$hide=mobile

[Đáp Án] Đề Thi Chọn Đội Tuyển TP Đà Nẵng Dự Thi Học Sinh Giỏi Quốc Gia THPT 2017-2018

  1. a) Cho $n$ là số nguyên dương và gọi $x_{n}$ là nghiệm dương duy nhất của đa thức $$f_{n}(t)=t^{3}+3 t^{2}-\frac{12}{n^{2}}.$$ b) Chứng minh rằng dãy $\left(y_{n}\right)$ được xác định bởi $y_{n}=n\left(n x_{n}-2\right)$ có giới hạn, tìm giới hạn đó.
  2. Kí hiệu $\mathbb{R}$ là tập tất cả các số thực. Với mỗi số thực $t,$ gọi $g(t)$ là số tất cả các hàm $f: \mathbb{R} \rightarrow \mathbb{R}$ thỏa mãn $$ f(x y+f(y))=f(x) y+t$$ với mọi số thực $x$, $y$. Tìm hàm số $g(t)$.
  3. Cho tam giác $A B C$. Gọi $D$ là một điểm trên cạnh $B C$ sao cho $\widehat{B A D}=\widehat{C A D} .$ Đường thẳng $A D$ cắt các tiếp tuyến chung của hai đường tròn ngoại tiếp hai tam giác $A B D$ và $A C D$ lần lượt tại $P$ và $Q .$ Chúng minh rằng $$P Q^{2}=A B \times A C.$$
  4. Một lóp $10$ chuyên toán ở một trương trung học phổ thông chuyên có $n$ $(n \geq 6)$ học sinh, trong số đó có môt số học sinh đã quen biết với nhau từ trước khi thi vào trường. Biết rằng, các điều kiện sau được thỏa mãn
    • mỗi học sinh trong lớp đã quen với nhiều nhất $n-\left[\frac{n+2}{2}\right]$ học sinh khác;
    • trong số ba học sinh bất kỳ trong lóp, có ít nhất hai học sinh đã quen biết nhau. Chứng minh rằng có thề chia n học sinh của lớp thành hai nhóm khác nhau sao cho bất kỳ hai học sinh trong cùng một nhóm đều đã quen nhau. (Kí hiệu $[x]$ là số nguyên lớn nhất không vượt quá $x$ ).
    1. Ta gọi một bộ các số nguyên $\left(b_{m}, b_{m+1}, \ldots, b_{n}\right)$ là hoàn håo nếu các điều kiện sau đồng thời được thỏa mãn
      • Tồn tại một số nguyên $a>1$ sao cho $b_{k}=a^{k}+1$ với mỗi $k=m, m+1, \ldots, n$.
      • Với mỗi $k=m, m+1, \ldots, n,$ tôn tai môt số nguyên tố $q$ và một số nguyên không âm $t$ sao cho $b_{k}=q^{t}$.
      Chứng minh rằng nếu $n-m$ là đủ lớn thì các bộ số nguyên hoàn hảo như trên là không tồn tại. Hãy tìm tất cả các bộ số nguyên hoàn hảo sao cho $n-m$ là lớn nhất.
    2. Cho tam giác $A B C .$ Đường tròn nội tiếp tâm $I$ của tam giác lần lượt tiếp xúc với các canh $B C$, $C A$, $A B$ tại các điểm $D$, $E$, $F$. Gọi $P$ là điểm nằm trên đoạn $E F$ sao cho $D P$ vuông góc với $E F$. Tia $B P$ cắt $A C$ tại $Y$ và tia $C P$ cắt $A B$ tại $Z$. Lấy điểm $Q$ trên đường tròn ngoại tiếp tam giác $A Y Z$ sao cho $A Q$ vuông góc với $B C$. Chứng minh rằng
      a) Các đường thằng $DP$ và $EF$ lần lượt là các đường phân giác trong và ngoài cůa góc $\widehat{B P C}$.
      b) Các điểm $I$, $P$, $Q$ thẳng hàng.
    3. Cho tập $S=\{1 ; 2 ; \ldots ; 2017\}$ và $A_{1}, A_{2}, \ldots, A_{k}$ là các tâp con của $S$ sao cho với mọi $1 \leq i<j \leq k$ có đúng một trong các tập $A_{i} \cap A_{j}$, $A_{i}^{\prime} \cap A_{j}$, $A_{i} \cap A_{j}^{\prime}$, $A_{i}^{\prime} \cap A_{j}^{\prime}$ là tâp rỗng. Tìm giá trị lớn nhất có thể có của $k$ (với $A \subset S, A^{\prime}$ kí hiệu là phần bù của tập $A$ trong $S$.)

