[Shortlists] International Mathematical Olympiad 2011


  1. Given any set $A = \{a_1, a_2, a_3, a_4\}$ of four distinct positive integers, we denote the sum $a_1 +a_2 +a_3 +a_4$ by $s_A$. Let $n_A$ denote the number of pairs $(i, j)$ with $1 \leq i < j \leq 4$ for which $a_i +a_j$ divides $s_A$. Find all sets $A$ of four distinct positive integers which achieve the largest possible value of $n_A$.
  2. Determine all sequences $(x_1,x_2,\ldots,x_{2011})$ of positive integers, such that for every positive integer $n$ there exists an integer $a$ with \[\sum^{2011}_{j=1} j x^n_j = a^{n+1} + 1\]
  3. Determine all pairs $(f,g)$ of functions from the set of real numbers to itself that satisfy \[g(f(x+y)) = f(x) + (2x + y)g(y)\] for all real numbers $x$ and $y$.
  4. Determine all pairs $(f,g)$ of functions from the set of positive integers to itself that satisfy \[f^{g(n)+1}(n) + g^{f(n)}(n) = f(n+1) - g(n+1) + 1\] for every positive integer $n$. Here, $f^k(n)$ means $\underbrace{f(f(\ldots f)}_{k}(n) \ldots ))$.
  5. Prove that for every positive integer $n,$ the set $\{2,3,4,\ldots,3n+1\}$ can be partitioned into $n$ triples in such a way that the numbers from each triple are the lengths of the sides of some obtuse triangle.
  6. Let $f : \mathbb R \to \mathbb R$ be a real-valued function defined on the set of real numbers that satisfies \[f(x + y) \leq yf(x) + f(f(x))\]
  7. for all real numbers $x$ and $y$. Prove that $f(x) = 0$ for all $x \leq 0$.
  8. Let $a,b$ and $c$ be positive real numbers satisfying $a^2+b^2+c^2=3$ and $\min(a+b,b+c,c+a) > \sqrt{2}$. Prove that \[\frac{a}{(b+c-a)^2} + \frac{b}{(c+a-b)^2} + \frac{c}{(a+b-c)^2} \geq \frac{3}{(abc)^2}.\]


  1. Let $n > 0$ be an integer. We are given a balance and $n$ weights of weight $2^0, 2^1, \cdots, 2^{n-1}$. We are to place each of the $n$ weights on the balance, one after another, in such a way that the right pan is never heavier than the left pan. At each step we choose one of the weights that has not yet been placed on the balance, and place it on either the left pan or the right pan, until all of the weights have been placed. Determine the number of ways in which this can be done.
  2. Suppose that $1000$ students are standing in a circle. Prove that there exists an integer $k$ with $100 \leq k \leq 300$ such that in this circle there exists a contiguous group of $2k$ students, for which the first half contains the same number of girls as the second half.
  3. Let $\mathcal{S}$ be a finite set of at least two points in the plane. Assume that no three points of $\mathcal S$ are collinear. A windmill is a process that starts with a line $\ell$ going through a single point $P \in \mathcal S$. The line rotates clockwise about the pivot $P$ until the first time that the line meets some other point belonging to $\mathcal S$. This point, $Q$, takes over as the new pivot, and the line now rotates clockwise about $Q$, until it next meets a point of $\mathcal S$. This process continues indefinitely. Show that we can choose a point $P$ in $\mathcal S$ and a line $\ell$ going through $P$ such that the resulting windmill uses each point of $\mathcal S$ as a pivot infinitely many times.
  4. Determine the greatest positive integer $k$ that satisfies the following property: The set of positive integers can be partitioned into $k$ subsets $A_1, A_2, \ldots, A_k$ such that for all integers $n \geq 15$ and all $i \in \{1, 2, \ldots, k\}$ there exist two distinct elements of $A_i$ whose sum is $n.$
  5. Let $m$ be a positive integer, and consider a $m\times m$ checkerboard consisting of unit squares. At the centre of some of these unit squares there is an ant. At time $0$, each ant starts moving with speed $1$ parallel to some edge of the checkerboard. When two ants moving in the opposite directions meet, they both turn $90^{\circ}$ clockwise and continue moving with speed $1$. When more than $2$ ants meet, or when two ants moving in perpendicular directions meet, the ants continue moving in the same direction as before they met. When an ant reaches one of the edges of the checkerboard, it falls off and will not re-appear. Considering all possible starting positions, determine the latest possible moment at which the last ant falls off the checkerboard, or prove that such a moment does not necessarily exist.
