[Shortlists & Solutions] Exceedingly Luck-Based Math Olympiad 2014


Algebra

  1. In a non-obtuse triangle $ABC$, prove that \[ \frac{\sin A \sin B}{\sin C} + \frac{\sin B \sin C}{\sin A} + \frac{\sin C \sin A}{ \sin B} \ge \frac 52. \]
  2. Given positive reals $a,b,c,p,q$ satisfying $abc=1$ and $p \geq q$, prove that \[ p \left(a^2+b^2+c^2\right) + q\left( \frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right) \geq (p+q) (a+b+c). \]
  3. Let $a,b,c,d,e,f$ be positive real numbers. Given that $$def+de+ef+fd=4.$$ Show that \[ ((a+b)de+(b+c)ef+(c+a)fd)^2 \geq\ 12(abde+bcef+cafd). \]
  4. Find all triples $(f,g,h)$ of injective functions from the set of real numbers to itself satisfying $$\begin{align*} f(x+f(y)) &= g(x) + h(y) \\ g(x+g(y)) &= h(x) + f(y) \\ h(x+h(y)) &= f(x) + g(y) \end{align*}$$ for all real numbers $x$ and $y$. (We say a function $F$ is injective if $F(a)\neq F(b)$ for any distinct real numbers $a$ and $b$.)
  5. Let $\mathbb R^\ast$ denote the set of nonzero reals. Find all functions $f: \mathbb R^\ast \to \mathbb R^\ast$ satisfying \[ f(x^2+y)+1=f(x^2+1)+\frac{f(xy)}{f(x)} \] for all $x,y \in \mathbb R^\ast$ with $x^2+y\neq 0$.
  6. Let $a,b,c$ be positive reals such that $a+b+c=ab+bc+ca$. Prove that \[ (a+b)^{ab-bc}(b+c)^{bc-ca}(c+a)^{ca-ab} \ge a^{ca}b^{ab}c^{bc}. \]
  7. Find all positive integers $n$ with $n \ge 2$ such that the polynomial \[ P(a_1, a_2, ..., a_n) = a_1^n+a_2^n + ... + a_n^n - n a_1 a_2 ... a_n \] in the $n$ variables $a_1$, $a_2$, $\dots$, $a_n$ is irreducible over the real numbers, i.e. it cannot be factored as the product of two nonconstant polynomials with real coefficients.
  8. Let $a, b, c$ be positive reals with $$a^{2014}+b^{2014}+c^{2014}+abc=4.$$ Prove that \[ \frac{a^{2013}+b^{2013}-c}{c^{2013}} + \frac{b^{2013}+c^{2013}-a}{a^{2013}} + \frac{c^{2013}+a^{2013}-b}{b^{2013}} \ge a^{2012}+b^{2012}+c^{2012}. \]
  9. Let $a$, $b$, $c$ be positive reals. Prove that \[ \sqrt{\frac{a^2(bc+a^2)}{b^2+c^2}}+\sqrt{\frac{b^2(ca+b^2)}{c^2+a^2}}+\sqrt{\frac{c^2(ab+c^2)}{a^2+b^2}}\ge a+b+c. \]

Combinatorics

  1. You have some cyan, magenta, and yellow beads on a non-reorientable circle, and you can perform only the following operations: i) Move a cyan bead right (clockwise) past a yellow bead, and turn the yellow bead magenta. ii) Move a magenta bead left of a cyan bead, and insert a yellow bead left of where the magenta bead ends up. iii) Do either of the above, switching the roles of the words ''magenta'' and ''left'' with those of ''yellow'' and ''right'', respectively. iv) Pick any two disjoint consecutive pairs of beads, each either yellow-magenta or magenta-yellow, appearing somewhere in the circle, and swap the orders of each pair. v) Remove four consecutive beads of one color. Starting with the circle: ''yellow, yellow, magenta, magenta, cyan, cyan, cyan'', determine whether or not you can reach.
    a) ''yellow, magenta, yellow, magenta, cyan, cyan, cyan'',
    b) ''cyan, yellow, cyan, magenta, cyan'',
    c) ''magenta, magenta, cyan, cyan, cyan'',
    d) ''yellow, cyan, cyan, cyan''.
