$hide=mobile

Đề Thi Chọn Đội Tuyển Toán Mỹ Tham Dự IMO 2012

  1. Tìm tất cả các dãy vô hạn các số nguyên dương ${{a}_{1}},{{a}_{2}},{{a}_{3}},...$ thỏa mãn đồng thời các tính chất sau
    i) ${{a}_{1}}<{{a}_{2}}<{{a}_{3}}<...$.
    ii) Không có các số nguyên dương $i,j,k$ nào, không nhất thiết phân biệt, thỏa mãn ${{a}_{i}}+{{a}_{j}}={{a}_{k}}$.
    iii) Tồn tại vô hạn các số nguyên dương $k$ sao cho ${{a}_{k}}=2k-1.$
  2. Cho tứ giác $ABCD$ có hai đường chéo $AC=BD$ và chúng cắt nhau tại $P.$ Gọi ${{\omega }_{1}}$ và ${{O}_{1}}$ lần lượt là đường tròn ngoại tiếp tam giác $ABP$ và tâm tương ứng của nó; gọi ${{\omega }_{2}}$ và ${{O}_{2}}$ lần lượt là đường tròn ngoại tiếp tam giác $CDP$ và tâm tương ứng của nó. Đoạn $BC$ cắt ${{\omega }_{1}},{{\omega }_{2}}$ lần lượt tại $S,T.$ Gọi $M,N$ lần lượt là trung điểm của cung SP (không chứa $B$) và cung $TP$ (không chứa $C$). Chứng minh rằng $MN\parallel {{O}_{1}}{{O}_{2}}$.
  3. Cho hàm số $f:{{\mathbb{N}}^{+}}\to {{\mathbb{N}}^{+}}$ thỏa mãn các điều kiện sau
    i) $f(m),f(n)$ nguyên tố cùng nhau với mọi $m,n$ nguyên tố cùng nhau.
    ii) $n\le f(n)\le n+2012$ với mọi số nguyên dương $n.$
    Chứng minh rằng với mọi số nguyên dương $n$ và số nguyên tố $p,$ nếu $p$ chia hết $f(n)$ thì $p$ cũng chia hết $n.$
  4. Cho tam giác $ABC$ có chân các đường vuông góc kẻ từ $A,B,C$ đến các cạnh đối diện lần lượt là ${{A}_{1}},{{B}_{1}},{{C}_{1}}.$ Gọi ${{A}_{2}}$ là giao điểm của đường thẳng $BC$ và ${{B}_{1}}{{C}_{1}}$. Các điểm ${{B}_{2}},{{C}_{2}}$ xác định tương tự. Giả sử $D,E,F$ lần lượt là trung điểm của $BC,CA,AB.$ Chứng minh rằng các đường vuông góc kẻ từ $D$ đến $A{{A}_{2}},$ từ $E$ đến $B{{B}_{2}}$ và từ $F$ đến $C{{C}_{2}}$ đồng quy.
  5. Cho số hữu tỉ $x$. Chứng minh rằng tồn tại một dãy các số hữu tỉ ${{x}_{0}},{{x}_{1}},{{x}_{2}},...$ thỏa mãn
    a) ${{x}_{0}}=x.$
    b) với mỗi $n\ge 1,$ ${{x}_{n+1}}=2{{x}_{n}}$ hoặc ${{x}_{n+1}}=2{{x}_{n}}+\frac{1}{n}$.
    c) ${{x}_{n}}$ là số nguyên với một số số nguyên dương $n.$
  6. Cho các số thực dương $x,y,z$ thỏa mãn $$xyz+xy+yz+zx=x+y+z+1.$$ Chứng minh rằng $$\frac{1}{3}\left( \sqrt{\frac{1+{{x}^{2}}}{1+x}}+\sqrt{\frac{1+{{y}^{2}}}{1+y}}+\sqrt{\frac{1+{{z}^{2}}}{1+z}} \right)\le {{\left( \frac{x+y+z}{3} \right)}^{5/8}}.$$ Hỏi dấu đẳng thức xảy ra khi nào?
