the plane. For any point $Q\neq A,B,C$, define $T_A$ to be the unique point such that $\triangle T_ABP \sim \triangle T_AQC$ and $\triangle T_ABP, \triangle T_AQC$ are oriented in the same direction (clockwise or counterclockwise). Similarly define $T_B$, $T_C$. a) Find all $P$ such that there exists a point $Q$ with $T_A,T_B,T_C$ all lying on the circumcircle of $\triangle ABC$. Call such a pair $(P,Q)$ a tasty pair with respect to $\triangle ABC$. b) Keeping the notations from a), determine if there exists a tasty pair which is also tasty with respect to $\triangle T_AT_BT_C$.

Number Theory


  1. Let $P(x)$ be a polynomial with integer coefficients such that $P(0)=1$, and let $c > 1$ be an integer. Define $x_0=0$ and $x_{i+1} = P(x_i)$ for all integers $i \ge 0$. Show that there are infinitely many positive integers $n$ such that $\gcd (x_n, n+c)=1$.
  2. Let $f:\mathbb N\to \mathbb N$. Show that $f(m)+n\mid f(n)+m$ for all positive integers $m\le n$ if and only if $f(m)+n\mid f(n)+m$ for all positive integers $m\ge n$.
  3. Let $S$ be a nonempty set of positive integers such that, for any (not necessarily distinct) integers $a$ and $b$ in $S$, the number $ab+1$ is also in $S$. Show that the set of primes that do not divide any element of $S$ is finite.
  4. A positive integer $b$ and a sequence $a_0,a_1,a_2,\dots$ of integers $0\le a_i<b$ is given. It is known that $a_0\neq 0$ and the sequence $\{a_i\}$ is eventually periodic but has infinitely many nonzero terms. Let $S$ be the set of positive integers $n$ so that $n\mid (a_0a_1\dots a_n)_b$. Given that $S$ is infinite, show that there are infinitely many primes that divide at least one element of $S$.
  5. Given an even positive integer $m$, find all positive integers $n$ for which there exists a bijection $f:[n]\to [n]$ so that, for all $x,y\in [n]$ for which $n\mid mx-y$, $$(n+1)\mid f(x)^m-f(y).$$ Note: For a positive integer $n$, we let $[n] = \{1,2,\dots, n\}$.

JOURNALS_$type=three$cl=blue$c=3$h=1$sr=random$l=0$t=oot$m=0$rm=0

KỶ YẾU_$type=three$cl=green$c=3$h=1$sr=random$l=0$t=oot$m=0$rm=0

Name