  2. A $2^{2014} + 1$ by $2^{2014} + 1$ grid has some black squares filled. The filled black squares form one or more snakes on the plane, each of whose heads splits at some points but never comes back together. In other words, for every positive integer $n$ greater than $2$, there do not exist pairwise distinct black squares $s_1$, $s_2$, \dots, $s_n$ such that $s_i$ and $s_{i+1}$ share an edge for $i=1,2, \dots, n$ (here $s_{n+1}=s_1$). What is the maximum possible number of filled black squares?
  3. We say a finite set $S$ of points in the plane is very if for every point $X$ in $S$, there exists an inversion with center $X$ mapping every point in $S$ other than $X$ to another point in $S$ (possibly the same point).
    a) Fix an integer $n$. Prove that if $n \ge 2$, then any line segment $\overline{AB}$ contains a unique very set $S$ of size $n$ such that $A, B \in S$.
    b) Find the largest possible size of a very set not contained in any line.
    (Here, an inversion with center $O$ and radius $r$ sends every point $P$ other than $O$ to the point $P'$ along ray $OP$ such that $OP\cdot OP' = r^2$.)
  4. Let $r$ and $b$ be positive integers. The game of Monis, a variant of Tetris, consists of a single column of red and blue blocks. If two blocks of the same color ever touch each other, they both vanish immediately. A red block falls onto the top of the column exactly once every $r$ years, while a blue block falls exactly once every $b$ years.
    a) Suppose that $r$ and $b$ are odd, and moreover the cycles are offset in such a way that no two blocks ever fall at exactly the same time. Consider a period of $rb$ years in which the column is initially empty. Determine, in terms of $r$ and $b$, the number of blocks in the column at the end.
    b) Now suppose $r$ and $b$ are relatively prime and $r+b$ is odd. At time $t=0$, the column is initially empty. Suppose a red block falls at times $t = r, 2r, \dots, (b-1)r$ years, while a blue block falls at times $t = b, 2b, \dots, (r-1)b$ years. Prove that at time $t=rb$, the number of blocks in the column is $\left\lvert 1+2(r-1)(b+r)-8S \right\rvert$, where \[ S = \left\lfloor \frac{2r}{r+b} \right\rfloor + \left\lfloor \frac{4r}{r+b} \right\rfloor + ... + \left\lfloor \frac{(r+b-1)r}{r+b} \right\rfloor . \]
  5. Let $n$ be a positive integer. For any $k$, denote by $a_k$ the number of permutations of $\{1,2,\dots,n\}$ with exactly $k$ disjoint cycles. (For example, if $n=3$ then $a_2=3$ since $(1)(23)$, $(2)(31)$, $(3)(12)$ are the only such permutations.) Evaluate \[ a_n n^n + a_{n-1} n^{n-1} + \dots + a_1 n. \]
  6. Let $f_0$ be the function from $\mathbb{Z}^2$ to $\{0,1\}$ such that $f_0(0,0)=1$ and $f_0(x,y)=0$ otherwise. For each positive integer $m$, let $f_m(x,y)$ be the remainder when \[ f_{m-1}(x,y) + \sum_{j=-1}^{1} \sum_{k=-1}^{1} f_{m-1}(x+j,y+k) \] is divided by $2$. Finally, for each nonnegative integer $n$, let $a_n$ denote the number of pairs $(x,y)$ such that $f_n(x,y) = 1$. Find a closed form for $a_n$.

Geometry

  1. Let $ABC$ be a triangle with symmedian point $K$. Select a point $A_1$ on line $BC$ such that the lines $AB$, $AC$, $A_1K$ and $BC$ are the sides of a cyclic quadrilateral. Define $B_1$ and $C_1$ similarly. Prove that $A_1$, $B_1$, and $C_1$ are collinear.
  2. $ABCD$ is a cyclic quadrilateral inscribed in the circle $\omega$. Let $AB \cap CD = E$, $AD \cap BC = F$. Let $\omega_1, \omega_2$ be the circumcircles of $AEF, CEF$, respectively. Let $\omega \cap \omega_1 = G$, $\omega \cap \omega_2 = H$. Show that $AC, BD, GH$ are concurrent.
  3. Let $A_1A_2A_3 \cdots A_{2013}$ be a cyclic $2013$-gon. Prove that for every point $P$ not the circumcenter of the $2013$-gon, there exists a point $Q\neq P$ such that $\frac{A_iP}{A_iQ}$ is constant for $i \in \{1, 2, 3, \cdots, 2013\}$.
