- Recall that a regular icosahedron is a convex polyhedron having 12 vertices and 20 faces; the faces are congruent equilateral triangles. On each face of a regular icosahedron is written a nonnegative integer such that the sum of all $20$ integers is $39.$ Show that there are two faces that share a vertex and have the same integer written on them.
- Let $S$ be the set of all positive integers that are not perfect squares. For $n$ in $S,$ consider choices of integers $a_1,a_2,\dots, a_r$ such that $n<a_1<a_2<\cdots<a_r$ and $n\cdot a_1\cdot a_2\cdots a_r$ is a perfect square, and let $f(n)$ be the minimum of $a_r$ over all such choices. For example, $2\cdot 3\cdot 6$ is a perfect square, while $2\cdot 3,2\cdot 4, 2\cdot 5, 2\cdot 3\cdot 4,$ $2\cdot 3\cdot 5, 2\cdot 4\cdot 5,$ and $2\cdot 3\cdot 4\cdot 5$ are not, and so $f(2)=6.$ Show that the function $f$ from $S$ to the integers is one-to-one.
- Suppose that the real numbers $a_0,a_1,\dots,a_n$ and $x,$ with $0<x<1,$ satisfy \[\frac{a_0}{1-x}+\frac{a_1}{1-x^2}+\cdots+\frac{a_n}{1-x^{n+1}}=0.\] Prove that there exists a real number $y$ with $0<y<1$ such that \[a_0+a_1y+\cdots+a_ny^n=0.\]
- A finite collection of digits $0$ and $1$ is written around a circle. An arc of length $L\ge 0$ consists of $L$ consecutive digits around the circle. For each arc $w,$ let $Z(w)$ and $N(w)$ denote the number of $0$'s in $w$ and the number of $1$'s in $w,$ respectively. Assume that $|Z(w)-Z(w')|\le 1$ for any two arcs $w,w'$ of the same length. Suppose that some arcs $w_1,\dots,w_k$ have the property that \[Z=\frac1k\sum_{j=1}^kZ(w_j)\text{ and }N=\frac1k\sum_{j=1}^k N(w_j)\] are both integers. Prove that there exists an arc $w$ with $Z(w)=Z$ and $N(w)=N.$
- For $m\ge 3,$ a list of $\binom m3$ real numbers $a_{ijk}$ $(1\le i<j<k\le m)$ is said to be area definite for $\mathbb{R}^n$ if the inequality \[\sum_{1\le i<j<k\le m}a_{ijk}\cdot\text{Area}(\triangle A_iA_jA_k)\ge0\] holds for every choice of $m$ points $A_1,\dots,A_m$ in $\mathbb{R}^n.$ For example, the list of four numbers $a_{123}=a_{124}=a_{134}=1, a_{234}=-1$ is area definite for $\mathbb{R}^2.$ Prove that if a list of $\binom m3$ numbers is area definite for $\mathbb{R}^2,$ then it is area definite for $\mathbb{R}^3.$
- Define a function $w:\mathbb{Z}\times\mathbb{Z}\to\mathbb{Z}$ as follows. For $|a|,|b|\le 2,$ let $w(a,b)$ be as in the table shown; otherwise, let $w(a,b)=0.$ \[\begin{array}{|lr|rrrrr|}\hline &&&&b&&\\ &w(a,b)&-2&-1&0&1&2\\ \hline &-2&-1&-2&2&-2&-1\\ &-1&-2&4&-4&4&-2\\ a&0&2&-4&12&-4&2\\ &1&-2&4&-4&4&-2\\ &2&-1&-2&2&-2&-1\\ \hline\end{array}\] For every finite subset $S$ of $\mathbb{Z}\times\mathbb{Z},$ define \[A(S)=\sum_{(\mathbf{s},\mathbf{s'})\in S\times S} w(\mathbf{s}-\mathbf{s'}).\] Prove that if $S$ is any finite nonempty subset of $\mathbb{Z}\times\mathbb{Z},$ then $A(S)>0.$
For example, if $S=\{(0,1),(0,2),(2,0),(3,1)\},$ then the terms in $A(S)$ are $12,12,12,12,4,4,0,0,0,0,-1,-1,-2,-2,-4,-4.$ - For positive integers $n,$ let the numbers $c(n)$ be determined by the rules $c(1)=1,c(2n)=c(n),$ and $c(2n+1)=(-1)^nc(n).$ Find the value of \[\sum_{n=1}^{2013}c(n)c(n+2).\]
- Let $C=\bigcup_{N=1}^{\infty}C_N,$ where $C_N$ denotes the set of 'cosine polynomials' of the form \[f(x)=1+\sum_{n=1}^Na_n\cos(2\pi nx)\] for which: (i) $f(x)\ge 0$ for all real $x,$ and (ii) $a_n=0$ whenever $n$ is a multiple of $3.$ Determine the maximum value of $f(0)$ as $f$ ranges through $C,$ and prove that this maximum is attained.
- Let $P$ be a nonempty collection of subsets of $\{1,\dots,n\}$ such that: (i) if $S,S'\in P,$ then $S\cup S'\in P$ and $S\cap S'\in P,$ and (ii) if $S\in P$ and $S\ne\emptyset,$ then there is a subset $T\subset S$ such that $T\in P$ and $T$ contains exactly one fewer element than $S.$ Suppose that $f:P\to\mathbb{R}$ is a function such that $f(\emptyset)=0$ and \[f(S\cup S')= f(S)+f(S')-f(S\cap S')\text{ for all }S,S'\in P.\] Must there exist real numbers $f_1,\dots,f_n$ such that \[f(S)=\sum_{i\in S}f_i\] for every $S\in P?$
- For any continuous real-valued function $f$ defined on the interval $[0,1],$ let $$\mu(f)=\int_0^1f(x)dx,$$ $$\text{Var}(f)=\int_0^1(f(x)-\mu(f))^2dx,$$ $$M(f)=\max_{0\le x\le 1}|f(x)|.$$ Show that if $f$ and $g$ are continuous real-valued functions defined on the interval $[0,1],$ then \[\text{Var}(fg)\le 2\text{Var}(f)M(g)^2+2\text{Var}(g)M(f)^2.\]
- Let $X=\{1,2,\dots,n\},$ and let $k\in X.$ Show that there are exactly $k\cdot n^{n-1}$ functions $f:X\to X$ such that for every $x\in X$ there is a $j\ge 0$ such that $f^{(j)}(x)\le k.$ [Here $f^{(j)}$ denotes the $j$th iterate of $f,$ so that $f^{(0)}(x)=x$ and $f^{(j+1)}(x)=f\left(f^{(j)}(x)\right).$]
- Let $n\ge 1$ be an odd integer. Alice and Bob play the following game, taking alternating turns, with Alice playing first. The playing area consists of $n$ spaces, arranged in a line. Initially all spaces are empty. At each turn, a player either - places a stone in an empty space, or - removes a stone from a nonempty space $s,$ places a stone in the nearest empty space to the left of $s$ (if such a space exists), and places a stone in the nearest empty space to the right of $s$ (if such a space exists). Furthermore, a move is permitted only if the resulting position has not occurred previously in the game. A player loses if he or she is unable to move. Assuming that both players play optimally throughout the game, what moves may Alice make on her first turn?