Abel,5,Albania,2,AMM,2,Amsterdam,5,An Giang,31,Andrew Wiles,1,Anh,2,APMO,21,Austria (Áo),1,Ba Đình,2,Ba Lan,1,Bà Rịa Vũng Tàu,67,Bắc Bộ,2,Bắc Giang,59,Bắc Kạn,2,Bạc Liêu,13,Bắc Ninh,58,Bắc Trung Bộ,3,Bài Toán Hay,5,Balkan,40,Baltic Way,32,BAMO,1,Bất Đẳng Thức,68,Bến Tre,65,Benelux,15,Bình Định,58,Bình Dương,32,Bình Phước,44,Bình Thuận,38,Birch,1,BMO,40,Booklet,11,Bosnia Herzegovina,3,BoxMath,3,Brazil,2,British,16,Bùi Đắc Hiên,1,Bùi Thị Thiện Mỹ,1,Bùi Văn Tuyên,1,Bùi Xuân Diệu,1,Bulgaria,6,Buôn Ma Thuột,1,BxMO,14,Cà Mau,20,Cần Thơ,21,Canada,40,Cao Bằng,11,Cao Quang Minh,1,Câu Chuyện Toán Học,36,Caucasus,3,CGMO,11,China - Trung Quốc,25,Chọn Đội Tuyển,439,Chu Tuấn Anh,1,Chuyên Đề,124,Chuyên SPHCM,7,Chuyên SPHN,26,Chuyên Trần Hưng Đạo,2,Collection,8,College Mathematic,1,Concours,1,Cono Sur,1,Contest,665,Correspondence,1,Cosmin Poahata,1,Crux,2,Czech-Polish-Slovak,26,Đà Nẵng,47,Đa Thức,2,Đại Số,20,Đắk Lắk,68,Đắk Nông,10,Đan Phượng,1,Danube,7,Đào Thái Hiệp,1,ĐBSCL,2,Đề Thi,1,Đề Thi HSG,1961,Đề Thi JMO,1,DHBB,28,Điện Biên,9,Định Lý,1,Định Lý Beaty,1,Đỗ Hữu Đức Thịnh,1,Do Thái,3,Doãn Quang Tiến,5,Đoàn Quỳnh,1,Đoàn Văn Trung,1,Đống Đa,4,Đồng Nai,60,Đồng Tháp,62,Du Hiền Vinh,1,Đức,1,Dương Quỳnh Châu,1,Duyên Hải Bắc Bộ,28,E-Book,31,EGMO,29,ELMO,19,EMC,10,Epsilon,1,Estonian,5,Euler,1,Evan Chen,1,Fermat,3,Finland,4,Forum Of Geometry,2,Furstenberg,1,G. Polya,3,Gặp Gỡ Toán Học,29,Gauss,1,GDTX,3,Geometry,14,GGTH,29,Gia Lai,35,Gia Viễn,2,Giải Tích Hàm,1,Giảng Võ,1,Giới hạn,2,Goldbach,1,Hà Giang,4,Hà Lan,1,Hà Nam,35,Hà Nội,253,Hà Tĩnh,83,Hà Trung Kiên,1,Hải Dương,61,Hải Phòng,49,Hậu Giang,6,Hậu Lộc,1,Hilbert,2,Hình Học,33,HKUST,7,Hòa Bình,21,Hoài Nhơn,1,Hoàng Bá Minh,1,Hoàng Minh Quân,1,Hodge,1,Hojoo Lee,2,HOMC,5,HongKong,8,HSG 10,109,HSG 10 2015-2016,1,HSG 10 2021-2022,1,HSG 10 2022-2023,1,HSG 10 Bà Rịa Vũng Tàu,1,HSG 10 Bắc Giang,1,HSG 10 Bạc Liêu,2,HSG 10 Bắc Ninh,3,HSG 10 Bình Định,1,HSG 10 Bình Dương,1,HSG 10 Bình Thuận,3,HSG 10 Chuyên SPHN,4,HSG 10 Đắk Lắk,2,HSG 10 Đồng Nai,4,HSG 10 Gia Lai,2,HSG 10 Hà Nam,3,HSG 10 Hà Tĩnh,13,HSG 10 Hải Dương,8,HSG 10 KHTN,9,HSG 10 Nghệ An,1,HSG 10 Ninh Thuận,1,HSG 10 Phú Yên,2,HSG 10 Quảng Trị,2,HSG 10 Thái Nguyên,8,HSG 10 Thanh Hóa,1,HSG 10 Trà Vinh,5,HSG 10 Vĩnh Phúc,14,HSG 11,111,HSG 11 2011-2012,1,HSG 11 2012-2013,1,HSG 11 2018-2019,1,HSG 11 Bà Rịa Vũng Tàu,1,HSG 11 Bắc Giang,4,HSG 11 Bạc Liêu,2,HSG 11 Bắc Ninh,4,HSG 11 Bình Định,11,HSG 11 Bình Dương,3,HSG 11 Bình Thuận,1,HSG 11 Cà Mau,1,HSG 11 Đà Nẵng,9,HSG 