  7. Cho tam giác $ABC$ nội tiếp đường tròn $\Omega .$ Đường phân giác trong góc $A$ cắt cạnh $BC$ và đường tròn $\Omega $ lần lượt tại $D$ và $L$. Gọi $M$ là trung điểm $BC$. Đường tròn ngoại tiếp tam giác $ADM$ lần lượt cắt các cạnh $AB,AC$ tại $Q$ và $P$. Gọi $N$ là trung điểm của đoạn $PQ$ và $H$ là hình chiếu của $L$ xuống $ND.$ Chứng minh rằng $ML$ tiếp xúc với đường tròn ngoại tiếp tam giác $HMN.$
  8. Cho số nguyên dương $n.$ Xét một bảng tam giác gồm các số nguyên không âm như sau: hàng 1: ${{a}_{0,1}}$, hàng 2: ${{a}_{0,2}}\text{ }{{a}_{1,2}}$, hàng 3: ${{a}_{0,3}}\text{ }{{a}_{1,3}}\text{ }{{a}_{2,3}}$,…, hàng $n:$ ${{a}_{0,n}}\text{ }{{a}_{1,n}}\text{ }{{a}_{2,n}}\text{ }...\text{ }{{a}_{n-1,n}}$. Ta gọi một bảng tam giác như trên là “ổn định” nếu như với mọi các số không âm $i,j,k$ mà $0\le i<j<k\le n$ thì ta đều có $${{a}_{i,j}}+{{a}_{j,k}}\le {{a}_{i,k}}\le {{a}_{i,j}}+{{a}_{j,k}}+1.$$ Với một dãy các số nguyên không âm và không giảm ${{s}_{1}},{{s}_{2}},{{s}_{3}},...,{{s}_{n}},$ chứng minh rằng tồn tại duy nhất một bảng tam giác ổn định xác định như trên sao cho tổng tất cả các phần tử trên dòng thứ $k$ bằng ${{s}_{k}}$ với $1\le k\le n.$
  9. Xét tập hợp $S$ gồm $n$ biến, một toán tử hai ngôi $\times $ trên tập $S$ được gọi là “đơn giản” nếu như $(x\times y)\times z=x\times (y\times z)$ với mọi $x,y,z\in S$ và $x\times y\in \left\{ x,y \right\}$ với mọi $x,y\in S$. Xét một toán tử “đơn giản” trên tập $S,$ rõ ràng với mọi xâu là một dãy các phần tử thuộc $S$, bằng cách áp dụng các toán tử trên theo một thứ tự nhất định, đều có thể được rút gọn thành một phần tử duy nhất, chẳng hạn $xyz\to x\times (y\times z)$. Mỗi xâu được gọi là “đầy đủ” nếu như nó chứa mỗi phần tử của tập $S$ ít nhất một lần, hai xâu được gọi là “tương đương” nếu như với mọi cách chọn các toán tử “đơn giản” thì đều cho ra cùng một kết quả, chẳng hạn $xxx,xx,x$ là các xâu tương đương. Gọi $T$ là tập hợp các xâu mà bất cứ xâu đầy đủ nào cũng tương đương với đúng một phần tử của tập $T.$ Xác định số phần tử của tập hợp $T.$