$hide=mobile$type=ticker$c=36$cols=4$l=0$sr=random$b=0
[Solutions] William Lowell Putnam Mathematical Competition 2013
This article has views, Facebook comments and
0 Blogger comment. Be the first to comment!
$type=blogging$m=0$sn=0$l=0$rm=0$c=6$va=0$src=random-posts
- Abel
- Albania
- AMM
- Amsterdam
- An Giang
- Andrew Wiles
- Anh
- APMO
- Austria (Áo)
- Ba Đình
- Ba Lan
- Bà Rịa Vũng Tàu
- Bắc Bộ
- Bắc Giang
- Bắc Kạn
- Bạc Liêu
- Bắc Ninh
- Bắc Trung Bộ
- Bài Toán Hay
- Balkan
- Baltic Way
- BAMO
- Bất Đẳng Thức
- Bến Tre
- Benelux
- Bình Định
- Bình Dương
- Bình Phước
- Bình Thuận
- Birch
- BMO
- Booklet
- Bosnia Herzegovina
- BoxMath
- Brazil
- British
- Bùi Đắc Hiên
- Bùi Thị Thiện Mỹ
- Bùi Văn Tuyên
- Bùi Xuân Diệu
- Bulgaria
- Buôn Ma Thuột
- BxMO
- Cà Mau
- Cần Thơ
- Canada
- Cao Bằng
- Cao Quang Minh
- Câu Chuyện Toán Học
- Caucasus
- CGMO
- China - Trung Quốc
- Chọn Đội Tuyển
- Chu Tuấn Anh
- Chuyên Đề
- Chuyên SPHCM
- Chuyên SPHN
- Chuyên Trần Hưng Đạo
- Collection
- College Mathematic
- Concours
- Cono Sur
- Contest
- Correspondence
- Cosmin Poahata
- Crux
- Czech-Polish-Slovak
- Đà Nẵng
- Đa Thức
- Đại Số
- Đắk Lắk
- Đắk Nông
- Đan Phượng
- Danube
- Đào Thái Hiệp
- ĐBSCL
- Đề Thi
- Đề Thi HSG
- Đề Thi JMO
- DHBB
- Điện Biên
- Định Lý
- Định Lý Beaty
- Đỗ Hữu Đức Thịnh
- Do Thái
- Doãn Quang Tiến
- Đoàn Quỳnh
- Đoàn Văn Trung
- Đống Đa
- Đồng Nai
- Đồng Tháp
- Du Hiền Vinh
- Đức
- Dương Quỳnh Châu
- Duyên Hải Bắc Bộ
- E-Book
- EGMO
- ELMO
- EMC
- Epsilon
- Estonian
- Euler
- Evan Chen
- Fermat
- Finland
- Forum Of Geometry
- Furstenberg
- G. Polya
- Gặp Gỡ Toán Học
- Gauss
- GDTX
- Geometry
- GGTH
- Gia Lai
- Gia Viễn
- Giải Tích Hàm
- Giảng Võ
- Giới hạn
- Goldbach
- Hà Giang
- Hà Lan
- Hà Nam
- Hà Nội
- Hà Tĩnh
- Hà Trung Kiên
- Hải Dương
- Hải Phòng
- Hậu Giang
- Hậu Lộc
- Hilbert
- Hình Học
- HKUST
- Hòa Bình
- Hoài Nhơn
- Hoàng Bá Minh
- Hoàng Minh Quân
- Hodge
- Hojoo Lee
- HOMC
- HongKong
- HSG 10
- HSG 10 2015-2016
- HSG 10 2021-2022
- HSG 10 2022-2023
- HSG 10 Bà Rịa Vũng Tàu
- HSG 10 Bắc Giang
- HSG 10 Bạc Liêu
- HSG 10 Bắc Ninh
- HSG 10 Bình Định
- HSG 10 Bình Dương
- HSG 10 Bình Thuận
- HSG 10 Chuyên SPHN
- HSG 10 Đắk Lắk
- HSG 10 Đồng Nai
- HSG 10 Gia Lai
- HSG 10 Hà Nam
- HSG 10 Hà Tĩnh
- HSG 10 Hải Dương
- HSG 10 KHTN
- HSG 10 Kon Tum
- HSG 10 Nghệ An
- HSG 10 Ninh Thuận
- HSG 10 Phú Yên
- HSG 10 Quảng Trị
- HSG 10 Thái Nguyên
- HSG 10 Thanh Hóa
- HSG 10 Trà Vinh
- HSG 10 Vĩnh Phúc
- HSG 11
- HSG 11 2011-2012
- HSG 11 2012-2013
- HSG 11 2018-2019
- HSG 11 Bà Rịa Vũng Tàu
- HSG 11 Bắc Giang
- HSG 11 Bạc Liêu
- HSG 11 Bắc Ninh
- HSG 11 Bình Định
- HSG 11 Bình Dương
- HSG 11 Bình Thuận
- HSG 11 Cà Mau
- HSG 11 Đà Nẵng
- HSG 11 Đồng Nai
- HSG 11 Hà Nam
- HSG 11 Hà Tĩnh
- HSG 11 Hải Phòng
- HSG 11 Kiên Giang
- HSG 11 Lạng Sơn
- HSG 11 Nghệ An
- HSG 11 Ninh Bình
- HSG 11 Quảng Bình
- HSG 11 Quảng Ngãi
- HSG 11 Quảng Trị
- HSG 11 Sóc Trăng
- HSG 11 Thái Nguyên
- HSG 11 Thanh Hóa
- HSG 11 Trà Vinh
- HSG 11 Tuyên Quang
- HSG 11 Vĩnh Long
- HSG 11 Vĩnh Phúc
- HSG 12
- HSG 12 2009-2010
- HSG 12 2010-2011
- HSG 12 2011-2012
- HSG 12 2012-2013
- HSG 12 2013-2014
- HSG 12 2014-2015
- HSG 12 2015-2016
- HSG 12 2016-2017
- HSG 12 2017-2018
- HSG 12 2018-2019
- HSG 12 2019-2020
- HSG 12 2020-2021
- HSG 12 2021-2022
- HSG 12 2022-2023
- HSG 12 An Giang
- HSG 12 Bà Rịa Vũng Tàu
- HSG 12 Bắc Giang
- HSG 12 Bạc Liêu
- HSG 12 Bắc Ninh
- HSG 12 Bến Tre
- HSG 12 Bình Định
- HSG 12 Bình Dương
- HSG 12 Bình Phước
- HSG 12 Bình Thuận
- HSG 12 Cà Mau
- HSG 12 Cần Thơ
- HSG 12 Cao Bằng
- HSG 12 Chuyên SPHN
- HSG 12 Đà Nẵng
- HSG 12 Đắk Lắk
- HSG 12 Đắk Nông
- HSG 12 Điện Biên
- HSG 12 Đồng Nai
- HSG 12 Đồng Tháp
- HSG 12 Gia Lai