11 Đồng Nai,1,HSG 11 Hà Nam,1,HSG 11 Hà Tĩnh,10,HSG 11 Hải Phòng,1,HSG 11 HSG 12 Quảng Ngãi,8,HSG 11 Kiên Giang,4,HSG 11 Lạng Sơn,11,HSG 11 Nghệ An,6,HSG 11 Ninh Bình,2,HSG 11 Quảng Bình,7,HSG 11 Quảng Trị,3,HSG 11 Sóc Trăng,1,HSG 11 Thái Nguyên,8,HSG 11 Thanh Hóa,4,HSG 11 Trà Vinh,1,HSG 11 Vĩnh Long,2,HSG 11 Vĩnh Phúc,10,HSG 12,567,HSG 12 2009-2010,1,HSG 12 2010-2011,38,HSG 12 2011-2012,43,HSG 12 2012-2013,57,HSG 12 2013-2014,52,HSG 12 2014-2015,42,HSG 12 2015-2016,33,HSG 12 2016-2017,46,HSG 12 2017-2018,58,HSG 12 2018-2019,42,HSG 12 2019-2020,41,HSG 12 2020-2021,42,HSG 12 2021-2022,32,HSG 12 2022-2023,1,HSG 12 An Giang,7,HSG 12 Bà Rịa Vũng Tàu,10,HSG 12 Bắc Giang,17,HSG 12 Bạc Liêu,2,HSG 12 Bắc Ninh,13,HSG 12 Bến Tre,16,HSG 12 Bình Định,14,HSG 12 Bình Dương,6,HSG 12 Bình Phước,8,HSG 12 Bình Thuận,7,HSG 12 Cà Mau,8,HSG 12 Cần Thơ,7,HSG 12 Cao Bằng,5,HSG 12 Chuyên SPHN,9,HSG 12 Đà Nẵng,3,HSG 12 Đắk Lắk,20,HSG 12 Đắk Nông,1,HSG 12 Đồng Nai,20,HSG 12 Đồng Tháp,18,HSG 12 Gia Lai,12,HSG 12 Hà Nam,3,HSG 12 Hà Nội,14,HSG 12 Hà Tĩnh,15,HSG 12 Hải Dương,13,HSG 12 Hải Phòng,17,HSG 12 Hòa Bình,1,HSG 12 Hưng Yên,9,HSG 12 Khánh Hòa,2,HSG 12 KHTN,24,HSG 12 Kiên Giang,11,HSG 12 Lâm Đồng,9,HSG 12 Lạng Sơn,7,HSG 12 Lào Cai,16,HSG 12 Long An,17,HSG 12 Nam Định,7,HSG 12 Nghệ An,11,HSG 12 Ninh Bình,10,HSG 12 Ninh Thuận,6,HSG 12 Phú Thọ,8,HSG 12 Phú Yên,10,HSG 12 Quảng Bình,12,HSG 12 Quảng Nam,9,HSG 12 Quảng Ngãi,5,HSG 12 Quảng Ninh,19,HSG 12 Quảng Trị,7,HSG 12 Sóc Trăng,4,HSG 12 Sơn La,4,HSG 12 Tây Ninh,6,HSG 12 Thái Nguyên,12,HSG 12 Thanh Hóa,17,HSG 12 Thừa Thiên Huế,15,HSG 12 Tiền Giang,2,HSG 12 TPHCM,12,HSG 12 Vĩnh Long,6,HSG 12 Vĩnh Phúc,22,HSG 9,481,HSG 9 2009-2010,1,HSG 9 2010-2011,21,HSG 9 2011-2012,44,HSG 9 2012-2013,44,HSG 9 2013-2014,35,HSG 9 2014-2015,40,HSG 9 2015-2016,39,HSG 9 2016-2017,40,HSG 9 2017-2018,47,HSG 9 2018-2019,39,HSG 9 2019-2020,17,HSG 9 2020-2021,41,HSG 9 2021-202,1,HSG 9 2021-2022,32,HSG 9 2022-2023,1,HSG 9 An Giang,6,HSG 9 Bà Rịa Vũng Tàu,6,HSG 9 Bắc Giang,12,HSG 9 Bắc Ninh,12,HSG 9 Bến Tre,9,HSG 9 Bình Định,9,HSG 9 Bình Dương,5,HSG 9 Bình Phước,11,HSG 9 Bình Thuận,5,HSG 9 Cà Mau,1,HSG 9 Cao Bằng,1,HSG 9 Chuyên SPHN,2,HSG 9 Đà Nẵng,10,HSG 9 Đắk Lắk,10,HSG 9 Đắk Nông,1,HSG 9 Đồng Nai,6,HSG 9 Đồng Tháp,10,HSG 9 Gia Lai,7,HSG 9 Hà Giang,3,HSG 