    Post a Comment


    $hide=home

    $type=three$count=6$sr=random$t=oot$h=1$l=0$meta=hide$rm=hide$sn=0

    $hide=post$type=three$count=6$sr=random$t=oot$h=1$l=0$meta=hide$rm=hide$sn=0

    $hide=home

    Kỷ Yếu$cl=violet$type=three$count=6$sr=random$t=oot$h=1$l=0$meta=hide$rm=hide$sn=0

    Journals$cl=green$type=three$count=6$sr=random$t=oot$h=1$l=0$meta=hide$rm=hide$sn=0

    Name

    Ả-rập Xê-út,1,Abel,5,Albania,2,AMM,2,Amsterdam,5,Ấn Độ,1,An Giang,21,Andrew Wiles,1,Anh,2,Áo,1,APMO,19,Ba Đình,2,Ba Lan,1,Bà Rịa Vũng Tàu,52,Bắc Giang,49,Bắc Kạn,1,Bạc Liêu,9,Bắc Ninh,47,Bắc Trung Bộ,7,Bài Toán Hay,5,Balkan,37,Baltic Way,30,BAMO,1,Bất Đẳng Thức,66,Bến Tre,46,Benelux,13,Bình Định,44,Bình Dương,21,Bình Phước,38,Bình Thuận,34,Birch,1,Booklet,11,Bosnia Herzegovina,3,BoxMath,3,Brazil,2,Bùi Đắc Hiên,1,Bùi Thị Thiện Mỹ,1,Bùi Văn Tuyên,1,Bùi Xuân Diệu,1,Bulgaria,5,Buôn Ma Thuột,1,BxMO,12,Cà Mau,13,Cần Thơ,14,Canada,39,Cao Bằng,6,Cao Quang Minh,1,Câu Chuyện Toán Học,36,Caucasus,2,CGMO,10,China,10,Chọn Đội Tuyển,347,Chu Tuấn Anh,1,Chuyên Đề,124,Chuyên Sư Phạm,31,Chuyên Trần Hưng Đạo,3,Collection,8,College Mathematic,1,Concours,1,Cono Sur,1,Contest,610,Correspondence,1,Cosmin Poahata,1,Crux,2,Czech-Polish-Slovak,25,Đà Nẵng,39,Đa Thức,2,Đại Số,20,Đắk Lắk,54,Đắk Nông,7,Đan Phượng,1,Danube,7,Đào Thái Hiệp,1,ĐBSCL,2,Đề Thi HSG,1641,Đề Thi JMO,1,Điện Biên,8,Định Lý,1,Định Lý Beaty,1,Đỗ Hữu Đức Thịnh,1,Do Thái,3,Doãn Quang Tiến,4,Đoàn Quỳnh,1,Đoàn Văn Trung,1,Đống Đa,4,Đồng Nai,49,Đồng Tháp,51,Du Hiền Vinh,1,Đức,1,Duyên Hải Bắc Bộ,25,E-Book,33,EGMO,16,ELMO,19,EMC,8,Epsilon,1,Estonian,5,Euler,1,Evan Chen,1,Fermat,3,Finland,4,Forum Of Geometry,2,Furstenberg,1,G. Polya,3,Gặp Gỡ Toán Học,26,Gauss,1,GDTX,3,Geometry,12,Gia Lai,25,Gia Viễn,2,Giải Tích Hàm,1,Giảng Võ,1,Giới hạn,2,Goldbach,1,Hà Giang,2,Hà Lan,1,Hà Nam,29,Hà Nội,231,Hà Tĩnh,72,Hà Trung Kiên,1,Hải Dương,49,Hải Phòng,42,Hàn Quốc,5,Hậu Giang,4,Hậu Lộc,1,Hilbert,1,Hình Học,33,HKUST,7,Hòa Bình,13,Hoài Nhơn,1,Hoàng Bá Minh,1,Hoàng Minh Quân,1,Hodge,1,Hojoo Lee,2,HOMC,5,HongKong,8,HSG 10,100,HSG 11,86,HSG 12,580,HSG 9,402,HSG Cấp Trường,78,HSG Quốc Gia,99,HSG Quốc Tế,16,Hứa Lâm Phong,1,Hứa Thuần Phỏng,1,Hùng Vương,2,Hưng Yên,32,Hương Sơn,2,Huỳnh Kim Linh,1,Hy Lạp,1,IMC,25,IMO,54,India,45,Inequality,13,InMC,1,International,307,Iran,11,Jakob,1,JBMO,41,Jewish,1,Journal,20,Junior,38,K2pi,1,Kazakhstan,1,Khánh Hòa,16,KHTN,53,Kiên Giang,63,Kim Liên,1,Kon