Edward Lorentz – Cha Đẻ Đủa Lý Thuyết Chaos


Edward N. Lorentz (1917-2008) được biết đến nhiều nhất kể từ sau bài báo năm 1972 mang tựa đề "Predictability: Does the Flap of a Butterfly's Wings in Brazil Set Off a Tornado in Texas?" (Khả năng dự báo : Phải chăng nhịp đập của các cách bướm ở Brazil có liên hệ tới một trận bão ở Texas ?). Nó cũng chính là một trong những nội dung của lý thuyết hỗn độn - một sự thay đổi rất nhỏ trong một hệ có thể có một ảnh hưởng lớn ngoài dự đoán .


Bằng cách chỉ ra có các giới hạn trong việc dự báo của nhiều hệ, Lorentz " đã đóng những cái đinh cuối cùng xuống tấm ván vũ trụ Cartesian, và cùng với lý thuyết tương đối rộng, lý thuyết lượng tử, mở ra cuộc cách mạng khoa học lần thứ 3 của thế kỷ 20," "Lorentz còn là một người đàn ông lý tưởng, với trí tuệ, nhân cách và lòng khiêm tốn, ông là một tấm gương cho bao thế hệ noi theo". (nhà khí tượng học Kerry Emanuel thuộc viện MIT)

Một trong những kết luận mang tính đột phá trong công trình của ông đó là không thể dự báo thời tiết một cách chính xác trước 3 tuần. Lý thuyết hỗn độn được nhen nhóm từ thế kỷ thứ 19, khi nhà vật lý học người Pháp Henri Poincare khám phá ( trong sự thất vọng ) rằng không thể nào tính toán được khả năng ổn định của một hệ chứa nhiều hơn 2 vật thể - ít nhất sử dụng các công cụ toán học thời đó.

Kết luận trên là một điều gây sốc bởi vì lý thuyết chuyển động và hấp dẫn của Newton chỉ ra được trật tự và khả năng dự đoán, và Poincare đã kết luận ngược lại, đó là sư tồn tại các yếu tố và các phương trình khác làm giới hạn cho khả năng dự đoán trên. Khi đó máy tính chưa xuất hiện, nên việc kiểm chứng kết luận của Poincare là điều rất khó khăn.

Năm 1961, một nhà nghiên cứu khí tượng học trẻ ở MIT đã sử dụng một mẫu máy tính nguyên thủy mang tên Royal McBee LPG-30 để nghiên cứu các mô hình đơn giản của tầng khí quyển dựa trên một chuối 12 phương trình vi phân. Sau một lần chạy thử, anh đã quyết định đi sâu hơn, và tìm hiểu cặn kẽ các cơ sở và kết quả của vấn đề. Thay vì chạy lại từ đầu, anh đã chọn một điểm trong bước tính toán và thay giá trị đã tính được ở phần trước đó. Anh ra ngoài nghỉ giải lao để giảm bớt căng thẳng và ồn ào mà máy tính nguyên thủy tạo ra. Khi trở lại, anh đã rất ngạc nhiên vì các mẫu thời tiết tính toán được đã thay đổi một cách hoàn toàn so với kết quả của lần đầu . Sau khi kiểm tra máy tính Royal McBee để đảm bảo đã không bị lỗi kỹ thuật nào, anh bắt đầu suy nghĩa và tìm ra cách giải thích cho kết quả mới.

Cuối cùng, anh đã nhận ra rằng các kết quả sơ khai đã được làm tròn tới con số thứ 6. Để tiết kiệm thời gian, lần chạy thứ hai anh chỉ làm tròn đến 3 chữ số . Sự chênh lệch của bước làm tròn kia chỉ vào khoảng 1%,xong lại dẫn đến một kết quả hoàn toán khác biệt. Nhà khoa học trẻ này chính là Lorentz, và anh đã tính các bước toán học cụ thể đồng thời báo cáo kết quả đó trên tạp chí Khoa học khí tượng ( Journal of Atmosphere Sciences ) năm 1963 với tiêu đề " Deterministic Nonperiodic Flow." ( Tính xác định của dòng không tuần hoàn ). Bài báo đầu tiên không được mấy ai quan tâm, cho đến bài thuyết trình mang tên " Cánh bướm " năm 1972 của ông tại hội nghị khoa học nâng cao của Mỹ.