  4. Let $ABCD$ be a quadrilateral inscribed in circle $\omega$. Define $E = AA \cap CD$, $F = AA \cap BC$, $G = BE \cap \omega$, $H = BE \cap AD$, $I = DF \cap \omega$, $J = DF \cap AB$. Prove that $GI$, $HJ$, and the $B$-symmedian are concurrent.
  5. Let $P$ be a point in the interior of an acute triangle $ABC$, and let $Q$ be its isogonal conjugate. Denote by $\omega_P$ and $\omega_Q$ the circumcircles of triangles $BPC$ and $BQC$, respectively. Suppose the circle with diameter $\overline{AP}$ intersects $\omega_P$ again at $M$, and line $AM$ intersects $\omega_P$ again at $X$. Similarly, suppose the circle with diameter $\overline{AQ}$ intersects $\omega_Q$ again at $N$, and line $AN$ intersects $\omega_Q$ again at $Y$. Prove that lines $MN$ and $XY$ are parallel. (Here, the points $P$ and $Q$ are isogonal conjugates with respect to $\triangle ABC$ if the internal angle bisectors of $\angle BAC$, $\angle CBA$, and $\angle ACB$ also bisect the angles $\angle PAQ$, $\angle PBQ$, and $\angle PCQ$, respectively. For example, the orthocenter is the isogonal conjugate of the circumcenter.)
  6. Let $ABCD$ be a cyclic quadrilateral with center $O$. Suppose the circumcircles of triangles $AOB$ and $COD$ meet again at $G$, while the circumcircles of triangles $AOD$ and $BOC$ meet again at $H$. Let $\omega_1$ denote the circle passing through $G$ as well as the feet of the perpendiculars from $G$ to $AB$ and $CD$. Define $\omega_2$ analogously as the circle passing through $H$ and the feet of the perpendiculars from $H$ to $BC$ and $DA$. Show that the midpoint of $GH$ lies on the radical axis of $\omega_1$ and $\omega_2$.
  7. Let $ABC$ be a triangle with circumcenter $O$. Let $P$ be a point inside $ABC$, so let the points $D, E, F$ be on $BC, AC, AB$ respectively so that the Miquel point of $DEF$ with respect to $ABC$ is $P$. Let the reflections of $D, E, F$ over the midpoints of the sides that they lie on be $R, S, T$. Let the Miquel point of $RST$ with respect to the triangle $ABC$ be $Q$. Show that $OP = OQ$.
  8. In triangle $ABC$ with incenter $I$ and circumcenter $O$, let $A',B',C'$ be the points of tangency of its circumcircle with its $A,B,C$-mixtilinear circles, respectively. Let $\omega_A$ be the circle through $A'$ that is tangent to $AI$ at $I$, and define $\omega_B, \omega_C$ similarly. Prove that $\omega_A,\omega_B,\omega_C$ have a common point $X$ other than $I$, and that $\angle AXO = \angle OXA'$.
  9. Let $P$ be a point inside a triangle $ABC$ such that $\angle PAC= \angle PCB$. Let the projections of $P$ onto $BC$, $CA$, and $AB$ be $X,Y,Z$ respectively. Let $O$ be the circumcenter of $\triangle XYZ$, $H$ be the foot of the altitude from $B$ to $AC$, $N$ be the midpoint of $AC$, and $T$ be the point such that $TYPO$ is a parallelogram. Show that $\triangle THN$ is similar to $\triangle PBC$.
  10. We are given triangles $ABC$ and $DEF$ such that $D\in BC, E\in CA, F\in AB$, $AD\perp EF, BE\perp FD, CF\perp DE$. Let the circumcenter of $DEF$ be $O$, and let the circumcircle of $DEF$ intersect $BC,CA,AB$ again at $R,S,T$ respectively. Prove that the perpendiculars to $BC,CA,AB$ through $D,E,F$ respectively intersect at a point $X$, and the lines $AR,BS,CT$ intersect at a point $Y$, such that $O,X,Y$ are collinear.
  11. Let $AB=AC$ in $\triangle ABC$, and let $D$ be a point on segment $AB$. The tangent at $D$ to the circumcircle $\omega$ of $BCD$ hits $AC$ at $E$. The other tangent from $E$ to $\omega$ touches it at $F$, and $G=BF \cap CD$, $H=AG \cap BC$. Prove that $BH=2HC$.