9 Hà Nam,8,HSG 9 Hà Nội,25,HSG 9 Hà Tĩnh,13,HSG 9 Hải Dương,14,HSG 9 Hải Phòng,7,HSG 9 Hậu Giang,3,HSG 9 Hòa Bình,3,HSG 9 Hưng Yên,9,HSG 9 Khánh Hòa,4,HSG 9 Kiên Giang,15,HSG 9 Lâm Đồng,12,HSG 9 Lạng Sơn,8,HSG 9 Lào Cai,3,HSG 9 Long An,7,HSG 9 Nam Định,7,HSG 9 Nghệ An,16,HSG 9 Ninh Bình,10,HSG 9 Ninh Thuận,3,HSG 9 Phú Thọ,4,HSG 9 Phú Yên,8,HSG 9 Quảng Bình,12,HSG 9 Quảng Nam,11,HSG 9 Quảng Ngãi,9,HSG 9 Quảng Ninh,14,HSG 9 Quảng Trị,9,HSG 9 Sóc Trăng,6,HSG 9 Sơn La,3,HSG 9 Tây Ninh,15,HSG 9 Thái Nguyên,5,HSG 9 Thanh Hóa,16,HSG 9 Thừa Thiên Huế,8,HSG 9 Tiền Giang,5,HSG 9 TPHCM,9,HSG 9 Trà Vinh,2,HSG 9 Vĩnh Long,10,HSG 9 Vĩnh Phúc,11,HSG Cấp Trường,80,HSG Quốc Gia,109,HSG Quốc Tế,16,Hứa Lâm Phong,1,Hứa Thuần Phỏng,1,Hùng Vương,2,Hưng Yên,38,Hương Sơn,2,Huỳnh Kim Linh,1,Hy Lạp,1,IMC,26,IMO,57,IMT,2,India - Ấn Độ,47,Inequality,13,InMC,1,International,340,Iran,13,Jakob,1,JBMO,41,Jewish,1,Journal,30,Junior,38,K2pi,1,Kazakhstan,1,Khánh Hòa,24,KHTN,59,Kiên Giang,69,Kim Liên,1,Kon Tum,18,Korea - Hàn Quốc,5,Kvant,2,Kỷ Yếu,45,Lai Châu,6,Lâm Đồng,40,Lăng Hồng Nguyệt Anh,1,Lạng Sơn,33,Langlands,1,Lào Cai,32,Lê Hải Châu,1,Lê Hải Khôi,1,Lê Hoành Phò,4,Lê Hồng Phong,5,Lê Khánh Sỹ,3,Lê Minh Cường,1,Lê Phúc Lữ,1,Lê Phương,1,Lê Quý Đôn,1,Lê Viết Hải,1,Lê Việt Hưng,2,Leibniz,1,Long An,46,Lớp 10 Chuyên,641,Lớp 10 Không Chuyên,341,Lớp 11,1,Lục Ngạn,1,Lượng giác,1,Lương Tài,1,Lưu Giang Nam,2,Lưu Lý Tưởng,1,Lý Thánh Tông,1,Macedonian,1,Malaysia,1,Margulis,2,Mark Levi,1,Mathematical Excalibur,1,Mathematical Reflections,1,Mathematics Magazine,1,Mathematics Today,1,Mathley,1,MathLinks,1,MathProblems Journal,1,Mathscope,8,MathsVN,5,MathVN,1,MEMO,12,Metropolises,4,Mexico,1,MIC,1,Michael Guillen,1,Mochizuki,1,Moldova,1,Moscow,1,MYTS,4,Nam Định,43,Nam Phi,1,National,275,Nesbitt,1,Newton,4,Nghệ An,65,Ngô Bảo Châu,2,Ngô Việt Hải,1,Ngọc Huyền,2,Nguyễn Anh Tuyến,1,Nguyễn Bá Đang,1,Nguyễn Đình Thi,1,Nguyễn Đức Tấn,1,Nguyễn Đức Thắng,1,Nguyễn Duy Khương,1,Nguyễn Duy Tùng,1,Nguyễn Hữu Điển,3,Nguyễn Minh Hà,1,Nguyễn Minh Tuấn,9,Nguyễn Nhất Huy,1,Nguyễn Phan Tài Vương,1,Nguyễn Phú Khánh,1,Nguyễn Phúc Tăng,2,Nguyễn Quản Bá Hồng,1,Nguyễn Quang Sơn,1,Nguyễn Song Thiên Long,1,Nguyễn Tài Chung,5,Nguyễn Tăng Vũ,1,Nguyễn Tất Thu,1,Nguyễn Thúc Vũ Hoàng,1,Nguyễn Trung Tuấn,8,Nguyễn Tuấn