- HSG 12 Hà Nam
- HSG 12 Hà Nội
- HSG 12 Hà Tĩnh
- HSG 12 Hải Dương
- HSG 12 Hải Phòng
- HSG 12 Hòa Bình
- HSG 12 Hưng Yên
- HSG 12 Khánh Hòa
- HSG 12 KHTN
- HSG 12 Kiên Giang
- HSG 12 Kon Tum
- HSG 12 Lâm Đồng
- HSG 12 Lạng Sơn
- HSG 12 Lào Cai
- HSG 12 Long An
- HSG 12 Nam Định
- HSG 12 Nghệ An
- HSG 12 Ninh Bình
- HSG 12 Ninh Thuận
- HSG 12 Phú Thọ
- HSG 12 Phú Yên
- HSG 12 Quảng Bình
- HSG 12 Quảng Nam
- HSG 12 Quảng Ngãi
- HSG 12 Quảng Ninh
- HSG 12 Quảng Trị
- HSG 12 Sóc Trăng
- HSG 12 Sơn La
- HSG 12 Tây Ninh
- HSG 12 Thái Bình
- HSG 12 Thái Nguyên
- HSG 12 Thanh Hóa
- HSG 12 Thừa Thiên Huế
- HSG 12 Tiền Giang
- HSG 12 TPHCM
- HSG 12 Tuyên Quang
- HSG 12 Vĩnh Long
- HSG 12 Vĩnh Phúc
- HSG 9
- HSG 9 2009-2010
- HSG 9 2010-2011
- HSG 9 2011-2012
- HSG 9 2012-2013
- HSG 9 2013-2014
- HSG 9 2014-2015
- HSG 9 2015-2016
- HSG 9 2016-2017
- HSG 9 2017-2018
- HSG 9 2018-2019
- HSG 9 2019-2020
- HSG 9 2020-2021
- HSG 9 2021-2022
- HSG 9 2022-2023
- HSG 9 An Giang
- HSG 9 Bà Rịa Vũng Tàu
- HSG 9 Bắc Giang
- HSG 9 Bắc Ninh
- HSG 9 Bến Tre
- HSG 9 Bình Định
- HSG 9 Bình Dương
- HSG 9 Bình Phước
- HSG 9 Bình Thuận
- HSG 9 Cà Mau
- HSG 9 Cần Thơ
- HSG 9 Cao Bằng
- HSG 9 Chuyên SPHN
- HSG 9 Đà Nẵng
- HSG 9 Đắk Lắk
- HSG 9 Đắk Nông
- HSG 9 Điện Biên
- HSG 9 Đồng Nai
- HSG 9 Đồng Tháp
- HSG 9 Gia Lai
- HSG 9 Hà Giang
- HSG 9 Hà Nam
- HSG 9 Hà Nội
- HSG 9 Hà Tĩnh
- HSG 9 Hải Dương
- HSG 9 Hải Phòng
- HSG 9 Hậu Giang
- HSG 9 Hòa Bình
- HSG 9 Hưng Yên
- HSG 9 Khánh Hòa
- HSG 9 Kiên Giang
- HSG 9 Kon Tum
- HSG 9 Lâm Đồng
- HSG 9 Lạng Sơn
- HSG 9 Lào Cai
- HSG 9 Long An
- HSG 9 Nam Định
- HSG 9 Nghệ An
- HSG 9 Ninh Bình
- HSG 9 Ninh Thuận
- HSG 9 Phú Thọ
- HSG 9 Phú Yên
- HSG 9 Quảng Bình
- HSG 9 Quảng Nam
- HSG 9 Quảng Ngãi
- HSG 9 Quảng Ninh
- HSG 9 Quảng Trị
- HSG 9 Sóc Trăng
- HSG 9 Sơn La
- HSG 9 Tây Ninh
- HSG 9 Thái Bình
- HSG 9 Thái Nguyên
- HSG 9 Thanh Hóa
- HSG 9 Thừa Thiên Huế
- HSG 9 Tiền Giang
- HSG 9 TPHCM
- HSG 9 Trà Vinh
- HSG 9 Tuyên Quang
- HSG 9 Vĩnh Long
- HSG 9 Vĩnh Phúc
- HSG Cấp Trường
- HSG Quốc Gia
- HSG Quốc Tế
- Hứa Lâm Phong
- Hứa Thuần Phỏng
- Hùng Vương
- Hưng Yên
- Hương Sơn
- Huỳnh Kim Linh
- Hy Lạp
- IMC
- IMO
- IMT
- India - Ấn Độ
- Inequality
- InMC
- International
- Iran
- Jakob
- JBMO
- Jewish
- Journal
- Junior
- K2pi
- Kazakhstan
- Khánh Hòa
- KHTN
- Kiên Giang
- Kim Liên
- Kon Tum
- Korea - Hàn Quốc
- Kvant
- Kỷ Yếu
- Lai Châu
- Lâm Đồng
- Lăng Hồng Nguyệt Anh
- Lạng Sơn
- Langlands
- Lào Cai
- Lê Hải Châu
- Lê Hải Khôi
- Lê Hoành Phò
- Lê Hồng Phong
- Lê Khánh Sỹ
- Lê Minh Cường
- Lê Phúc Lữ
- Lê Phương
- Lê Quý Đôn
- Lê Viết Hải
- Lê Việt Hưng
- Leibniz
- Long An
- Lớp 10 Chuyên
- Lớp 10 Không Chuyên
- Lớp 11
- Lục Ngạn
- Lượng giác
- Lương Tài
- Lưu Giang Nam
- Lưu Lý Tưởng
- Lý Thánh Tông
- Macedonian
- Malaysia
- Margulis
- Mark Levi
- Mathematical Excalibur
- Mathematical Reflections
- Mathematics Magazine
- Mathematics Today
- Mathley
- MathLinks
- MathProblems Journal
- Mathscope
- MathsVN
- MathVN
- MEMO
- Menelaus
- Metropolises
- Mexico
- MIC
- Michael Guillen
- Mochizuki
- Moldova
- Moscow
- MYTS
- Nam Định
- Nam Phi
- National
- Nesbitt
- Newton
- Nghệ An
- Ngô Bảo Châu
- Ngô Việt Hải
- Ngọc Huyền
- Nguyễn Anh Tuyến
- Nguyễn Bá Đang
- Nguyễn Đình Thi
- Nguyễn Đức Tấn
- Nguyễn Đức Thắng
- Nguyễn Duy Khương
- Nguyễn Duy Tùng
- Nguyễn Hữu Điển
- Nguyễn Minh Hà
- Nguyễn Minh Tuấn
- Nguyễn Nhất Huy
- Nguyễn Phan Tài Vương
- Nguyễn Phú Khánh
- Nguyễn Phúc Tăng
- Nguyễn Quản Bá Hồng
- Nguyễn Quang Sơn
- Nguyễn Song Thiên Long
- Nguyễn Tài Chung
- Nguyễn Tăng Vũ
- Nguyễn Tất Thu
- Nguyễn Thúc Vũ Hoàng
- Nguyễn Trung Tuấn
- Nguyễn Tuấn Anh
- Nguyễn Văn Huyện
- Nguyễn Văn Mậu
- Nguyễn Văn Nho