  12. Let $ABC$ be a nondegenerate acute triangle with circumcircle $\omega$ and let its incircle $\gamma$ touch $AB, AC, BC$ at $X, Y, Z$ respectively. Let $XY$ hit arcs $AB, AC$ of $\omega$ at $M, N$ respectively, and let $P \neq X, Q \neq Y$ be the points on $\gamma$ such that $MP=MX, NQ=NY$. If $I$ is the center of $\gamma$, prove that $P, I, Q$ are collinear if and only if $\angle BAC=90^\circ$.

Number Theory

  1. Does there exist a strictly increasing infinite sequence of perfect squares $a_1, a_2, a_3, ...$ such that for all $k\in \mathbb{Z}^+$ we have that $13^k | a_k+1$?
  2. Define the Fibanocci sequence recursively by $F_1=1$, $F_2=1$ and $F_{i+2} = F_i + F_{i+1}$ for all $i$. Prove that for all integers $b,c>1$, there exists an integer $n$ such that the sum of the digits of $F_n$ when written in base $b$ is greater than $c$.
  3. Let $t$ and $n$ be fixed integers each at least $2$. Find the largest positive integer $m$ for which there exists a polynomial $P$, of degree $n$ and with rational coefficients, such that the following property holds: exactly one of \[ \frac{P(k)}{t^k} \text{ and } \frac{P(k)}{t^{k+1}} \] is an integer for each $k = 0,1, ..., m$.
  4. Let $\mathbb N$ denote the set of positive integers, and for a function $f$, let $f^k(n)$ denote the function $f$ applied $k$ times. Call a function $f : \mathbb N \to \mathbb N$ saturated if \[ f^{f^{f(n)}(n)}(n) = n \] for every positive integer $n$. Find all positive integers $m$ for which the following holds: every saturated function $f$ satisfies $f^{2014}(m) = m$.
  5. Define a beautiful number to be an integer of the form $a^n$, where $a\in\{3,4,5,6\}$ and $n$ is a positive integer. Prove that each integer greater than $2$ can be expressed as the sum of pairwise distinct beautiful numbers.
  6. Show that the numerator of \[ \frac{2^{p-1}}{p+1} - \left(\sum_{k = 0}^{p-1}\frac{\binom{p-1}{k}}{(1-kp)^2}\right) \] is a multiple of $p^3$ for any odd prime $p$.
  7. Find all triples $(a,b,c)$ of positive integers such that if $n$ is not divisible by any prime less than $2014$, then $n+c$ divides $a^n+b^n+n$.
  8. Let $\mathbb N$ denote the set of positive integers. Find all functions $f: \mathbb{N} \to \mathbb{N}$ such that: i) The greatest common divisor of the sequence $f(1), f(2), \dots$ is $1$. ii) For all sufficiently large integers $n$, we have $f(n) \neq 1$ and \[ f(a)^n \mid f(a+b)^{a^{n-1}} - f(b)^{a^{n-1}} \] for all positive integers $a$ and $b$.
  9. Let $d$ be a positive integer and let $\varepsilon$ be any positive real. Prove that for all sufficiently large primes $p$ with $\gcd(p-1,d) \neq 1$, there exists an positive integer less than $p^r$ which is not a $d$th power modulo $p$, where $r$ is defined by \[ \log r = \varepsilon - \frac{1}{\gcd(d,p-1)}. \]
  10. Find all positive integer bases $b \ge 9$ so that the number \[ \frac{{\overbrace{11 \cdots 1}^{n-1 \ 1's}0\overbrace{77 \cdots 7}^{n-1\ 7's}8\overbrace{11 \cdots 1}^{n \ 1's}}_b}{3} \] is a perfect cube in base 10 for all sufficiently large positive integers $n$.
  11. Let $p$ be a prime satisfying $p^2\mid 2^{p-1}-1$, and let $n$ be a positive integer. Define \[ f(x) = \frac{(x-1)^{p^n}-(x^{p^n}-1)}{p(x-1)}. \] Find the largest positive integer $N$ such that there exist polynomials $g(x)$, $h(x)$ with integer coefficients and an integer $r$ satisfying $$f(x) = (x-r)^N g(x) + p \cdot h(x).$$
MOlympiad.NET là dự án thu thập và phát hành các đề thi tuyển sinh và học sinh giỏi toán. Quý bạn đọc muốn giúp chúng tôi chỉnh sửa đề thi này, xin hãy để lại bình luận facebook (có thể đính kèm hình ảnh) hoặc google (có thể sử dụng $\LaTeX$) bên dưới. BBT rất mong bạn đọc ủng hộ UPLOAD đề thi và đáp án mới hoặc liên hệ
Chúng tôi nhận tất cả các định dạng của tài liệu: $\TeX$, PDF, WORD, IMG,...