Tum,18,Korea,5,Kvant,2,Kỷ Yếu,42,Lai Châu,4,Lâm Đồng,33,Lạng Sơn,21,Langlands,1,Lào Cai,16,Lê Hải Châu,1,Lê Hải Khôi,1,Lê Hoành Phò,4,Lê Khánh Sỹ,3,Lê Minh Cường,1,Lê Phúc Lữ,1,Lê Phương,1,Lê Quý Đôn,1,Lê Viết Hải,1,Lê Việt Hưng,1,Leibniz,1,Long An,42,Lớp 10,10,Lớp 10 Chuyên,452,Lớp 10 Không Chuyên,229,Lớp 11,1,Lục Ngạn,1,Lượng giác,1,Lương Tài,1,Lưu Giang Nam,2,Lý Thánh Tông,1,Macedonian,1,Malaysia,1,Margulis,2,Mark Levi,1,Mathematical Excalibur,1,Mathematical Reflections,1,Mathematics Magazine,1,Mathematics Today,1,Mathley,1,MathLinks,1,MathProblems Journal,1,Mathscope,8,MathsVN,5,MathVN,1,MEMO,10,Metropolises,4,Mexico,1,MIC,1,Michael Guillen,1,Mochizuki,1,Moldova,1,Moscow,1,Mỹ,9,MYTS,4,Nam Định,32,Nam Phi,1,Nam Trung Bộ,1,National,249,Nesbitt,1,Newton,4,Nghệ An,50,Ngô Bảo Châu,2,Ngô Việt Hải,1,Ngọc Huyền,2,Nguyễn Anh Tuyến,1,Nguyễn Bá Đang,1,Nguyễn Đình Thi,1,Nguyễn Đức Tấn,1,Nguyễn Đức Thắng,1,Nguyễn Duy Khương,1,Nguyễn Duy Tùng,1,Nguyễn Hữu Điển,3,Nguyễn Mình Hà,1,Nguyễn Minh Tuấn,8,Nguyễn Phan Tài Vương,1,Nguyễn Phú Khánh,1,Nguyễn Phúc Tăng,1,Nguyễn Quản Bá Hồng,1,Nguyễn Quang Sơn,1,Nguyễn Tài Chung,5,Nguyễn Tăng Vũ,1,Nguyễn Tất Thu,1,Nguyễn Thúc Vũ Hoàng,1,Nguyễn Trung Tuấn,8,Nguyễn Tuấn Anh,2,Nguyễn Văn Huyện,3,Nguyễn Văn Mậu,25,Nguyễn Văn Nho,1,Nguyễn Văn Quý,2,Nguyễn Văn Thông,1,Nguyễn Việt Anh,1,Nguyễn Vũ Lương,2,Nhật Bản,3,Nhóm $\LaTeX$,4,Nhóm Toán,1,Ninh Bình,41,Ninh Thuận,15,Nội Suy Lagrange,2,Nội Suy Newton,1,Nordic,19,Olympiad Corner,1,Olympiad Preliminary,2,Olympic 10,98,Olympic 10/3,5,Olympic 11,89,Olympic 12,30,Olympic 24/3,6,Olympic 27/4,20,Olympic 30/4,66,Olympic KHTN,6,Olympic Sinh Viên,73,Olympic Tháng 4,12,Olympic Toán,300,Olympic Toán Sơ Cấp,3,PAMO,1,Phạm Đình Đồng,1,Phạm Đức Tài,1,Phạm Huy Hoàng,1,Pham Kim Hung,3,Phạm Quốc Sang,2,Phan Huy Khải,1,Phan Thành Nam,1,Pháp,2,Philippines,8,Phú Thọ,30,Phú Yên,26,Phùng Hồ Hải,1,Phương Trình Hàm,11,Phương Trình Pythagoras,1,Pi,1,Polish,32,Problems,1,PT-HPT,14,PTNK,44,Putnam,25,Quảng Bình,44,Quảng Nam,31,Quảng Ngãi,33,Quảng Ninh,43,Quảng Trị,26,Quỹ Tích,1,Riemann,1,RMM,12,RMO,24,Romania,36,Romanian Mathematical,1,Russia,1,Sách Thường Thức Toán,7,Sách Toán,69,Sách Toán Cao Học,1,Sách Toán THCS,7,Saudi Arabia,7,Scholze,1,Serbia,17,Sharygin,24,Shortlists,56,Simon Singh,1,Singapore,1,Số Học - Tổ Hợp,27,Sóc Trăng,28,Sơn La,11,Spain,8,Star Education,5,Stars of Mathematics,11,Swinnerton-Dyer,1,Talent Search,1,Tăng Hải Tuân,2,Tạp Chí,14,Tập San,6,Tây