Anh,2,Nguyễn Văn Huyện,3,Nguyễn Văn Mậu,25,Nguyễn Văn Nho,1,Nguyễn Văn Quý,2,Nguyễn Văn Thông,1,Nguyễn Việt Anh,1,Nguyễn Vũ Lương,2,Nhật Bản,4,Nhóm $\LaTeX$,4,Nhóm Toán,1,Ninh Bình,54,Ninh Thuận,23,Nội Suy Lagrange,2,Nội Suy Newton,1,Nordic,21,Olympiad Corner,1,Olympiad Preliminary,2,Olympic 10,124,Olympic 10/3,5,Olympic 10/3 Đắk Lắk,5,Olympic 11,116,Olympic 12,48,Olympic 23/3,2,Olympic 24/3,10,Olympic 24/3 Quảng Nam,10,Olympic 27/4,22,Olympic 30/4,57,Olympic KHTN,7,Olympic Sinh Viên,75,Olympic Tháng 4,12,Olympic Toán,327,Olympic Toán Sơ Cấp,3,Ôn Thi 10,2,PAMO,1,Phạm Đình Đồng,1,Phạm Đức Tài,1,Phạm Huy Hoàng,1,Pham Kim Hung,3,Phạm Quốc Sang,2,Phan Huy Khải,1,Phan Quang Đạt,1,Phan Thành Nam,1,Pháp,2,Philippines,8,Phú Thọ,30,Phú Yên,35,Phùng Hồ Hải,1,Phương Trình Hàm,11,Phương Trình Pythagoras,1,Pi,1,Polish,32,Problems,1,PT-HPT,14,PTNK,50,Putnam,27,Quảng Bình,53,Quảng Nam,50,Quảng Ngãi,39,Quảng Ninh,52,Quảng Trị,35,Quỹ Tích,1,Riemann,1,RMM,13,RMO,24,Romania,37,Romanian Mathematical,1,Russia,1,Sách Thường Thức Toán,7,Sách Toán,70,Sách Toán Cao Học,1,Sách Toán THCS,7,Saudi Arabia - Ả Rập Xê Út,8,Scholze,1,Serbia,17,Sharygin,28,Shortlists,56,Simon Singh,1,Singapore,1,Số Học - Tổ Hợp,28,Sóc Trăng,29,Sơn La,16,Spain,8,Star Education,1,Stars of Mathematics,11,Swinnerton-Dyer,1,Talent Search,1,Tăng Hải Tuân,2,Tạp Chí,17,Tập San,3,Tây Ban Nha,1,Tây Ninh,34,Thạch Hà,1,Thái Bình,42,Thái Nguyên,55,Thái Vân,2,Thanh Hóa,70,THCS,2,Thổ Nhĩ Kỳ,5,Thomas J. Mildorf,1,THPT Chuyên Lê Quý Đôn,1,THPTQG,16,THTT,6,Thừa Thiên Huế,48,Tiền Giang,25,Tin Tức Toán Học,1,Titu Andreescu,2,Toán 12,7,Toán Cao Cấp,3,Toán Rời Rạc,5,Toán Tuổi Thơ,3,Tôn Ngọc Minh Quân,2,TOT,1,TPHCM,140,Trà Vinh,9,Trắc Nghiệm,1,Trắc Nghiệm Toán,2,Trại Hè,36,Trại Hè Hùng Vương,28,Trại Hè Phương Nam,7,Trần Đăng Phúc,1,Trần Minh Hiền,2,Trần Nam Dũng,10,Trần Phương,1,Trần Quang Hùng,1,Trần Quốc Anh,2,Trần Quốc Luật,1,Trần Quốc Nghĩa,1,Trần Tiến Tự,1,Trịnh Đào Chiến,2,Trường Đông,20,Trường Hè,8,Trường Thu,1,Trường Xuân,2,TST,468,TST 2008-2009,1,TST 2010-2011,21,TST 2011-2012,23,TST 2012-2013,31,TST 2013-2014,29,TST 2014-2015,23,TST 2015-2016,25,TST 2016-2017,41,TST 2017-2018,41,TST 2018-2019,31,TST 2019-2020,36,TST 2020-2021,27,TST 2021-2022,33,TST 2022-2023,2,TST An Giang,6,TST Bà Rịa Vũng Tàu,10,TST Bắc Giang,5,TST