Lorentz sau đó nói, ông đã có dự định sử dụng cánh chim hải âu như một hình ảnh minh họa cho hiện tượng trên nhưng đồng nghiệp của ông đã gợi ý đến cánh bướm vì nó có ảnh hưởng lớn hơn, và chọn Brazil làm nơi con bướm này cư ngụ.

Theo nguồn dữ liệu của Web of Science , bài báo nguyên bản của Lorentz đã nhận được trên 4000 kết quả trích dẫn ( citations ) của hàng nghìn tác giả khác nhau, làm cho nó trở thành một trong các bài báo được trích dẫn nhiều nhất mọi thời đại.

Edward Norton Lorentz sinh ngày 23 tháng 5 năm 1917, tại West Hartford Connecticut.

Ông có bằng cử nhân toán học của trường Dartmouth College năm 1938, và thạc sĩ toán học tại Harvard năm 1940.

Trong thời kỳ chiến tranh, ông đã phục vụ tại đài khí tượng của không quân Mỹ, và lấy bằng thạc sĩ thứ hai cho lĩnh vực khí tượng học tại trườ ng đại học MIT nă m 1943.

Sau chiến tranh, ông tiếp tục theo đuổi con đường này và nhận bằng tiến sĩ năm 1948, cũng tại MIT.

Ông dành cả cuộc đời của mình làm việc tại MIT. Cùng với giải thưởng Kyoto, ông còn nhận được giải thưởng Crafoord của Hàn lâm viện Thụy Điển năm 1983, dành tặng các nhà khoa học thuộc các lĩnh vực nằm ngoài giải thưởng Nobel.
MOlympiad.NET là dự án thu thập và phát hành các đề thi tuyển sinh và học sinh giỏi toán. Quý bạn đọc muốn giúp chúng tôi chỉnh sửa đề thi này, xin hãy để lại bình luận facebook (có thể đính kèm hình ảnh) hoặc google (có thể sử dụng $\LaTeX$) bên dưới. BBT rất mong bạn đọc ủng hộ UPLOAD đề thi và đáp án mới hoặc liên hệ
Chúng tôi nhận tất cả các định dạng của tài liệu: $\TeX$, PDF, WORD, IMG,...