  6. Let $n$ be a positive integer, and let $W = \ldots x_{-1}x_0x_1x_2 \ldots$ be an infinite periodic word, consisting of just letters $a$ and/or $b$. Suppose that the minimal period $N$ of $W$ is greater than $2^n$. A finite nonempty word $U$ is said to appear in $W$ if there exist indices $k \leq \ell$ such that $U=x_k x_{k+1} \ldots x_{\ell}$. A finite word $U$ is called ubiquitous if the four words $Ua$, $Ub$, $aU$, and $bU$ all appear in $W$. Prove that there are at least $n$ ubiquitous finite nonempty words.
  7. On a square table of $2011$ by $2011$ cells we place a finite number of napkins that each cover a square of $52$ by $52$ cells. In each cell we write the number of napkins covering it, and we record the maximal number $k$ of cells that all contain the same nonzero number. Considering all possible napkin configurations, what is the largest value of $k$?


  1. Let $ABC$ be an acute triangle. Let $\omega$ be a circle whose centre $L$ lies on the side $BC$. Suppose that $\omega$ is tangent to $AB$ at $B'$ and $AC$ at $C'$. Suppose also that the circumcentre $O$ of triangle $ABC$ lies on the shorter arc $B'C'$ of $\omega$. Prove that the circumcircle of $ABC$ and $\omega$ meet at two points.
  2. Let $A_1A_2A_3A_4$ be a non-cyclic quadrilateral. Let $O_1$ and $r_1$ be the circumcentre and the circumradius of the triangle $A_2A_3A_4$. Define $O_2,O_3,O_4$ and $r_2,r_3,r_4$ in a similar way. Prove that \[\frac{1}{O_1A_1^2-r_1^2}+\frac{1}{O_2A_2^2-r_2^2}+\frac{1}{O_3A_3^2-r_3^2}+\frac{1}{O_4A_4^2-r_4^2}=0.\]
  3. Let $ABCD$ be a convex quadrilateral whose sides $AD$ and $BC$ are not parallel. Suppose that the circles with diameters $AB$ and $CD$ meet at points $E$ and $F$ inside the quadrilateral. Let $\omega_E$ be the circle through the feet of the perpendiculars from $E$ to the lines $AB,BC$ and $CD$. Let $\omega_F$ be the circle through the feet of the perpendiculars from $F$ to the lines $CD,DA$ and $AB$. Prove that the midpoint of the segment $EF$ lies on the line through the two intersections of $\omega_E$ and $\omega_F$.
  4. Let $ABC$ be an acute triangle with circumcircle $\Omega$. Let $B_0$ be the midpoint of $AC$ and let $C_0$ be the midpoint of $AB$. Let $D$ be the foot of the altitude from $A$ and let $G$ be the centroid of the triangle $ABC$. Let $\omega$ be a circle through $B_0$ and $C_0$ that is tangent to the circle $\Omega$ at a point $X\not= A$. Prove that the points $D,G$ and $X$ are collinear.
  5. Let $ABC$ be a triangle with incentre $I$ and circumcircle $\omega$. Let $D$ and $E$ be the second intersection points of $\omega$ with $AI$ and $BI$, respectively. The chord $DE$ meets $AC$ at a point $F$, and $BC$ at a point $G$. Let $P$ be the intersection point of the line through $F$ parallel to $AD$ and the line through $G$ parallel to $BE$. Suppose that the tangents to $\omega$ at $A$ and $B$ meet at a point $K$. Prove that the three lines $AE,BD$ and $KP$ are either parallel or concurrent.