- Nguyễn Văn Quý
- Nguyễn Văn Thông
- Nguyễn Việt Anh
- Nguyễn Vũ Lương
- Nhật Bản
- Nhóm $\LaTeX$
- Nhóm Toán
- Ninh Bình
- Ninh Thuận
- Nội Suy Lagrange
- Nội Suy Newton
- Nordic
- Olympiad Corner
- Olympiad Preliminary
- Olympic 10
- Olympic 10/3
- Olympic 10/3 Đắk Lắk
- Olympic 11
- Olympic 12
- Olympic 23/3
- Olympic 24/3
- Olympic 24/3 Quảng Nam
- Olympic 27/4
- Olympic 30/4
- Olympic KHTN
- Olympic Sinh Viên
- Olympic Tháng 4
- Olympic Toán
- Olympic Toán Sơ Cấp
- Ôn Thi 10
- PAMO
- Phạm Đình Đồng
- Phạm Đức Tài
- Phạm Huy Hoàng
- Pham Kim Hung
- Phạm Quốc Sang
- Phan Huy Khải
- Phan Quang Đạt
- Phan Thành Nam
- Pháp
- Philippines
- Phú Thọ
- Phú Yên
- Phùng Hồ Hải
- Phương Trình Hàm
- Phương Trình Pythagoras
- Pi
- Polish
- Problems
- PT-HPT
- PTNK
- Putnam
- Quảng Bình
- Quảng Nam
- Quảng Ngãi
- Quảng Ninh
- Quảng Trị
- Quỹ Tích
- Riemann
- RMM
- RMO
- Romania
- Romanian Mathematical
- Russia
- Sách Thường Thức Toán
- Sách Toán
- Sách Toán Cao Học
- Sách Toán THCS
- Saudi Arabia - Ả Rập Xê Út
- Scholze
- Serbia
- Sharygin
- Shortlists
- Simon Singh
- Singapore
- Số Học - Tổ Hợp
- Sóc Trăng
- Sơn La
- Spain
- Star Education
- Stars of Mathematics
- Swinnerton-Dyer
- Talent Search
- Tăng Hải Tuân
- Tạp Chí
- Tập San
- Tây Ban Nha
- Tây Ninh
- Thạch Hà
- Thái Bình
- Thái Nguyên
- Thái Vân
- Thanh Hóa
- THCS
- Thổ Nhĩ Kỳ
- Thomas J. Mildorf
- THPT Chuyên Lê Quý Đôn
- THPTQG
- THTT
- Thừa Thiên Huế
- Tiền Giang
- Tin Tức Toán Học
- Titu Andreescu
- Toán 12
- Toán Cao Cấp
- Toán Rời Rạc
- Toán Tuổi Thơ
- Tôn Ngọc Minh Quân
- TOT
- TPHCM
- Trà Vinh
- Trắc Nghiệm
- Trắc Nghiệm Toán
- Trại Hè
- Trại Hè Hùng Vương
- Trại Hè Phương Nam
- Trần Đăng Phúc
- Trần Minh Hiền
- Trần Nam Dũng
- Trần Phương
- Trần Quang Hùng
- Trần Quốc Anh
- Trần Quốc Luật
- Trần Quốc Nghĩa
- Trần Tiến Tự
- Trịnh Đào Chiến
- Trường Đông
- Trường Hè
- Trường Thu
- Trường Xuân
- TST
- TST 2008-2009
- TST 2010-2011
- TST 2011-2012
- TST 2012-2013
- TST 2013-2014
- TST 2014-2015
- TST 2015-2016
- TST 2016-2017
- TST 2017-2018
- TST 2018-2019
- TST 2019-2020
- TST 2020-2021
- TST 2021-2022
- TST 2022-2023
- TST An Giang
- TST Bà Rịa Vũng Tàu
- TST Bắc Giang
- TST Bắc Ninh
- TST Bến Tre
- TST Bình Định
- TST Bình Dương
- TST Bình Phước
- TST Bình Thuận
- TST Cà Mau
- TST Cần Thơ
- TST Cao Bằng
- TST Đà Nẵng
- TST Đắk Lắk
- TST Đắk Nông
- TST Điện Biên
- TST Đồng Nai
- TST Đồng Tháp
- TST Gia Lai
- TST Hà Nam
- TST Hà Nội
- TST Hà Tĩnh
- TST Hải Dương
- TST Hải Phòng
- TST Hòa Bình
- TST Hưng Yên
- TST Khánh Hòa
- TST Kiên Giang
- TST Kon Tum
- TST Lâm Đồng
- TST Lạng Sơn
- TST Lào Cai
- TST Long An
- TST Nam Định
- TST Nghệ An
- TST Ninh Bình
- TST Ninh Thuận
- TST Phú Thọ
- TST Phú Yên
- TST PTNK
- TST Quảng Bình
- TST Quảng Nam
- TST Quảng Ngãi
- TST Quảng Ninh
- TST Quảng Trị
- TST Sóc Trăng
- TST Sơn La
- TST Thái Bình
- TST Thái Nguyên
- TST Thanh Hóa
- TST Thừa Thiên Huế
- TST Tiền Giang
- TST TPHCM
- TST Trà Vinh
- TST Vĩnh Long
- TST Vĩnh Phúc
- Tuyên Quang
- Tuyển Sinh
- Tuyển Sinh 10
- Tuyển Sinh 10 An Giang
- Tuyển Sinh 10 Bà Rịa Vũng Tàu
- Tuyển Sinh 10 Bắc Giang
- Tuyển Sinh 10 Bạc Liêu
- Tuyển Sinh 10 Bắc Ninh
- Tuyển Sinh 10 Bến Tre
- Tuyển Sinh 10 Bình Định
- Tuyển Sinh 10 Bình Dương
- Tuyển Sinh 10 Bình Phước
- Tuyển Sinh 10 Bình Thuận
- Tuyển Sinh 10 Cà Mau
- Tuyển Sinh 10 Cần Thơ
- Tuyển Sinh 10 Cao Bằng
- Tuyển Sinh 10 Chuyên SPHN
- Tuyển Sinh 10 Đà Nẵng
- Tuyển Sinh 10 Đắk Lắk
- Tuyển Sinh 10 Đắk Nông
- Tuyển Sinh 10 Điện Biên
- Tuyển Sinh 10 Đồng Nai
- Tuyển Sinh 10 Đồng Tháp
- Tuyển Sinh 10 Gia Lai
- Tuyển Sinh 10 Hà Giang
- Tuyển Sinh 10 Hà Nam
- Tuyển Sinh 10 Hà Nội
- Tuyển Sinh 10 Hà Tĩnh
- Tuyển Sinh 10 Hải Dương
- Tuyển Sinh 10 Hải Phòng