Bắc Ninh,11,TST Bến Tre,7,TST Bình Định,4,TST Bình Dương,5,TST Bình Phước,7,TST Bình Thuận,8,TST Cà Mau,5,TST Cần Thơ,4,TST Cao Bằng,2,TST Đà Nẵng,8,TST Đắk Lắk,10,TST Đắk Nông,1,TST Đồng Nai,11,TST Đồng Tháp,12,TST Gia Lai,4,TST Hà Nam,6,TST Hà Nội,10,TST Hà Tĩnh,13,TST Hải Dương,10,TST Hải Phòng,11,TST Hòa Bình,2,TST Hưng Yên,8,TST Khánh Hòa,7,TST Kiên Giang,9,TST Lâm Đồng,10,TST Lạng Sơn,2,TST Lào Cai,4,TST Long An,5,TST Nam Định,8,TST Nghệ An,7,TST Ninh Bình,11,TST Ninh Thuận,3,TST Phú Thọ,5,TST Phú Yên,4,TST PTNK,9,TST Quảng Bình,11,TST Quảng Nam,5,TST Quảng Ngãi,6,TST Quảng Ninh,7,TST Quảng Trị,8,TST Sóc Trăng,3,TST Sơn La,6,TST Thái Nguyên,6,TST Thanh Hóa,7,TST Thừa Thiên Huế,3,TST Tiền Giang,4,TST TPHCM,13,TST Trà Vinh,1,TST Vĩnh Long,5,TST Vĩnh Phúc,7,Tuyên Quang,9,Tuyển Sinh,4,Tuyển Sinh 10,981,Tuyển Sinh 10 An Giang,12,Tuyển Sinh 10 Bà Rịa Vũng Tàu,21,Tuyển Sinh 10 Bắc Giang,19,Tuyển Sinh 10 Bạc Liêu,7,Tuyển Sinh 10 Bắc Ninh,15,Tuyển Sinh 10 Bến Tre,33,Tuyển Sinh 10 Bình Định,19,Tuyển Sinh 10 Bình Dương,12,Tuyển Sinh 10 Bình Phước,18,Tuyển Sinh 10 Bình Thuận,14,Tuyển Sinh 10 Cà Mau,5,Tuyển Sinh 10 Cần Thơ,8,Tuyển Sinh 10 Cao Bằng,2,Tuyển Sinh 10 Chuyên SPHN,15,Tuyển Sinh 10 Đà Nẵng,16,Tuyển Sinh 10 Đắk Lắk,20,Tuyển Sinh 10 Đắk Nông,5,Tuyển Sinh 10 Đồng Nai,18,Tuyển Sinh 10 Đồng Tháp,22,Tuyển Sinh 10 Gia Lai,9,Tuyển Sinh 10 Hà Giang,1,Tuyển Sinh 10 Hà Nam,14,Tuyển Sinh 10 Hà Nội,80,Tuyển Sinh 10 Hà Tĩnh,18,Tuyển Sinh 10 Hải Dương,16,Tuyển Sinh 10 Hải Phòng,13,Tuyển Sinh 10 Hậu Giang,3,Tuyển Sinh 10 Hòa Bình,15,Tuyển Sinh 10 Hưng Yên,12,Tuyển Sinh 10 Khánh Hòa,11,Tuyển Sinh 10 KHTN,19,Tuyển Sinh 10 Kiên Giang,30,Tuyển Sinh 10 Lâm Đồng,9,Tuyển Sinh 10 Lạng Sơn,6,Tuyển Sinh 10 Lào Cai,9,Tuyển Sinh 10 Long An,17,Tuyển Sinh 10 Nam Định,21,Tuyển Sinh 10 Nghệ An,22,Tuyển Sinh 10 Ninh Bình,19,Tuyển Sinh 10 Ninh Thuận,10,Tuyển Sinh 10 Phú Thọ,7,Tuyển Sinh 10 Phú Yên,10,Tuyển Sinh 10 PTNK,35,Tuyển Sinh 10 Quảng Bình,10,Tuyển Sinh 10 Quảng Nam,15,Tuyển Sinh 10 Quảng Ngãi,11,Tuyển Sinh 10 Quảng Ninh,10,Tuyển Sinh 10 Quảng Trị,6,Tuyển Sinh 10 Sóc Trăng,15,Tuyển Sinh 10 Sơn La,3,Tuyển Sinh 10 Tây Ninh,13,Tuyển Sinh 10 Thái Nguyên,16,Tuyển Sinh 10 Thanh Hóa,24,Tuyển Sinh 10 Thừa Thiên Huế,22,Tuyển Sinh 10 Tiền Giang,14,Tuyển Sinh 10 TPHCM,23,Tuyển