Post a Comment


$hide=home

$type=three$count=6$sr=random$t=oot$h=1$l=0$meta=hide$rm=hide$sn=0

$hide=post$type=three$count=6$sr=random$t=oot$h=1$l=0$meta=hide$rm=hide$sn=0

$hide=home

Kỷ Yếu$cl=violet$type=three$count=6$sr=random$t=oot$h=1$l=0$meta=hide$rm=hide$sn=0

Journals$cl=green$type=three$count=6$sr=random$t=oot$h=1$l=0$meta=hide$rm=hide$sn=0

Name

Ả-rập Xê-út,1,Abel,5,Albania,2,AMM,2,Amsterdam,5,Ấn Độ,1,An Giang,22,Andrew Wiles,1,Anh,2,Áo,1,APMO,19,Ba Đình,2,Ba Lan,1,Bà Rịa Vũng Tàu,52,Bắc Giang,49,Bắc Kạn,1,Bạc Liêu,9,Bắc Ninh,47,Bắc Trung Bộ,7,Bài Toán Hay,5,Balkan,37,Baltic Way,30,BAMO,1,Bất Đẳng Thức,66,Bến Tre,46,Benelux,13,Bình Định,44,Bình Dương,21,Bình Phước,38,Bình Thuận,34,Birch,1,Booklet,11,Bosnia Herzegovina,3,BoxMath,3,Brazil,2,Bùi Đắc Hiên,1,Bùi Thị Thiện Mỹ,1,Bùi Văn Tuyên,1,Bùi Xuân Diệu,1,Bulgaria,5,Buôn Ma Thuột,1,BxMO,12,Cà Mau,13,Cần Thơ,14,Canada,39,Cao Bằng,6,Cao Quang Minh,1,Câu Chuyện Toán Học,36,Caucasus,2,CGMO,10,China,10,Chọn Đội Tuyển,347,Chu Tuấn Anh,1,Chuyên Đề,124,Chuyên Sư Phạm,31,Chuyên Trần Hưng Đạo,3,Collection,8,College Mathematic,1,Concours,1,Cono Sur,1,Contest,610,Correspondence,1,Cosmin Poahata,1,Crux,2,Czech-Polish-Slovak,25,Đà Nẵng,39,Đa Thức,2,Đại Số,20,Đắk Lắk,54,Đắk Nông,7,Đan Phượng,1,Danube,7,Đào Thái Hiệp,1,ĐBSCL,2,Đề Thi HSG,1643,Đề Thi JMO,1,Điện Biên,8,Định Lý,1,Định Lý Beaty,1,Đỗ Hữu Đức Thịnh,1,Do Thái,3,Doãn Quang Tiến,4,Đoàn Quỳnh,1,Đoàn Văn Trung,1,Đống Đa,4,Đồng Nai,49,Đồng Tháp,51,Du Hiền Vinh,1,Đức,1,Duyên Hải Bắc Bộ,25,E-Book,33,EGMO,16,ELMO,19,EMC,8,Epsilon,1,Estonian,5,Euler,1,Evan Chen,1,Fermat,3,Finland,4,Forum Of Geometry,2,Furstenberg,1,G. Polya,3,Gặp Gỡ Toán Học,26,Gauss,1,GDTX,3,Geometry,12,Gia Lai,25,Gia Viễn,2,Giải Tích Hàm,1,Giảng Võ,1,Giới hạn,2,Goldbach,1,Hà Giang,2,Hà Lan,1,Hà Nam,29,Hà Nội,231,Hà Tĩnh,72,Hà Trung Kiên,1,Hải Dương,49,Hải Phòng,42,Hàn Quốc,5,Hậu Giang,4,Hậu Lộc,1,Hilbert,1,Hình Học,33,HKUST,7,Hòa Bình,13,Hoài Nhơn,1,Hoàng Bá Minh,1,Hoàng Minh Quân,1,Hodge,1,Hojoo Lee,2,HOMC,5,HongKong,8,HSG 10,100,HSG 11,87,HSG 12,581,HSG 9,402,HSG Cấp Trường,78,HSG Quốc Gia,99,HSG Quốc Tế,16,Hứa Lâm Phong,1,Hứa Thuần Phỏng,1,Hùng Vương,2,Hưng Yên,32,Hương Sơn,2,Huỳnh Kim Linh,1,Hy Lạp,1,IMC,25,IMO,54,India,45,Inequality,13,InMC,1,International,307,Iran,11,Jakob,1,JBMO,41,Jewish,1,Journal,20,Junior,38,K2pi,1,Kazakhstan,1,Khánh Hòa,16,KHTN,53,Kiên