  6. Let $ABC$ be a triangle with $AB=AC$ and let $D$ be the midpoint of $AC$. The angle bisector of $\angle BAC$ intersects the circle through $D,B$ and $C$ at the point $E$ inside the triangle $ABC$. The line $BD$ intersects the circle through $A,E$ and $B$ in two points $B$ and $F$. The lines $AF$ and $BE$ meet at a point $I$, and the lines $CI$ and $BD$ meet at a point $K$. Show that $I$ is the incentre of triangle $KAB$.
  7. Let $ABCDEF$ be a convex hexagon all of whose sides are tangent to a circle $\omega$ with centre $O$. Suppose that the circumcircle of triangle $ACE$ is concentric with $\omega$. Let $J$ be the foot of the perpendicular from $B$ to $CD$. Suppose that the perpendicular from $B$ to $DF$ intersects the line $EO$ at a point $K$. Let $L$ be the foot of the perpendicular from $K$ to $DE$. Prove that $DJ=DL$.
  8. Let $ABC$ be an acute triangle with circumcircle $\Gamma$. Let $\ell$ be a tangent line to $\Gamma$, and let $\ell_a, \ell_b$ and $\ell_c$ be the lines obtained by reflecting $\ell$ in the lines $BC$, $CA$ and $AB$, respectively. Show that the circumcircle of the triangle determined by the lines $\ell_a, \ell_b$ and $\ell_c$ is tangent to the circle $\Gamma$.

Number Theory

  1. For any integer $d > 0,$ let $f(d)$ be the smallest possible integer that has exactly $d$ positive divisors (so for example we have $f(1)=1, f(5)=16,$ and $f(6)=12$). Prove that for every integer $k \geq 0$ the number $f\left(2^k\right)$ divides $f\left(2^{k+1}\right).$
  2. Consider a polynomial $P(x) = \prod^9_{j=1}(x+d_j),$ where $d_1, d_2, \ldots d_9$ are nine distinct integers. Prove that there exists an integer $N,$ such that for all integers $x \geq N$ the number $P(x)$ is divisible by a prime number greater than 20.
  3. Let $n \geq 1$ be an odd integer. Determine all functions $f$ from the set of integers to itself, such that for all integers $x$ and $y$ the difference $f(x)-f(y)$ divides $x^n-y^n.$
  4. For each positive integer $k,$ let $t(k)$ be the largest odd divisor of $k.$ Determine all positive integers $a$ for which there exists a positive integer $n,$ such that all the differences $$t(n+a)-t(n),\quad t(n+a+1)-t(n+1), \quad \ldots, \quad t(n+2a-1)-t(n+a-1)$ are divisible by 4.
  5. Let $f$ be a function from the set of integers to the set of positive integers. Suppose that, for any two integers $m$ and $n$, the difference $f(m) - f(n)$ is divisible by $f(m- n)$. Prove that, for all integers $m$ and $n$ with $f(m) \leq f(n)$, the number $f(n)$ is divisible by $f(m)$.
  6. Let $P(x)$ and $Q(x)$ be two polynomials with integer coefficients, such that no nonconstant polynomial with rational coefficients divides both $P(x)$ and $Q(x).$ Suppose that for every positive integer $n$ the integers $P(n)$ and $Q(n)$ are positive, and $2^{Q(n)}-1$ divides $3^{P(n)}-1.$ Prove that $Q(x)$ is a constant polynomial.