Name

Abel Albania AMM Amsterdam An Giang Andrew Wiles Anh APMO Austria (Áo) Ba Đình Ba Lan Bà Rịa Vũng Tàu Bắc Bộ Bắc Giang Bắc Kạn Bạc Liêu Bắc Ninh Bắc Trung Bộ Bài Toán Hay Balkan Baltic Way BAMO Bất Đẳng Thức Bến Tre Benelux Bình Định Bình Dương Bình Phước Bình Thuận Birch BMO Booklet Bosnia Herzegovina BoxMath Brazil British Bùi Đắc Hiên Bùi Thị Thiện Mỹ Bùi Văn Tuyên Bùi Xuân Diệu Bulgaria Buôn Ma Thuột BxMO Cà Mau Cần Thơ Canada Cao Bằng Cao Quang Minh Câu Chuyện Toán Học Caucasus CGMO China - Trung Quốc Chọn Đội Tuyển Chu Tuấn Anh Chuyên Đề Chuyên Sư Phạm Chuyên Trần Hưng Đạo Collection College Mathematic Concours Cono Sur Contest Correspondence Cosmin Poahata Crux Czech-Polish-Slovak Đà Nẵng Đa Thức Đại Số Đắk Lắk Đắk Nông Đan Phượng Danube Đào Thái Hiệp ĐBSCL Đề Thi Đề Thi HSG Đề Thi JMO Điện Biên Định Lý Định Lý Beaty Đỗ Hữu Đức Thịnh Do Thái Doãn Quang Tiến Đoàn Quỳnh Đoàn Văn Trung Đống Đa Đồng Nai Đồng Tháp Du Hiền Vinh Đức Duyên Hải Bắc Bộ E-Book EGMO ELMO EMC Epsilon Estonian Euler Evan Chen Fermat Finland Forum Of Geometry Furstenberg G. Polya Gặp Gỡ Toán Học Gauss GDTX Geometry Gia Lai Gia Viễn Giải Tích Hàm Giảng Võ Giới hạn Goldbach Hà Giang Hà Lan Hà Nam Hà Nội Hà Tĩnh Hà Trung Kiên Hải Dương Hải Phòng Hậu Giang Hậu Lộc Hilbert Hình Học HKUST Hòa Bình Hoài Nhơn Hoàng Bá Minh Hoàng Minh Quân Hodge Hojoo Lee HOMC HongKong HSG 10 HSG 10 Bắc Giang HSG 10 Thái Nguyên HSG 11 HSG 11 Bắc Giang HSG 11 Lạng Sơn HSG 11 Thái Nguyên HSG 12 HSG 12 2010-2011 HSG 12 2011-2012 HSG 12 2012-2013 HSG 12 2013-2014 HSG 12 2014-2015 HSG 12 2015-2016 HSG 12 2016-2017 HSG 12 2017-2018 HSG 12 2018-2019 HSG 12 2019-2020 HSG 12 2020-2021 HSG 12 2021-2022 HSG 12 Bắc Giang HSG 12 Bình Phước HSG 12 Đồng Tháp HSG 12 Lạng Sơn HSG 12 Long An HSG 12 Quảng Nam HSG 12 Quảng Ninh HSG 12 Thái Nguyên HSG 9 HSG 9 2010-2011 HSG 9 2011-2012 HSG 9 2012-2013 HSG 9 2013-2014 HSG 9 2014-2015 HSG 9 2015-2016 HSG 9 2016-2017 HSG 9 2017-2018 HSG 9 2018-2019 HSG 9 2019-2020 HSG 9 2020-2021 HSG 9 2021-202 HSG 9 2021-2022 HSG 9 Bắc Giang HSG 9 Bình Phước HSG 9 Đồng Tháp HSG 9 Lạng Sơn HSG 9 Long An HSG 9 Quảng Nam HSG 9 Quảng Ninh HSG Cấp Trường HSG Quốc Gia HSG Quốc Tế Hứa Lâm Phong Hứa Thuần Phỏng Hùng Vương Hưng Yên Hương Sơn Huỳnh Kim Linh Hy Lạp IMC IMO IMT India - Ấn Độ Inequality InMC International Iran Jakob JBMO Jewish Journal Junior K2pi Kazakhstan Khánh Hòa KHTN Kiên Giang Kim Liên Kon Tum Korea - Hàn Quốc Kvant Kỷ Yếu Lai Châu Lâm Đồng Lạng Sơn Langlands Lào Cai Lê Hải Châu Lê Hải Khôi Lê Hoành Phò Lê Khánh Sỹ Lê Minh Cường Lê Phúc Lữ Lê Phương Lê Quý Đôn Lê Viết Hải Lê Việt Hưng Leibniz Long An Lớp 10 Lớp 10 Chuyên Lớp 10 Không Chuyên