- Tuyển Sinh 10 Hậu Giang
- Tuyển Sinh 10 Hòa Bình
- Tuyển Sinh 10 Hưng Yên
- Tuyển Sinh 10 Khánh Hòa
- Tuyển Sinh 10 KHTN
- Tuyển Sinh 10 Kiên Giang
- Tuyển Sinh 10 Kon Tum
- Tuyển Sinh 10 Lâm Đồng
- Tuyển Sinh 10 Lạng Sơn
- Tuyển Sinh 10 Lào Cai
- Tuyển Sinh 10 Long An
- Tuyển Sinh 10 Nam Định
- Tuyển Sinh 10 Nghệ An
- Tuyển Sinh 10 Ninh Bình
- Tuyển Sinh 10 Ninh Thuận
- Tuyển Sinh 10 Phú Thọ
- Tuyển Sinh 10 Phú Yên
- Tuyển Sinh 10 PTNK
- Tuyển Sinh 10 Quảng Bình
- Tuyển Sinh 10 Quảng Nam
- Tuyển Sinh 10 Quảng Ngãi
- Tuyển Sinh 10 Quảng Ninh
- Tuyển Sinh 10 Quảng Trị
- Tuyển Sinh 10 Sóc Trăng
- Tuyển Sinh 10 Sơn La
- Tuyển Sinh 10 Tây Ninh
- Tuyển Sinh 10 Thái Bình
- Tuyển Sinh 10 Thái Nguyên
- Tuyển Sinh 10 Thanh Hóa
- Tuyển Sinh 10 Thừa Thiên Huế
- Tuyển Sinh 10 Tiền Giang
- Tuyển Sinh 10 TPHCM
- Tuyển Sinh 10 Tuyên Quang
- Tuyển Sinh 10 Vĩnh Long
- Tuyển Sinh 10 Vĩnh Phúc
- Tuyển Sinh 2008-2009
- Tuyển Sinh 2009-2010
- Tuyển Sinh 2010-2011
- Tuyển Sinh 2011-2012
- Tuyển Sinh 2012-2013
- Tuyển Sinh 2013-2014
- Tuyển Sinh 2014-2015
- Tuyển Sinh 2015-2016
- Tuyển Sinh 2016-2017
- Tuyển Sinh 2017-2018
- Tuyển Sinh 2018-2019
- Tuyển Sinh 2019-2020
- Tuyển Sinh 2020-2021
- Tuyển Sinh 2021-202
- Tuyển Sinh 2021-2022
- Tuyển Sinh 2022-2023
- Tuyển Sinh Chuyên SPHCM
- Tuyển Tập
- Tuymaada
- UK - Anh
- Undergraduate
- USA - Mỹ
- USA TSTST
- USAJMO
- USATST
- USEMO
- Uzbekistan
- Vasile Cîrtoaje
- Vật Lý
- Viện Toán Học
- Vietnam
- Viktor Prasolov
- VIMF
- Vinh
- Vĩnh Long
- Vĩnh Phúc
- Virginia Tech
- VLTT
- VMEO
- VMF
- VMO
- VNTST
- Võ Anh Khoa
- Võ Quốc Bá Cẩn
- Võ Thành Văn
- Vojtěch Jarník
- Vũ Hữu Bình
- Vương Trung Dũng
- WFNMC Journal
- Wiles
- Yên Bái
- Yên Định
- Yên Thành
- Zhautykov
- Zhou Yuan Zhe
$hide=mobile
POPULAR$type=list-tab$
- [Nguyễn Tài Chung] Bồi Dưỡng Học Sinh Giỏi Phương Trình Hàm
- Tổng Hợp Chuyên Đề Toán Học Phổ Thông Năng Khiếu
- Đề Thi Olympic Toán Trại Hè Hùng Vương 2022 (Khối 11)
- Đề Thi Chọn Học Sinh Giỏi Lớp 10 THPT Chuyên KHTN TP Hà Nội 2022-2023
- Toán Học Tuổi Trẻ
- [Nguyễn Nhất Huy, Nguyễn Minh Tuấn, Phan Quang Đạt, Dương Quỳnh Châu, Lăng Hồng Nguyệt Anh, Doãn Quang Tiến] Số Học Hướng Tới Kì Thi Chuyên Toán
RECENT$type=list-tab$date=0$au=0$c=6
- Abel
- Albania
- AMM
- Amsterdam
- An Giang
- Andrew Wiles
- Anh
- APMO
- Austria (Áo)
- Ba Đình
- Ba Lan
- Bà Rịa Vũng Tàu
- Bắc Bộ
- Bắc Giang
- Bắc Kạn
- Bạc Liêu
- Bắc Ninh
- Bắc Trung Bộ
- Bài Toán Hay
- Balkan
- Baltic Way
- BAMO
- Bất Đẳng Thức
- Bến Tre
- Benelux
- Bình Định
- Bình Dương
- Bình Phước
- Bình Thuận
- Birch
- BMO
- Booklet
- Bosnia Herzegovina
- BoxMath
- Brazil
- British
- Bùi Đắc Hiên
- Bùi Thị Thiện Mỹ
- Bùi Văn Tuyên
- Bùi Xuân Diệu
- Bulgaria
- Buôn Ma Thuột
- BxMO
- Cà Mau
- Cần Thơ
- Canada
- Cao Bằng
- Cao Quang Minh
- Câu Chuyện Toán Học
- Caucasus
- CGMO
- China - Trung Quốc
- Chọn Đội Tuyển
- Chu Tuấn Anh
- Chuyên Đề
- Chuyên SPHCM
- Chuyên SPHN
- Chuyên Trần Hưng Đạo
- Collection
- College Mathematic
- Concours
- Cono Sur
- Contest
- Correspondence
- Cosmin Poahata
- Crux
- Czech-Polish-Slovak
- Đà Nẵng
- Đa Thức
- Đại Số
- Đắk Lắk
- Đắk Nông
- Đan Phượng
- Danube
- Đào Thái Hiệp
- ĐBSCL
- Đề Thi
- Đề Thi HSG
- Đề Thi JMO
- DHBB
- Điện Biên
- Định Lý
- Định Lý Beaty
- Đỗ Hữu Đức Thịnh
- Do Thái
- Doãn Quang Tiến
- Đoàn Quỳnh
- Đoàn Văn Trung
- Đống Đa
- Đồng Nai
- Đồng Tháp
- Du Hiền Vinh
- Đức
- Dương Quỳnh Châu
- Duyên Hải Bắc Bộ
- E-Book
- EGMO
- ELMO
- EMC
- Epsilon
- Estonian
- Euler
- Evan Chen
- Fermat
- Finland
- Forum Of Geometry
- Furstenberg
- G. Polya
- Gặp Gỡ Toán Học
- Gauss
- GDTX
- Geometry
- GGTH
- Gia Lai
- Gia Viễn
- Giải Tích Hàm
- Giảng Võ
- Giới hạn
- Goldbach
- Hà Giang
- Hà Lan
- Hà Nam