Name

Abel Albania AMM Amsterdam An Giang Andrew Wiles Anh APMO Austria (Áo) Ba Đình Ba Lan Bà Rịa Vũng Tàu Bắc Bộ Bắc Giang Bắc Kạn Bạc Liêu Bắc Ninh Bắc Trung Bộ Bài Toán Hay Balkan Baltic Way BAMO Bất Đẳng Thức Bến Tre Benelux Bình Định Bình Dương Bình Phước Bình Thuận Birch BMO Booklet Bosnia Herzegovina BoxMath Brazil British Bùi Đắc Hiên Bùi Thị Thiện Mỹ Bùi Văn Tuyên Bùi Xuân Diệu Bulgaria Buôn Ma Thuột BxMO Cà Mau Cần Thơ Canada Cao Bằng Cao Quang Minh Câu Chuyện Toán Học Caucasus CGMO China - Trung Quốc Chọn Đội Tuyển Chu Tuấn Anh Chuyên Đề Chuyên Sư Phạm Chuyên Trần Hưng Đạo Collection College Mathematic Concours Cono Sur Contest Correspondence Cosmin Poahata Crux Czech-Polish-Slovak Đà Nẵng Đa Thức Đại Số Đắk Lắk Đắk Nông Đan Phượng Danube Đào Thái Hiệp ĐBSCL Đề Thi Đề Thi HSG Đề Thi JMO Điện Biên Định Lý Định Lý Beaty Đỗ Hữu Đức Thịnh Do Thái Doãn Quang Tiến Đoàn Quỳnh Đoàn Văn Trung Đống Đa Đồng Nai Đồng Tháp Du Hiền Vinh Đức Duyên Hải Bắc Bộ E-Book EGMO ELMO EMC Epsilon Estonian Euler Evan Chen Fermat Finland Forum Of Geometry Furstenberg G. Polya Gặp Gỡ Toán Học Gauss GDTX Geometry Gia Lai Gia Viễn Giải Tích Hàm Giảng Võ Giới hạn Goldbach Hà Giang Hà Lan Hà Nam Hà Nội Hà Tĩnh Hà Trung Kiên Hải Dương Hải Phòng Hậu Giang Hậu Lộc Hilbert Hình Học HKUST Hòa Bình Hoài Nhơn Hoàng Bá Minh Hoàng Minh Quân Hodge Hojoo Lee HOMC HongKong HSG 10 HSG 10 Bắc Giang HSG 10 Thái Nguyên HSG 11 HSG 11 Bắc Giang HSG 11 Lạng Sơn HSG 11 Thái Nguyên HSG 12 HSG 12 2010-2011 HSG 12 2011-2012 HSG 12 2012-2013 HSG 12 2013-2014 HSG 12 2014-2015 HSG 12 2015-2016 HSG 12 2016-2017 HSG 12 2017-2018 HSG 12 2018-2019 HSG 12 2019-2020 HSG 12 2020-2021 HSG 12 2021-2022 HSG 12 Bắc Giang HSG 12 Bình Phước HSG 12 Đồng Tháp HSG 12 Lạng Sơn HSG 12 Long An HSG 12 Quảng Nam HSG 12 Quảng Ninh HSG 12 Thái Nguyên HSG 9 HSG 9 2010-2011 HSG 9 2011-2012 HSG 9 2012-2013 HSG 9 2013-2014 HSG 9 2014-2015 HSG 9 2015-2016 HSG 9 2016-2017 HSG 9 2017-2018 HSG 9 2018-2019 HSG 9 2019-2020 HSG 9 2020-2021 HSG 9 2021-202 HSG 9 2021-2022 HSG 9 Bắc Giang HSG 9 Bình Phước HSG 9 Đồng Tháp HSG 9 Lạng Sơn HSG 9 Long An HSG 9 Quảng Nam HSG 9 Quảng Ninh HSG Cấp Trường HSG Quốc Gia HSG Quốc Tế Hứa Lâm Phong Hứa Thuần Phỏng Hùng Vương Hưng Yên Hương Sơn Huỳnh Kim Linh Hy Lạp IMC IMO IMT India - Ấn Độ Inequality InMC International Iran Jakob JBMO Jewish Journal Junior K2pi Kazakhstan Khánh Hòa KHTN Kiên Giang Kim Liên Kon Tum Korea - Hàn Quốc Kvant Kỷ Yếu Lai Châu Lâm Đồng Lạng Sơn Langlands Lào Cai Lê Hải Châu Lê Hải Khôi Lê Hoành Phò Lê Khánh Sỹ Lê Minh Cường Lê Phúc Lữ Lê Phương Lê Quý Đôn Lê Viết