  7. Let $p$ be an odd prime number. For every integer $a,$ define the number $$S_a = \sum^{p-1}_{j=1} \frac{a^j}{j}.$$ Let $m,n \in \mathbb{Z},$ such that $S_3 + S_4 - 3S_2 = \frac{m}{n}.$ Prove that $p$ divides $m.$
  8. Let $k \in \mathbb{Z}^+$ and set $n=2^k+1.$ Prove that $n$ is a prime number if and only if the following holds: there is a permutation $a_{1},\ldots,a_{n-1}$ of the numbers $1,2, \ldots, n-1$ and a sequence of integers $g_{1},\ldots,g_{n-1},$ such that $n$ divides $g^{a_i}_i - a_{i+1}$ for every $i \in \{1,2,\ldots,n-1\},$ where we set $a_n = a_1.$

Post a Comment





Kỷ Yếu$cl=violet$type=three$count=6$sr=random$t=oot$h=1$l=0$meta=hide$rm=hide$sn=0



Ả-rập Xê-út,1,Abel,5,Albania,2,AMM,2,Amsterdam,5,Ấn Độ,1,An Giang,21,Andrew Wiles,1,Anh,2,Áo,1,APMO,19,Ba Đình,2,Ba Lan,1,Bà Rịa Vũng Tàu,52,Bắc Giang,49,Bắc Kạn,1,Bạc Liêu,9,Bắc Ninh,47,Bắc Trung Bộ,7,Bài Toán Hay,5,Balkan,37,Baltic Way,30,BAMO,1,Bất Đẳng Thức,66,Bến Tre,46,Benelux,13,Bình Định,44,Bình Dương,21,Bình Phước,38,Bình Thuận,34,Birch,1,Booklet,11,Bosnia Herzegovina,3,BoxMath,3,Brazil,2,Bùi Đắc Hiên,1,Bùi Thị Thiện Mỹ,1,Bùi Văn Tuyên,1,Bùi Xuân Diệu,1,Bulgaria,5,Buôn Ma Thuột,1,BxMO,12,Cà Mau,13,Cần Thơ,14,Canada,39,Cao Bằng,6,Cao Quang Minh,1,Câu Chuyện Toán Học,36,Caucasus,2,CGMO,10,China,10,Chọn Đội Tuyển,347,Chu Tuấn Anh,1,Chuyên Đề,124,Chuyên Sư Phạm,31,Chuyên Trần Hưng Đạo,3,Collection,8,College Mathematic,1,Concours,1,Cono Sur,1,Contest,610,Correspondence,1,Cosmin Poahata,1,Crux,2,Czech-Polish-Slovak,25,Đà Nẵng,39,Đa Thức,2,Đại Số,20,Đắk Lắk,54,Đắk Nông,7,Đan Phượng,1,Danube,7,Đào Thái Hiệp,1,ĐBSCL,2,Đề Thi HSG,1641,Đề Thi JMO,1,Điện Biên,8,Định Lý,1,Định Lý Beaty,1,Đỗ Hữu Đức Thịnh,1,Do Thái,3,Doãn Quang Tiến,4,Đoàn Quỳnh,1,Đoàn Văn Trung,1,Đống Đa,4,Đồng Nai,49,Đồng Tháp,51,Du Hiền Vinh,1,Đức,1,Duyên Hải Bắc Bộ,25,E-Book,33,EGMO,16,ELMO,19,EMC,8,Epsilon,1,Estonian,5,Euler,1,Evan Chen,1,Fermat,3,Finland,4,Forum Of Geometry,2,Furstenberg,1,G. Polya,3,Gặp Gỡ Toán Học,26,Gauss,1,GDTX,3,Geometry,12,Gia Lai,25,Gia Viễn,2,Giải Tích Hàm,1,Giảng Võ,1,Giới hạn,2,Goldbach,1,Hà Giang,2,Hà Lan,1,Hà Nam,29,Hà Nội,231,Hà Tĩnh,72,Hà Trung Kiên,1,Hải Dương,49,Hải Phòng,42,Hàn Quốc,5,Hậu Giang,4,Hậu Lộc,1,Hilbert,1,Hình Học,33,HKUST,7,Hòa Bình,13,Hoài Nhơn,1,Hoàng Bá Minh,1,Hoàng Minh Quân,1,Hodge,1,Hojoo Lee,2,HOMC,5,HongKong,8,HSG 10,100,HSG 11,86,HSG 12,580,HSG 9,402,HSG Cấp Trường,78,HSG