- Hà Nội
- Hà Tĩnh
- Hà Trung Kiên
- Hải Dương
- Hải Phòng
- Hậu Giang
- Hậu Lộc
- Hilbert
- Hình Học
- HKUST
- Hòa Bình
- Hoài Nhơn
- Hoàng Bá Minh
- Hoàng Minh Quân
- Hodge
- Hojoo Lee
- HOMC
- HongKong
- HSG 10
- HSG 10 2015-2016
- HSG 10 2021-2022
- HSG 10 2022-2023
- HSG 10 Bà Rịa Vũng Tàu
- HSG 10 Bắc Giang
- HSG 10 Bạc Liêu
- HSG 10 Bắc Ninh
- HSG 10 Bình Định
- HSG 10 Bình Dương
- HSG 10 Bình Thuận
- HSG 10 Chuyên SPHN
- HSG 10 Đắk Lắk
- HSG 10 Đồng Nai
- HSG 10 Gia Lai
- HSG 10 Hà Nam
- HSG 10 Hà Tĩnh
- HSG 10 Hải Dương
- HSG 10 KHTN
- HSG 10 Kon Tum
- HSG 10 Nghệ An
- HSG 10 Ninh Thuận
- HSG 10 Phú Yên
- HSG 10 Quảng Trị
- HSG 10 Thái Nguyên
- HSG 10 Thanh Hóa
- HSG 10 Trà Vinh
- HSG 10 Vĩnh Phúc
- HSG 11
- HSG 11 2011-2012
- HSG 11 2012-2013
- HSG 11 2018-2019
- HSG 11 Bà Rịa Vũng Tàu
- HSG 11 Bắc Giang
- HSG 11 Bạc Liêu
- HSG 11 Bắc Ninh
- HSG 11 Bình Định
- HSG 11 Bình Dương
- HSG 11 Bình Thuận
- HSG 11 Cà Mau
- HSG 11 Đà Nẵng
- HSG 11 Đồng Nai
- HSG 11 Hà Nam
- HSG 11 Hà Tĩnh
- HSG 11 Hải Phòng
- HSG 11 Kiên Giang
- HSG 11 Lạng Sơn
- HSG 11 Nghệ An
- HSG 11 Ninh Bình
- HSG 11 Quảng Bình
- HSG 11 Quảng Ngãi
- HSG 11 Quảng Trị
- HSG 11 Sóc Trăng
- HSG 11 Thái Nguyên
- HSG 11 Thanh Hóa
- HSG 11 Trà Vinh
- HSG 11 Tuyên Quang
- HSG 11 Vĩnh Long
- HSG 11 Vĩnh Phúc
- HSG 12
- HSG 12 2009-2010
- HSG 12 2010-2011
- HSG 12 2011-2012
- HSG 12 2012-2013
- HSG 12 2013-2014
- HSG 12 2014-2015
- HSG 12 2015-2016
- HSG 12 2016-2017
- HSG 12 2017-2018
- HSG 12 2018-2019
- HSG 12 2019-2020
- HSG 12 2020-2021
- HSG 12 2021-2022
- HSG 12 2022-2023
- HSG 12 An Giang
- HSG 12 Bà Rịa Vũng Tàu
- HSG 12 Bắc Giang
- HSG 12 Bạc Liêu
- HSG 12 Bắc Ninh
- HSG 12 Bến Tre
- HSG 12 Bình Định
- HSG 12 Bình Dương
- HSG 12 Bình Phước
- HSG 12 Bình Thuận
- HSG 12 Cà Mau
- HSG 12 Cần Thơ
- HSG 12 Cao Bằng
- HSG 12 Chuyên SPHN
- HSG 12 Đà Nẵng
- HSG 12 Đắk Lắk
- HSG 12 Đắk Nông
- HSG 12 Điện Biên
- HSG 12 Đồng Nai
- HSG 12 Đồng Tháp
- HSG 12 Gia Lai
- HSG 12 Hà Nam
- HSG 12 Hà Nội
- HSG 12 Hà Tĩnh
- HSG 12 Hải Dương
- HSG 12 Hải Phòng
- HSG 12 Hòa Bình
- HSG 12 Hưng Yên
- HSG 12 Khánh Hòa
- HSG 12 KHTN
- HSG 12 Kiên Giang
- HSG 12 Kon Tum
- HSG 12 Lâm Đồng
- HSG 12 Lạng Sơn
- HSG 12 Lào Cai
- HSG 12 Long An
- HSG 12 Nam Định
- HSG 12 Nghệ An
- HSG 12 Ninh Bình
- HSG 12 Ninh Thuận
- HSG 12 Phú Thọ
- HSG 12 Phú Yên
- HSG 12 Quảng Bình
- HSG 12 Quảng Nam
- HSG 12 Quảng Ngãi
- HSG 12 Quảng Ninh
- HSG 12 Quảng Trị
- HSG 12 Sóc Trăng
- HSG 12 Sơn La
- HSG 12 Tây Ninh
- HSG 12 Thái Bình
- HSG 12 Thái Nguyên
- HSG 12 Thanh Hóa
- HSG 12 Thừa Thiên Huế
- HSG 12 Tiền Giang
- HSG 12 TPHCM
- HSG 12 Tuyên Quang
- HSG 12 Vĩnh Long
- HSG 12 Vĩnh Phúc
- HSG 9
- HSG 9 2009-2010
- HSG 9 2010-2011
- HSG 9 2011-2012
- HSG 9 2012-2013
- HSG 9 2013-2014
- HSG 9 2014-2015
- HSG 9 2015-2016
- HSG 9 2016-2017
- HSG 9 2017-2018
- HSG 9 2018-2019
- HSG 9 2019-2020
- HSG 9 2020-2021
- HSG 9 2021-2022
- HSG 9 2022-2023
- HSG 9 An Giang
- HSG 9 Bà Rịa Vũng Tàu
- HSG 9 Bắc Giang
- HSG 9 Bắc Ninh
- HSG 9 Bến Tre
- HSG 9 Bình Định
- HSG 9 Bình Dương
- HSG 9 Bình Phước
- HSG 9 Bình Thuận
- HSG 9 Cà Mau
- HSG 9 Cần Thơ
- HSG 9 Cao Bằng
- HSG 9 Chuyên SPHN
- HSG 9 Đà Nẵng
- HSG 9 Đắk Lắk
- HSG 9 Đắk Nông
- HSG 9 Điện Biên
- HSG 9 Đồng Nai
- HSG 9 Đồng Tháp
- HSG 9 Gia Lai
- HSG 9 Hà Giang
- HSG 9 Hà Nam
- HSG 9 Hà Nội
- HSG 9 Hà Tĩnh
- HSG 9 Hải Dương
- HSG 9 Hải Phòng
- HSG 9 Hậu Giang
- HSG 9 Hòa Bình
- HSG 9 Hưng Yên
- HSG 9 Khánh Hòa
- HSG 9 Kiên Giang
- HSG 9 Kon Tum
- HSG 9 Lâm Đồng
- HSG 9 Lạng Sơn
- HSG 9 Lào Cai
- HSG 9 Long An
- HSG 9 Nam Định
- HSG 9 Nghệ An
- HSG 9 Ninh Bình
- HSG 9 Ninh Thuận
- HSG 9 Phú Thọ
- HSG 9 Phú Yên
- HSG 9 Quảng Bình
- HSG 9 Quảng Nam
- HSG 9 Quảng Ngãi