Giang,64,Kim Liên,1,Kon Tum,18,Korea,5,Kvant,2,Kỷ Yếu,42,Lai Châu,4,Lâm Đồng,33,Lạng Sơn,21,Langlands,1,Lào Cai,16,Lê Hải Châu,1,Lê Hải Khôi,1,Lê Hoành Phò,4,Lê Khánh Sỹ,3,Lê Minh Cường,1,Lê Phúc Lữ,1,Lê Phương,1,Lê Quý Đôn,1,Lê Viết Hải,1,Lê Việt Hưng,1,Leibniz,1,Long An,42,Lớp 10,10,Lớp 10 Chuyên,452,Lớp 10 Không Chuyên,230,Lớp 11,1,Lục Ngạn,1,Lượng giác,1,Lương Tài,1,Lưu Giang Nam,2,Lý Thánh Tông,1,Macedonian,1,Malaysia,1,Margulis,2,Mark Levi,1,Mathematical Excalibur,1,Mathematical Reflections,1,Mathematics Magazine,1,Mathematics Today,1,Mathley,1,MathLinks,1,MathProblems Journal,1,Mathscope,8,MathsVN,5,MathVN,1,MEMO,10,Metropolises,4,Mexico,1,MIC,1,Michael Guillen,1,Mochizuki,1,Moldova,1,Moscow,1,Mỹ,9,MYTS,4,Nam Định,32,Nam Phi,1,Nam Trung Bộ,1,National,249,Nesbitt,1,Newton,4,Nghệ An,50,Ngô Bảo Châu,2,Ngô Việt Hải,1,Ngọc Huyền,2,Nguyễn Anh Tuyến,1,Nguyễn Bá Đang,1,Nguyễn Đình Thi,1,Nguyễn Đức Tấn,1,Nguyễn Đức Thắng,1,Nguyễn Duy Khương,1,Nguyễn Duy Tùng,1,Nguyễn Hữu Điển,3,Nguyễn Mình Hà,1,Nguyễn Minh Tuấn,8,Nguyễn Phan Tài Vương,1,Nguyễn Phú Khánh,1,Nguyễn Phúc Tăng,1,Nguyễn Quản Bá Hồng,1,Nguyễn Quang Sơn,1,Nguyễn Tài Chung,5,Nguyễn Tăng Vũ,1,Nguyễn Tất Thu,1,Nguyễn Thúc Vũ Hoàng,1,Nguyễn Trung Tuấn,8,Nguyễn Tuấn Anh,2,Nguyễn Văn Huyện,3,Nguyễn Văn Mậu,25,Nguyễn Văn Nho,1,Nguyễn Văn Quý,2,Nguyễn Văn Thông,1,Nguyễn Việt Anh,1,Nguyễn Vũ Lương,2,Nhật Bản,3,Nhóm $\LaTeX$,4,Nhóm Toán,1,Ninh Bình,41,Ninh Thuận,15,Nội Suy Lagrange,2,Nội Suy Newton,1,Nordic,19,Olympiad Corner,1,Olympiad Preliminary,2,Olympic 10,98,Olympic 10/3,5,Olympic 11,89,Olympic 12,30,Olympic 24/3,6,Olympic 27/4,20,Olympic 30/4,66,Olympic KHTN,6,Olympic Sinh Viên,73,Olympic Tháng 4,12,Olympic Toán,300,Olympic Toán Sơ Cấp,3,PAMO,1,Phạm Đình Đồng,1,Phạm Đức Tài,1,Phạm Huy Hoàng,1,Pham Kim Hung,3,Phạm Quốc Sang,2,Phan Huy Khải,1,Phan Thành Nam,1,Pháp,2,Philippines,8,Phú Thọ,30,Phú Yên,26,Phùng Hồ Hải,1,Phương Trình Hàm,11,Phương Trình Pythagoras,1,Pi,1,Polish,32,Problems,1,PT-HPT,14,PTNK,45,Putnam,25,Quảng Bình,44,Quảng Nam,31,Quảng Ngãi,33,Quảng Ninh,43,Quảng Trị,26,Quỹ Tích,1,Riemann,1,RMM,12,RMO,24,Romania,36,Romanian Mathematical,1,Russia,1,Sách Thường Thức Toán,7,Sách Toán,69,Sách Toán Cao Học,1,Sách Toán THCS,7,Saudi Arabia,7,Scholze,1,Serbia,17,Sharygin,24,Shortlists,56,Simon Singh,1,Singapore,1,Số Học - Tổ Hợp,27,Sóc Trăng,28,Sơn La,11,Spain,8,Star Education,5,Stars