Quốc Gia,99,HSG Quốc Tế,16,Hứa Lâm Phong,1,Hứa Thuần Phỏng,1,Hùng Vương,2,Hưng Yên,32,Hương Sơn,2,Huỳnh Kim Linh,1,Hy Lạp,1,IMC,25,IMO,54,India,45,Inequality,13,InMC,1,International,307,Iran,11,Jakob,1,JBMO,41,Jewish,1,Journal,20,Junior,38,K2pi,1,Kazakhstan,1,Khánh Hòa,16,KHTN,53,Kiên Giang,63,Kim Liên,1,Kon Tum,18,Korea,5,Kvant,2,Kỷ Yếu,42,Lai Châu,4,Lâm Đồng,33,Lạng Sơn,21,Langlands,1,Lào Cai,16,Lê Hải Châu,1,Lê Hải Khôi,1,Lê Hoành Phò,4,Lê Khánh Sỹ,3,Lê Minh Cường,1,Lê Phúc Lữ,1,Lê Phương,1,Lê Quý Đôn,1,Lê Viết Hải,1,Lê Việt Hưng,1,Leibniz,1,Long An,42,Lớp 10,10,Lớp 10 Chuyên,452,Lớp 10 Không Chuyên,229,Lớp 11,1,Lục Ngạn,1,Lượng giác,1,Lương Tài,1,Lưu Giang Nam,2,Lý Thánh Tông,1,Macedonian,1,Malaysia,1,Margulis,2,Mark Levi,1,Mathematical Excalibur,1,Mathematical Reflections,1,Mathematics Magazine,1,Mathematics Today,1,Mathley,1,MathLinks,1,MathProblems Journal,1,Mathscope,8,MathsVN,5,MathVN,1,MEMO,10,Metropolises,4,Mexico,1,MIC,1,Michael Guillen,1,Mochizuki,1,Moldova,1,Moscow,1,Mỹ,9,MYTS,4,Nam Định,32,Nam Phi,1,Nam Trung Bộ,1,National,249,Nesbitt,1,Newton,4,Nghệ An,50,Ngô Bảo Châu,2,Ngô Việt Hải,1,Ngọc Huyền,2,Nguyễn Anh Tuyến,1,Nguyễn Bá Đang,1,Nguyễn Đình Thi,1,Nguyễn Đức Tấn,1,Nguyễn Đức Thắng,1,Nguyễn Duy Khương,1,Nguyễn Duy Tùng,1,Nguyễn Hữu Điển,3,Nguyễn Mình Hà,1,Nguyễn Minh Tuấn,8,Nguyễn Phan Tài Vương,1,Nguyễn Phú Khánh,1,Nguyễn Phúc Tăng,1,Nguyễn Quản Bá Hồng,1,Nguyễn Quang Sơn,1,Nguyễn Tài Chung,5,Nguyễn Tăng Vũ,1,Nguyễn Tất Thu,1,Nguyễn Thúc Vũ Hoàng,1,Nguyễn Trung Tuấn,8,Nguyễn Tuấn Anh,2,Nguyễn Văn Huyện,3,Nguyễn Văn Mậu,25,Nguyễn Văn Nho,1,Nguyễn Văn Quý,2,Nguyễn Văn Thông,1,Nguyễn Việt Anh,1,Nguyễn Vũ Lương,2,Nhật Bản,3,Nhóm $\LaTeX$,4,Nhóm Toán,1,Ninh Bình,41,Ninh Thuận,15,Nội Suy Lagrange,2,Nội Suy Newton,1,Nordic,19,Olympiad Corner,1,Olympiad Preliminary,2,Olympic 10,98,Olympic 10/3,5,Olympic 11,89,Olympic 12,30,Olympic 24/3,6,Olympic 27/4,20,Olympic 30/4,66,Olympic KHTN,6,Olympic Sinh Viên,73,Olympic Tháng 4,12,Olympic Toán,300,Olympic Toán Sơ Cấp,3,PAMO,1,Phạm Đình Đồng,1,Phạm Đức Tài,1,Phạm Huy Hoàng,1,Pham Kim Hung,3,Phạm Quốc Sang,2,Phan Huy Khải,1,Phan Thành Nam,1,Pháp,2,Philippines,8,Phú Thọ,30,Phú Yên,26,Phùng Hồ Hải,1,Phương Trình Hàm,11,Phương Trình Pythagoras,1,Pi,1,Polish,32,Problems,1,PT-HPT,14,PTNK,44,Putnam,25,Quảng Bình,44,Quảng Nam,31,Quảng Ngãi,33,Quảng Ninh,43,Quảng Trị,26,Quỹ Tích,1,Riemann,1,RMM,12,RMO,24,Romania,36,Romanian