- HSG 9 Quảng Ninh
- HSG 9 Quảng Trị
- HSG 9 Sóc Trăng
- HSG 9 Sơn La
- HSG 9 Tây Ninh
- HSG 9 Thái Bình
- HSG 9 Thái Nguyên
- HSG 9 Thanh Hóa
- HSG 9 Thừa Thiên Huế
- HSG 9 Tiền Giang
- HSG 9 TPHCM
- HSG 9 Trà Vinh
- HSG 9 Tuyên Quang
- HSG 9 Vĩnh Long
- HSG 9 Vĩnh Phúc
- HSG Cấp Trường
- HSG Quốc Gia
- HSG Quốc Tế
- Hứa Lâm Phong
- Hứa Thuần Phỏng
- Hùng Vương
- Hưng Yên
- Hương Sơn
- Huỳnh Kim Linh
- Hy Lạp
- IMC
- IMO
- IMT
- India - Ấn Độ
- Inequality
- InMC
- International
- Iran
- Jakob
- JBMO
- Jewish
- Journal
- Junior
- K2pi
- Kazakhstan
- Khánh Hòa
- KHTN
- Kiên Giang
- Kim Liên
- Kon Tum
- Korea - Hàn Quốc
- Kvant
- Kỷ Yếu
- Lai Châu
- Lâm Đồng
- Lăng Hồng Nguyệt Anh
- Lạng Sơn
- Langlands
- Lào Cai
- Lê Hải Châu
- Lê Hải Khôi
- Lê Hoành Phò
- Lê Hồng Phong
- Lê Khánh Sỹ
- Lê Minh Cường
- Lê Phúc Lữ
- Lê Phương
- Lê Quý Đôn
- Lê Viết Hải
- Lê Việt Hưng
- Leibniz
- Long An
- Lớp 10 Chuyên
- Lớp 10 Không Chuyên
- Lớp 11
- Lục Ngạn
- Lượng giác
- Lương Tài
- Lưu Giang Nam
- Lưu Lý Tưởng
- Lý Thánh Tông
- Macedonian
- Malaysia
- Margulis
- Mark Levi
- Mathematical Excalibur
- Mathematical Reflections
- Mathematics Magazine
- Mathematics Today
- Mathley
- MathLinks
- MathProblems Journal
- Mathscope
- MathsVN
- MathVN
- MEMO
- Menelaus
- Metropolises
- Mexico
- MIC
- Michael Guillen
- Mochizuki
- Moldova
- Moscow
- MYTS
- Nam Định
- Nam Phi
- National
- Nesbitt
- Newton
- Nghệ An
- Ngô Bảo Châu
- Ngô Việt Hải
- Ngọc Huyền
- Nguyễn Anh Tuyến
- Nguyễn Bá Đang
- Nguyễn Đình Thi
- Nguyễn Đức Tấn
- Nguyễn Đức Thắng
- Nguyễn Duy Khương
- Nguyễn Duy Tùng
- Nguyễn Hữu Điển
- Nguyễn Minh Hà
- Nguyễn Minh Tuấn
- Nguyễn Nhất Huy
- Nguyễn Phan Tài Vương
- Nguyễn Phú Khánh
- Nguyễn Phúc Tăng
- Nguyễn Quản Bá Hồng
- Nguyễn Quang Sơn
- Nguyễn Song Thiên Long
- Nguyễn Tài Chung
- Nguyễn Tăng Vũ
- Nguyễn Tất Thu
- Nguyễn Thúc Vũ Hoàng
- Nguyễn Trung Tuấn
- Nguyễn Tuấn Anh
- Nguyễn Văn Huyện
- Nguyễn Văn Mậu
- Nguyễn Văn Nho
- Nguyễn Văn Quý
- Nguyễn Văn Thông
- Nguyễn Việt Anh
- Nguyễn Vũ Lương
- Nhật Bản
- Nhóm $\LaTeX$
- Nhóm Toán
- Ninh Bình
- Ninh Thuận
- Nội Suy Lagrange
- Nội Suy Newton
- Nordic
- Olympiad Corner
- Olympiad Preliminary
- Olympic 10
- Olympic 10/3
- Olympic 10/3 Đắk Lắk
- Olympic 11
- Olympic 12
- Olympic 23/3
- Olympic 24/3
- Olympic 24/3 Quảng Nam
- Olympic 27/4
- Olympic 30/4
- Olympic KHTN
- Olympic Sinh Viên
- Olympic Tháng 4
- Olympic Toán
- Olympic Toán Sơ Cấp
- Ôn Thi 10
- PAMO
- Phạm Đình Đồng
- Phạm Đức Tài
- Phạm Huy Hoàng
- Pham Kim Hung
- Phạm Quốc Sang
- Phan Huy Khải
- Phan Quang Đạt
- Phan Thành Nam
- Pháp
- Philippines
- Phú Thọ
- Phú Yên
- Phùng Hồ Hải
- Phương Trình Hàm
- Phương Trình Pythagoras
- Pi
- Polish
- Problems
- PT-HPT
- PTNK
- Putnam
- Quảng Bình
- Quảng Nam
- Quảng Ngãi
- Quảng Ninh
- Quảng Trị
- Quỹ Tích
- Riemann
- RMM
- RMO
- Romania
- Romanian Mathematical
- Russia
- Sách Thường Thức Toán
- Sách Toán
- Sách Toán Cao Học
- Sách Toán THCS
- Saudi Arabia - Ả Rập Xê Út
- Scholze
- Serbia
- Sharygin
- Shortlists
- Simon Singh
- Singapore
- Số Học - Tổ Hợp
- Sóc Trăng
- Sơn La
- Spain
- Star Education
- Stars of Mathematics
- Swinnerton-Dyer
- Talent Search
- Tăng Hải Tuân
- Tạp Chí
- Tập San
- Tây Ban Nha
- Tây Ninh
- Thạch Hà
- Thái Bình
- Thái Nguyên
- Thái Vân
- Thanh Hóa
- THCS
- Thổ Nhĩ Kỳ
- Thomas J. Mildorf
- THPT Chuyên Lê Quý Đôn
- THPTQG
- THTT
- Thừa Thiên Huế
- Tiền Giang
- Tin Tức Toán Học
- Titu Andreescu
- Toán 12
- Toán Cao Cấp
- Toán Rời Rạc
- Toán Tuổi Thơ
- Tôn Ngọc Minh Quân
- TOT
- TPHCM
- Trà Vinh
- Trắc Nghiệm
- Trắc Nghiệm Toán
- Trại Hè
- Trại Hè Hùng Vương
- Trại Hè Phương Nam
- Trần Đăng Phúc
- Trần Minh Hiền
- Trần Nam Dũng
- Trần Phương
- Trần Quang Hùng