Ban Nha,1,Tây Ninh,29,Thạch Hà,1,Thái Bình,39,Thái Nguyên,49,Thái Vân,2,Thanh Hóa,57,THCS,2,Thổ Nhĩ Kỳ,5,Thomas J. Mildorf,1,THPT Chuyên Lê Quý Đôn,1,THPTQG,15,THTT,6,Thừa Thiên Huế,35,Tiền Giang,19,Tin Tức Toán Học,1,Titu Andreescu,2,Toán 12,7,Toán Cao Cấp,3,Toán Chuyên,2,Toán Rời Rạc,5,Toán Tuổi Thơ,3,Tôn Ngọc Minh Quân,2,TOT,1,TPHCM,125,Trà Vinh,5,Trắc Nghiệm,1,Trắc Nghiệm Toán,2,Trại Hè,34,Trại Hè Hùng Vương,25,Trại Hè Phương Nam,5,Trần Đăng Phúc,1,Trần Minh Hiền,2,Trần Nam Dũng,9,Trần Phương,1,Trần Quang Hùng,1,Trần Quốc Anh,2,Trần Quốc Luật,1,Trần Quốc Nghĩa,1,Trần Tiến Tự,1,Trịnh Đào Chiến,2,Trung Quốc,12,Trường Đông,19,Trường Hè,7,Trường Thu,1,Trường Xuân,2,TST,55,Tuyên Quang,6,Tuyển Sinh,3,Tuyển Tập,44,Tuymaada,4,Undergraduate,66,USA,44,USAJMO,10,USATST,7,Uzbekistan,1,Vasile Cîrtoaje,4,Vật Lý,1,Viện Toán Học,2,Vietnam,4,Viktor Prasolov,1,VIMF,1,Vinh,27,Vĩnh Long,20,Vĩnh Phúc,63,Virginia Tech,1,VLTT,1,VMEO,4,VMF,12,VMO,46,VNTST,22,Võ Anh Khoa,1,Võ Quốc Bá Cẩn,26,Võ Thành Văn,1,Vojtěch Jarník,6,Vũ Hữu Bình,7,Vương Trung Dũng,1,WFNMC Journal,1,Wiles,1,Yên Bái,17,Yên Định,1,Yên Thành,1,Zhautykov,11,Zhou Yuan Zhe,1,
    ltr
    item
    MOlympiad: [Đáp Án] Đề Thi Chọn Đội Tuyển TP Đà Nẵng Dự Thi Học Sinh Giỏi Quốc Gia THPT 2017-2018
    [Đáp Án] Đề Thi Chọn Đội Tuyển TP Đà Nẵng Dự Thi Học Sinh Giỏi Quốc Gia THPT 2017-2018
    MOlympiad
    https://www.molympiad.net/2018/08/de-thi-chon-doi-tuyen-tp-da-nang-2017-2018.html
    https://www.molympiad.net/
    https://www.molympiad.net/
    https://www.molympiad.net/2018/08/de-thi-chon-doi-tuyen-tp-da-nang-2017-2018.html
    true
    2506595080985176441
    UTF-8
    Loaded All Posts Not found any posts VIEW ALL Readmore Reply Cancel reply Delete By Home PAGES POSTS View All RECOMMENDED FOR YOU LABEL ARCHIVE SEARCH ALL POSTS Not found any post match with your request Back Home Sunday Monday Tuesday Wednesday Thursday Friday Saturday Sun Mon Tue Wed Thu Fri Sat January February March April May June July August September October November December Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec just now 1 minute ago $$1$$ minutes ago 1 hour ago $$1$$ hours ago Yesterday $$1$$ days ago $$1$$ weeks ago more than 5 weeks ago Followers Follow THIS PREMIUM CONTENT IS LOCKED Please share to unlock Copy All Code Select All Code All codes were copied to your clipboard Can not copy the codes / texts, please press [CTRL]+[C] (or CMD+C with Mac) to copy