Mathematical,1,Russia,1,Sách Thường Thức Toán,7,Sách Toán,69,Sách Toán Cao Học,1,Sách Toán THCS,7,Saudi Arabia,7,Scholze,1,Serbia,17,Sharygin,24,Shortlists,56,Simon Singh,1,Singapore,1,Số Học - Tổ Hợp,27,Sóc Trăng,28,Sơn La,11,Spain,8,Star Education,5,Stars of Mathematics,11,Swinnerton-Dyer,1,Talent Search,1,Tăng Hải Tuân,2,Tạp Chí,14,Tập San,6,Tây Ban Nha,1,Tây Ninh,29,Thạch Hà,1,Thái Bình,39,Thái Nguyên,49,Thái Vân,2,Thanh Hóa,57,THCS,2,Thổ Nhĩ Kỳ,5,Thomas J. Mildorf,1,THPT Chuyên Lê Quý Đôn,1,THPTQG,15,THTT,6,Thừa Thiên Huế,35,Tiền Giang,19,Tin Tức Toán Học,1,Titu Andreescu,2,Toán 12,7,Toán Cao Cấp,3,Toán Chuyên,2,Toán Rời Rạc,5,Toán Tuổi Thơ,3,Tôn Ngọc Minh Quân,2,TOT,1,TPHCM,125,Trà Vinh,5,Trắc Nghiệm,1,Trắc Nghiệm Toán,2,Trại Hè,34,Trại Hè Hùng Vương,25,Trại Hè Phương Nam,5,Trần Đăng Phúc,1,Trần Minh Hiền,2,Trần Nam Dũng,9,Trần Phương,1,Trần Quang Hùng,1,Trần Quốc Anh,2,Trần Quốc Luật,1,Trần Quốc Nghĩa,1,Trần Tiến Tự,1,Trịnh Đào Chiến,2,Trung Quốc,12,Trường Đông,19,Trường Hè,7,Trường Thu,1,Trường Xuân,2,TST,55,Tuyên Quang,6,Tuyển Sinh,3,Tuyển Tập,44,Tuymaada,4,Undergraduate,66,USA,44,USAJMO,10,USATST,7,Uzbekistan,1,Vasile Cîrtoaje,4,Vật Lý,1,Viện Toán Học,2,Vietnam,4,Viktor Prasolov,1,VIMF,1,Vinh,27,Vĩnh Long,20,Vĩnh Phúc,63,Virginia Tech,1,VLTT,1,VMEO,4,VMF,12,VMO,46,VNTST,22,Võ Anh Khoa,1,Võ Quốc Bá Cẩn,26,Võ Thành Văn,1,Vojtěch Jarník,6,Vũ Hữu Bình,7,Vương Trung Dũng,1,WFNMC Journal,1,Wiles,1,Yên Bái,17,Yên Định,1,Yên Thành,1,Zhautykov,11,Zhou Yuan Zhe,1,
MOlympiad: [Shortlists] International Mathematical Olympiad 2011
[Shortlists] International Mathematical Olympiad 2011
Loaded All Posts Not found any posts VIEW ALL Readmore Reply Cancel reply Delete By Home PAGES POSTS View All RECOMMENDED FOR YOU LABEL ARCHIVE SEARCH ALL POSTS Not found any post match with your request Back Home Sunday Monday Tuesday Wednesday Thursday Friday Saturday Sun Mon Tue Wed Thu Fri Sat January February March April May June July August September October November December Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec just now 1 minute ago $$1$$ minutes ago 1 hour ago $$1$$ hours ago Yesterday $$1$$ days ago $$1$$ weeks ago more than 5 weeks ago Followers Follow THIS PREMIUM CONTENT IS LOCKED Please share to unlock Copy All Code Select All Code All codes were copied to your clipboard Can not copy the codes / texts, please press [CTRL]+[C] (or CMD+C with Mac) to copy