Hải Lê Việt Hưng Leibniz Long An Lớp 10 Lớp 10 Chuyên Lớp 10 Không Chuyên Lớp 11 Lục Ngạn Lượng giác Lương Tài Lưu Giang Nam Lý Thánh Tông Macedonian Malaysia Margulis Mark Levi Mathematical Excalibur Mathematical Reflections Mathematics Magazine Mathematics Today Mathley MathLinks MathProblems Journal Mathscope MathsVN MathVN MEMO Metropolises Mexico MIC Michael Guillen Mochizuki Moldova Moscow MYM MYTS Nam Định Nam Phi National Nesbitt Newton Nghệ An Ngô Bảo Châu Ngô Việt Hải Ngọc Huyền Nguyễn Anh Tuyến Nguyễn Bá Đang Nguyễn Đình Thi Nguyễn Đức Tấn Nguyễn Đức Thắng Nguyễn Duy Khương Nguyễn Duy Tùng Nguyễn Hữu Điển Nguyễn Mình Hà Nguyễn Minh Tuấn Nguyễn Phan Tài Vương Nguyễn Phú Khánh Nguyễn Phúc Tăng Nguyễn Quản Bá Hồng Nguyễn Quang Sơn Nguyễn Tài Chung Nguyễn Tăng Vũ Nguyễn Tất Thu Nguyễn Thúc Vũ Hoàng Nguyễn Trung Tuấn Nguyễn Tuấn Anh Nguyễn Văn Huyện Nguyễn Văn Mậu Nguyễn Văn Nho Nguyễn Văn Quý Nguyễn Văn Thông Nguyễn Việt Anh Nguyễn Vũ Lương Nhật Bản Nhóm $\LaTeX$ Nhóm Toán Ninh Bình Ninh Thuận Nội Suy Lagrange Nội Suy Newton Nordic Olympiad Corner Olympiad Preliminary Olympic 10 Olympic 10/3 Olympic 11 Olympic 12 Olympic 24/3 Olympic 24/3 Quảng Nam Olympic 27/4 Olympic 30/4 Olympic KHTN Olympic Sinh Viên Olympic Tháng 4 Olympic Toán Olympic Toán Sơ Cấp PAMO Phạm Đình Đồng Phạm Đức Tài Phạm Huy Hoàng Pham Kim Hung Phạm Quốc Sang Phan Huy Khải Phan Thành Nam Pháp Philippines Phú Thọ Phú Yên Phùng Hồ Hải Phương Trình Hàm Phương Trình Pythagoras Pi Polish Problems PT-HPT PTNK Putnam Quảng Bình Quảng Nam Quảng Ngãi Quảng Ninh Quảng Trị Quỹ Tích Riemann RMM RMO Romania Romanian Mathematical Russia Sách Thường Thức Toán Sách Toán Sách Toán Cao Học Sách Toán THCS Saudi Arabia - Ả Rập Xê Út Scholze Serbia Sharygin Shortlists Simon Singh Singapore Số Học - Tổ Hợp Sóc Trăng Sơn La Spain Star Education Stars of Mathematics Swinnerton-Dyer Talent Search Tăng Hải Tuân Tạp Chí Tập San Tây Ban Nha Tây Ninh Thạch Hà Thái Bình Thái Nguyên Thái Vân Thanh Hóa THCS Thổ Nhĩ Kỳ Thomas J. Mildorf THPT Chuyên Lê Quý Đôn THPTQG THTT Thừa Thiên Huế Tiền Giang Tin Tức Toán Học Titu Andreescu Toán 12 Toán Cao Cấp Toán Chuyên Toán Rời Rạc Toán Tuổi Thơ Tôn Ngọc Minh Quân TOT TPHCM Trà Vinh Trắc Nghiệm Trắc Nghiệm Toán Trại Hè Trại Hè Hùng Vương Trại Hè Phương Nam Trần Đăng Phúc Trần Minh Hiền Trần Nam Dũng Trần Phương Trần Quang Hùng Trần Quốc Anh Trần Quốc Luật Trần Quốc Nghĩa Trần Tiến Tự Trịnh Đào Chiến Trường Đông Trường Hè Trường Thu Trường Xuân TST TST 2010-2011 TST 2011-2012 TST 2012-2013 TST 2013-2014 TST 2014-2015 TST 2015-2016 TST 2016-2017 TST 2017-2018 TST 2018-2019 