Lớp 11 Lục Ngạn Lượng giác Lương Tài Lưu Giang Nam Lý Thánh Tông Macedonian Malaysia Margulis Mark Levi Mathematical Excalibur Mathematical Reflections Mathematics Magazine Mathematics Today Mathley MathLinks MathProblems Journal Mathscope MathsVN MathVN MEMO Metropolises Mexico MIC Michael Guillen Mochizuki Moldova Moscow MYM MYTS Nam Định Nam Phi National Nesbitt Newton Nghệ An Ngô Bảo Châu Ngô Việt Hải Ngọc Huyền Nguyễn Anh Tuyến Nguyễn Bá Đang Nguyễn Đình Thi Nguyễn Đức Tấn Nguyễn Đức Thắng Nguyễn Duy Khương Nguyễn Duy Tùng Nguyễn Hữu Điển Nguyễn Mình Hà Nguyễn Minh Tuấn Nguyễn Phan Tài Vương Nguyễn Phú Khánh Nguyễn Phúc Tăng Nguyễn Quản Bá Hồng Nguyễn Quang Sơn Nguyễn Tài Chung Nguyễn Tăng Vũ Nguyễn Tất Thu Nguyễn Thúc Vũ Hoàng Nguyễn Trung Tuấn Nguyễn Tuấn Anh Nguyễn Văn Huyện Nguyễn Văn Mậu Nguyễn Văn Nho Nguyễn Văn Quý Nguyễn Văn Thông Nguyễn Việt Anh Nguyễn Vũ Lương Nhật Bản Nhóm $\LaTeX$ Nhóm Toán Ninh Bình Ninh Thuận Nội Suy Lagrange Nội Suy Newton Nordic Olympiad Corner Olympiad Preliminary Olympic 10 Olympic 10/3 Olympic 11 Olympic 12 Olympic 24/3 Olympic 24/3 Quảng Nam Olympic 27/4 Olympic 30/4 Olympic KHTN Olympic Sinh Viên Olympic Tháng 4 Olympic Toán Olympic Toán Sơ Cấp PAMO Phạm Đình Đồng Phạm Đức Tài Phạm Huy Hoàng Pham Kim Hung Phạm Quốc Sang Phan Huy Khải Phan Thành Nam Pháp Philippines Phú Thọ Phú Yên Phùng Hồ Hải Phương Trình Hàm Phương Trình Pythagoras Pi Polish Problems PT-HPT PTNK Putnam Quảng Bình Quảng Nam Quảng Ngãi Quảng Ninh Quảng Trị Quỹ Tích Riemann RMM RMO Romania Romanian Mathematical Russia Sách Thường Thức Toán Sách Toán Sách Toán Cao Học Sách Toán THCS Saudi Arabia - Ả Rập Xê Út Scholze Serbia Sharygin Shortlists Simon Singh Singapore Số Học - Tổ Hợp Sóc Trăng Sơn La Spain Star Education Stars of Mathematics Swinnerton-Dyer Talent Search Tăng Hải Tuân Tạp Chí Tập San Tây Ban Nha Tây Ninh Thạch Hà Thái Bình Thái Nguyên Thái Vân Thanh Hóa THCS Thổ Nhĩ Kỳ Thomas J. Mildorf THPT Chuyên Lê Quý Đôn THPTQG THTT Thừa Thiên Huế Tiền Giang Tin Tức Toán Học Titu Andreescu Toán 12 Toán Cao Cấp Toán Chuyên Toán Rời Rạc Toán Tuổi Thơ Tôn Ngọc Minh Quân TOT TPHCM Trà Vinh Trắc Nghiệm Trắc Nghiệm Toán Trại Hè Trại Hè Hùng Vương Trại Hè Phương Nam Trần Đăng Phúc Trần Minh Hiền Trần Nam Dũng Trần Phương Trần Quang Hùng Trần Quốc Anh Trần Quốc Luật Trần Quốc Nghĩa Trần Tiến Tự Trịnh Đào Chiến Trường Đông Trường Hè Trường Thu Trường Xuân TST TST 2010-2011 TST 2011-2012 TST 2012-2013 TST 2013-2014 TST 2014-2015 TST 2015-2016 TST 2016-2017 TST 2017-2018 TST 2018-2019 TST 2019-2020 TST 2020-2021 TST 2021-2022 TST Bắc Giang TST Bình Phước TST Đồng Tháp TST Lạng Sơn TST Long An TST Quảng Nam TST Quảng Ninh