Sinh 10 Vĩnh Long,12,Tuyển Sinh 10 Vĩnh Phúc,19,Tuyển Sinh 2008-2009,1,Tuyển Sinh 2009-2010,1,Tuyển Sinh 2010-2011,6,Tuyển Sinh 2011-2012,20,Tuyển Sinh 2012-2013,63,Tuyển Sinh 2013-2014,78,Tuyển Sinh 2014-2015,78,Tuyển Sinh 2015-2016,60,Tuyển Sinh 2016-2017,72,Tuyển Sinh 2017-2018,126,Tuyển Sinh 2018-2019,57,Tuyển Sinh 2019-2020,69,Tuyển Sinh 2020-2021,58,Tuyển Sinh 2021-202,1,Tuyển Sinh 2021-2022,70,Tuyển Sinh 2022-2023,108,Tuyển Sinh Chuyên SPHCM,7,Tuyển Tập,45,Tuymaada,6,UK - Anh,16,Undergraduate,69,USA - Mỹ,62,USA TSTST,6,USAJMO,12,USATST,8,USEMO,4,Uzbekistan,1,Vasile Cîrtoaje,4,Vật Lý,1,Viện Toán Học,3,Vietnam,4,Viktor Prasolov,1,VIMF,1,Vinh,28,Vĩnh Long,35,Vĩnh Phúc,83,Virginia Tech,1,VLTT,1,VMEO,4,VMF,12,VMO,50,VNTST,23,Võ Anh Khoa,1,Võ Quốc Bá Cẩn,26,Võ Thành Văn,1,Vojtěch Jarník,6,Vũ Hữu Bình,7,Vương Trung Dũng,1,WFNMC Journal,1,Wiles,1,Yên Bái,22,Yên Định,1,Yên Thành,1,Zhautykov,13,Zhou Yuan Zhe,1,
ltr
item
MOlympiad.NET: [Shortlists & Solutions] Ego Loss May Occur 2019
[Shortlists & Solutions] Ego Loss May Occur 2019
MOlympiad.NET
https://www.molympiad.net/2019/08/shortlists-solutions-elmo-2019.html
https://www.molympiad.net/
https://www.molympiad.net/
https://www.molympiad.net/2019/08/shortlists-solutions-elmo-2019.html
true
2506595080985176441
UTF-8
Loaded All Posts Not found any posts VIEW ALL Readmore Reply Cancel reply Delete By Home PAGES POSTS View All RECOMMENDED FOR YOU Tag ARCHIVE SEARCH ALL POSTS Not found any post match with your request Back Home Sunday Monday Tuesday Wednesday Thursday Friday Saturday Sun Mon Tue Wed Thu Fri Sat January February March April May June July August September October November December Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec just now 1 minute ago $$1$$ minutes ago 1 hour ago $$1$$ hours ago Yesterday $$1$$ days ago $$1$$ weeks ago more than 5 weeks ago Followers Follow THIS PREMIUM CONTENT IS LOCKED
NỘI DUNG CAO CẤP NÀY ĐÃ BỊ KHÓA
STEP 1: SHARE THIS ARTICLE TO A SOCIAL NETWORK
BƯỚC 1: CHIA SẺ BÀI VIẾT NÀY LÊN MẠNG XÃ HỘI
STEP 2: CLICK THE LINK ON YOUR SOCIAL NETWORK
BƯỚC 2: BẤM VÀO ĐƯỜNG DẪN TRÊN MẠNG XÃ HỘI CỦA BẠN
Copy All Code Select All Code All codes were copied to your clipboard Can not copy the codes / texts, please press [CTRL]+[C] (or CMD+C with Mac) to copy Table of Content