TST 2019-2020 TST 2020-2021 TST 2021-2022 TST Bắc Giang TST Bình Phước TST Đồng Tháp TST Lạng Sơn TST Long An TST Quảng Nam TST Quảng Ninh TST Thái Nguyên Tuyên Quang Tuyển Sinh Tuyển Sinh 10 Tuyển Sinh 10 Bắc Giang Tuyển Sinh 10 Bình Phước Tuyển Sinh 10 Đồng Tháp Tuyển Sinh 10 Lạng Sơn Tuyển Sinh 10 Long An Tuyển Sinh 10 Quảng Nam Tuyển Sinh 10 Quảng Ninh Tuyển Sinh 10 Thái Nguyên Tuyển Sinh 2010-2011 Tuyển Sinh 2011-2012 Tuyển Sinh 2011-2022 Tuyển Sinh 2012-2013 Tuyển Sinh 2013-2014 Tuyển Sinh 2014-2015 Tuyển Sinh 2015-2016 Tuyển Sinh 2016-2017 Tuyển Sinh 2017-2018 Tuyển Sinh 2018-2019 Tuyển Sinh 2019-2020 Tuyển Sinh 2020-2021 Tuyển Sinh 2021-202 Tuyển Sinh 2021-2022 Tuyển Tập Tuymaada UK - Anh Undergraduate USA - Mỹ USA TSTST USAJMO USATST USEMO Uzbekistan Vasile Cîrtoaje Vật Lý Viện Toán Học Vietnam Viktor Prasolov VIMF Vinh Vĩnh Long Vĩnh Phúc Virginia Tech VLTT VMEO VMF VMO VNTST Võ Anh Khoa Võ Quốc Bá Cẩn Võ Thành Văn Vojtěch Jarník Vũ Hữu Bình Vương Trung Dũng WFNMC Journal Wiles Yên Bái Yên Định Yên Thành Zhautykov Zhou Yuan Zhe
false
ltr
item
MOlympiad.NET: [Shortlists & Solutions] Exceedingly Luck-Based Math Olympiad 2014
[Shortlists & Solutions] Exceedingly Luck-Based Math Olympiad 2014
MOlympiad.NET
https://www.molympiad.net/2017/09/elmo-2014-shortlist-with-solutions.html
https://www.molympiad.net/
https://www.molympiad.net/
https://www.molympiad.net/2017/09/elmo-2014-shortlist-with-solutions.html
true
2506595080985176441
UTF-8
Not found any posts Not found any related posts VIEW ALL Readmore Reply Cancel reply Delete By Home PAGES POSTS View All RECOMMENDED FOR YOU Tag ARCHIVE SEARCH ALL POSTS Not found any post match with your request Back Home Contents See also related Sunday Monday Tuesday Wednesday Thursday Friday Saturday Sun Mon Tue Wed Thu Fri Sat January February March April May June July August September October November December Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec just now 1 minute ago $$1$$ minutes ago 1 hour ago $$1$$ hours ago Yesterday $$1$$ days ago $$1$$ weeks ago more than 5 weeks ago Followers Follow Copy All Code Select All Code All codes were copied to your clipboard Can not copy the codes / texts, please press [CTRL]+[C] (or CMD+C with Mac) to copy THIS PREMIUM CONTENT IS LOCKED
PLEASE FOLLOW THE INSTRUCTIONS TO VIEW THIS CONTENT
NỘI DUNG CAO CẤP NÀY ĐÃ BỊ KHÓA
XIN HÃY LÀM THEO HƯỚNG DẪN ĐỂ XEM NỘI DUNG NÀY
STEP 1: SHARE THIS ARTICLE TO A SOCIAL NETWORK
BƯỚC 1: CHIA SẺ BÀI VIẾT NÀY LÊN MẠNG XÃ HỘI
STEP 2: CLICK THE LINK ON YOUR SOCIAL NETWORK
BƯỚC 2: BẤM VÀO ĐƯỜNG DẪN TRÊN MẠNG XÃ HỘI CỦA BẠN