- Trần Quốc Anh
- Trần Quốc Luật
- Trần Quốc Nghĩa
- Trần Tiến Tự
- Trịnh Đào Chiến
- Trường Đông
- Trường Hè
- Trường Thu
- Trường Xuân
- TST
- TST 2008-2009
- TST 2010-2011
- TST 2011-2012
- TST 2012-2013
- TST 2013-2014
- TST 2014-2015
- TST 2015-2016
- TST 2016-2017
- TST 2017-2018
- TST 2018-2019
- TST 2019-2020
- TST 2020-2021
- TST 2021-2022
- TST 2022-2023
- TST An Giang
- TST Bà Rịa Vũng Tàu
- TST Bắc Giang
- TST Bắc Ninh
- TST Bến Tre
- TST Bình Định
- TST Bình Dương
- TST Bình Phước
- TST Bình Thuận
- TST Cà Mau
- TST Cần Thơ
- TST Cao Bằng
- TST Đà Nẵng
- TST Đắk Lắk
- TST Đắk Nông
- TST Điện Biên
- TST Đồng Nai
- TST Đồng Tháp
- TST Gia Lai
- TST Hà Nam
- TST Hà Nội
- TST Hà Tĩnh
- TST Hải Dương
- TST Hải Phòng
- TST Hòa Bình
- TST Hưng Yên
- TST Khánh Hòa
- TST Kiên Giang
- TST Kon Tum
- TST Lâm Đồng
- TST Lạng Sơn
- TST Lào Cai
- TST Long An
- TST Nam Định
- TST Nghệ An
- TST Ninh Bình
- TST Ninh Thuận
- TST Phú Thọ
- TST Phú Yên
- TST PTNK
- TST Quảng Bình
- TST Quảng Nam
- TST Quảng Ngãi
- TST Quảng Ninh
- TST Quảng Trị
- TST Sóc Trăng
- TST Sơn La
- TST Thái Bình
- TST Thái Nguyên
- TST Thanh Hóa
- TST Thừa Thiên Huế
- TST Tiền Giang
- TST TPHCM
- TST Trà Vinh
- TST Vĩnh Long
- TST Vĩnh Phúc
- Tuyên Quang
- Tuyển Sinh
- Tuyển Sinh 10
- Tuyển Sinh 10 An Giang
- Tuyển Sinh 10 Bà Rịa Vũng Tàu
- Tuyển Sinh 10 Bắc Giang
- Tuyển Sinh 10 Bạc Liêu
- Tuyển Sinh 10 Bắc Ninh
- Tuyển Sinh 10 Bến Tre
- Tuyển Sinh 10 Bình Định
- Tuyển Sinh 10 Bình Dương
- Tuyển Sinh 10 Bình Phước
- Tuyển Sinh 10 Bình Thuận
- Tuyển Sinh 10 Cà Mau
- Tuyển Sinh 10 Cần Thơ
- Tuyển Sinh 10 Cao Bằng
- Tuyển Sinh 10 Chuyên SPHN
- Tuyển Sinh 10 Đà Nẵng
- Tuyển Sinh 10 Đắk Lắk
- Tuyển Sinh 10 Đắk Nông
- Tuyển Sinh 10 Điện Biên
- Tuyển Sinh 10 Đồng Nai
- Tuyển Sinh 10 Đồng Tháp
- Tuyển Sinh 10 Gia Lai
- Tuyển Sinh 10 Hà Giang
- Tuyển Sinh 10 Hà Nam
- Tuyển Sinh 10 Hà Nội
- Tuyển Sinh 10 Hà Tĩnh
- Tuyển Sinh 10 Hải Dương
- Tuyển Sinh 10 Hải Phòng
- Tuyển Sinh 10 Hậu Giang
- Tuyển Sinh 10 Hòa Bình
- Tuyển Sinh 10 Hưng Yên
- Tuyển Sinh 10 Khánh Hòa
- Tuyển Sinh 10 KHTN
- Tuyển Sinh 10 Kiên Giang
- Tuyển Sinh 10 Kon Tum
- Tuyển Sinh 10 Lâm Đồng
- Tuyển Sinh 10 Lạng Sơn
- Tuyển Sinh 10 Lào Cai
- Tuyển Sinh 10 Long An
- Tuyển Sinh 10 Nam Định
- Tuyển Sinh 10 Nghệ An
- Tuyển Sinh 10 Ninh Bình
- Tuyển Sinh 10 Ninh Thuận
- Tuyển Sinh 10 Phú Thọ
- Tuyển Sinh 10 Phú Yên
- Tuyển Sinh 10 PTNK
- Tuyển Sinh 10 Quảng Bình
- Tuyển Sinh 10 Quảng Nam
- Tuyển Sinh 10 Quảng Ngãi
- Tuyển Sinh 10 Quảng Ninh
- Tuyển Sinh 10 Quảng Trị
- Tuyển Sinh 10 Sóc Trăng
- Tuyển Sinh 10 Sơn La
- Tuyển Sinh 10 Tây Ninh
- Tuyển Sinh 10 Thái Bình
- Tuyển Sinh 10 Thái Nguyên
- Tuyển Sinh 10 Thanh Hóa
- Tuyển Sinh 10 Thừa Thiên Huế
- Tuyển Sinh 10 Tiền Giang
- Tuyển Sinh 10 TPHCM
- Tuyển Sinh 10 Tuyên Quang
- Tuyển Sinh 10 Vĩnh Long
- Tuyển Sinh 10 Vĩnh Phúc
- Tuyển Sinh 2008-2009
- Tuyển Sinh 2009-2010
- Tuyển Sinh 2010-2011
- Tuyển Sinh 2011-2012
- Tuyển Sinh 2012-2013
- Tuyển Sinh 2013-2014
- Tuyển Sinh 2014-2015
- Tuyển Sinh 2015-2016
- Tuyển Sinh 2016-2017
- Tuyển Sinh 2017-2018
- Tuyển Sinh 2018-2019
- Tuyển Sinh 2019-2020
- Tuyển Sinh 2020-2021
- Tuyển Sinh 2021-202
- Tuyển Sinh 2021-2022
- Tuyển Sinh 2022-2023
- Tuyển Sinh Chuyên SPHCM
- Tuyển Tập
- Tuymaada
- UK - Anh
- Undergraduate
- USA - Mỹ
- USA TSTST
- USAJMO
- USATST
- USEMO
- Uzbekistan
- Vasile Cîrtoaje
- Vật Lý
- Viện Toán Học
- Vietnam
- Viktor Prasolov
- VIMF
- Vinh
- Vĩnh Long
- Vĩnh Phúc
- Virginia Tech
- VLTT
- VMEO
- VMF
- VMO
- VNTST
- Võ Anh Khoa
- Võ Quốc Bá Cẩn
- Võ Thành Văn
- Vojtěch Jarník
- Vũ Hữu Bình
- Vương Trung Dũng
- WFNMC Journal
- Wiles
- Yên Bái
- Yên Định
- Yên Thành
- Zhautykov
- Zhou Yuan Zhe