TST Thái Nguyên Tuyên Quang Tuyển Sinh Tuyển Sinh 10 Tuyển Sinh 10 Bắc Giang Tuyển Sinh 10 Bình Phước Tuyển Sinh 10 Đồng Tháp Tuyển Sinh 10 Lạng Sơn Tuyển Sinh 10 Long An Tuyển Sinh 10 Quảng Nam Tuyển Sinh 10 Quảng Ninh Tuyển Sinh 10 Thái Nguyên Tuyển Sinh 2010-2011 Tuyển Sinh 2011-2012 Tuyển Sinh 2011-2022 Tuyển Sinh 2012-2013 Tuyển Sinh 2013-2014 Tuyển Sinh 2014-2015 Tuyển Sinh 2015-2016 Tuyển Sinh 2016-2017 Tuyển Sinh 2017-2018 Tuyển Sinh 2018-2019 Tuyển Sinh 2019-2020 Tuyển Sinh 2020-2021 Tuyển Sinh 2021-202 Tuyển Sinh 2021-2022 Tuyển Tập Tuymaada UK - Anh Undergraduate USA - Mỹ USA TSTST USAJMO USATST USEMO Uzbekistan Vasile Cîrtoaje Vật Lý Viện Toán Học Vietnam Viktor Prasolov VIMF Vinh Vĩnh Long Vĩnh Phúc Virginia Tech VLTT VMEO VMF VMO VNTST Võ Anh Khoa Võ Quốc Bá Cẩn Võ Thành Văn Vojtěch Jarník Vũ Hữu Bình Vương Trung Dũng WFNMC Journal Wiles Yên Bái Yên Định Yên Thành Zhautykov Zhou Yuan Zhe
false
ltr
item
MOlympiad.NET: Edward Lorentz – Cha Đẻ Đủa Lý Thuyết Chaos
Edward Lorentz – Cha Đẻ Đủa Lý Thuyết Chaos
https://3.bp.blogspot.com/-QX1aXoWOw4I/WbBQCjhNaTI/AAAAAAAAAhg/-NO7y5U91AQcfvz75A9xnkNO9J97797nwCLcBGAs/s1600/ed_lorenz.jpg
https://3.bp.blogspot.com/-QX1aXoWOw4I/WbBQCjhNaTI/AAAAAAAAAhg/-NO7y5U91AQcfvz75A9xnkNO9J97797nwCLcBGAs/s72-c/ed_lorenz.jpg
MOlympiad.NET
https://www.molympiad.net/2017/09/edward-lorentz-cha-de-cua-ly-thuyet-chaos.html
https://www.molympiad.net/
https://www.molympiad.net/
https://www.molympiad.net/2017/09/edward-lorentz-cha-de-cua-ly-thuyet-chaos.html
true
2506595080985176441
UTF-8
Not found any posts Not found any related posts VIEW ALL Readmore Reply Cancel reply Delete By Home PAGES POSTS View All RECOMMENDED FOR YOU Tag ARCHIVE SEARCH ALL POSTS Not found any post match with your request Back Home Contents See also related Sunday Monday Tuesday Wednesday Thursday Friday Saturday Sun Mon Tue Wed Thu Fri Sat January February March April May June July August September October November December Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec just now 1 minute ago $$1$$ minutes ago 1 hour ago $$1$$ hours ago Yesterday $$1$$ days ago $$1$$ weeks ago more than 5 weeks ago Followers Follow Copy All Code Select All Code All codes were copied to your clipboard Can not copy the codes / texts, please press [CTRL]+[C] (or CMD+C with Mac) to copy THIS PREMIUM CONTENT IS LOCKED
PLEASE FOLLOW THE INSTRUCTIONS TO VIEW THIS CONTENT
NỘI DUNG CAO CẤP NÀY ĐÃ BỊ KHÓA
XIN HÃY LÀM THEO HƯỚNG DẪN ĐỂ XEM NỘI DUNG NÀY
STEP 1: SHARE THIS ARTICLE TO A SOCIAL NETWORK
BƯỚC 1: CHIA SẺ BÀI VIẾT NÀY LÊN MẠNG XÃ HỘI
STEP 2: CLICK THE LINK ON YOUR SOCIAL NETWORK
BƯỚC 2: BẤM VÀO ĐƯỜNG DẪN TRÊN MẠNG XÃ HỘI CỦA BẠN