of Mathematics,11,Swinnerton-Dyer,1,Talent Search,1,Tăng Hải Tuân,2,Tạp Chí,14,Tập San,6,Tây Ban Nha,1,Tây Ninh,29,Thạch Hà,1,Thái Bình,39,Thái Nguyên,49,Thái Vân,2,Thanh Hóa,57,THCS,2,Thổ Nhĩ Kỳ,5,Thomas J. Mildorf,1,THPT Chuyên Lê Quý Đôn,1,THPTQG,15,THTT,6,Thừa Thiên Huế,35,Tiền Giang,19,Tin Tức Toán Học,1,Titu Andreescu,2,Toán 12,7,Toán Cao Cấp,3,Toán Chuyên,2,Toán Rời Rạc,5,Toán Tuổi Thơ,3,Tôn Ngọc Minh Quân,2,TOT,1,TPHCM,126,Trà Vinh,5,Trắc Nghiệm,1,Trắc Nghiệm Toán,2,Trại Hè,34,Trại Hè Hùng Vương,25,Trại Hè Phương Nam,5,Trần Đăng Phúc,1,Trần Minh Hiền,2,Trần Nam Dũng,9,Trần Phương,1,Trần Quang Hùng,1,Trần Quốc Anh,2,Trần Quốc Luật,1,Trần Quốc Nghĩa,1,Trần Tiến Tự,1,Trịnh Đào Chiến,2,Trung Quốc,12,Trường Đông,19,Trường Hè,7,Trường Thu,1,Trường Xuân,2,TST,55,Tuyên Quang,6,Tuyển Sinh,3,Tuyển Tập,44,Tuymaada,4,Undergraduate,66,USA,44,USAJMO,10,USATST,7,Uzbekistan,1,Vasile Cîrtoaje,4,Vật Lý,1,Viện Toán Học,2,Vietnam,4,Viktor Prasolov,1,VIMF,1,Vinh,27,Vĩnh Long,20,Vĩnh Phúc,63,Virginia Tech,1,VLTT,1,VMEO,4,VMF,12,VMO,46,VNTST,22,Võ Anh Khoa,1,Võ Quốc Bá Cẩn,26,Võ Thành Văn,1,Vojtěch Jarník,6,Vũ Hữu Bình,7,Vương Trung Dũng,1,WFNMC Journal,1,Wiles,1,Yên Bái,17,Yên Định,1,Yên Thành,1,Zhautykov,11,Zhou Yuan Zhe,1,
ltr
item
MOlympiad: Đề Thi Chọn Đội Tuyển Toán Mỹ Tham Dự IMO 2012
Đề Thi Chọn Đội Tuyển Toán Mỹ Tham Dự IMO 2012
MOlympiad
https://www.molympiad.net/2017/09/de-thi-chon-doi-tuyen-my-2012.html
https://www.molympiad.net/
https://www.molympiad.net/
https://www.molympiad.net/2017/09/de-thi-chon-doi-tuyen-my-2012.html
true
2506595080985176441
UTF-8
Loaded All Posts Not found any posts VIEW ALL Readmore Reply Cancel reply Delete By Home PAGES POSTS View All RECOMMENDED FOR YOU LABEL ARCHIVE SEARCH ALL POSTS Not found any post match with your request Back Home Sunday Monday Tuesday Wednesday Thursday Friday Saturday Sun Mon Tue Wed Thu Fri Sat January February March April May June July August September October November December Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec just now 1 minute ago $$1$$ minutes ago 1 hour ago $$1$$ hours ago Yesterday $$1$$ days ago $$1$$ weeks ago more than 5 weeks ago Followers Follow THIS PREMIUM CONTENT IS LOCKED Please share to unlock Copy All Code Select All Code All codes were copied to your clipboard Can not copy the codes / texts, please press [CTRL]+[C] (or CMD+C with Mac) to copy