$hide=mobile

[Shortlists] International Mathematical Olympiad 1997

  1. In the plane the points with integer coordinates are the vertices of unit squares. The squares are coloured alternately black and white (as on a chessboard). For any pair of positive integers $ m$ and $ n$, consider a right-angled triangle whose vertices have integer coordinates and whose legs, of lengths $ m$ and $ n$, lie along edges of the squares. Let $ S_1$ be the total area of the black part of the triangle and $ S_2$ be the total area of the white part. Let $ f(m,n) = | S_1 - S_2 |$.
    a) Calculate $ f(m,n)$ for all positive integers $ m$ and $ n$ which are either both even or both odd.
    b) Prove that $ f(m,n) \leq \frac 12 \max \{m,n \}$ for all $ m$ and $ n$.
    c) Show that there is no constant $ C\in\mathbb{R}$ such that $ f(m,n) < C$ for all $ m$ and $ n$.
  2. Let $ R_1,R_2, \ldots$ be the family of finite sequences of positive integers defined by the following rules: $ R_1 = (1),$ and if $ R_{n - 1} = (x_1, \ldots, x_s),$ then \[ R_n = (1, 2, \ldots, x_1, 1, 2, \ldots, x_2, \ldots, 1, 2, \ldots, x_s, n).\] For example, $ R_2 = (1, 2),$ $ R_3 = (1, 1, 2, 3),$ $ R_4 = (1, 1, 1, 2, 1, 2, 3, 4).$ Prove that if $ n > 1,$ then the $ k$th term from the left in $ R_n$ is equal to 1 if and only if the $ k$th term from the right in $ R_n$ is different from 1.
  3. For each finite set $ U$ of nonzero vectors in the plane we define $ l(U)$ to be the length of the vector that is the sum of all vectors in $ U.$ Given a finite set $ V$ of nonzero vectors in the plane, a subset $ B$ of $ V$ is said to be maximal if $ l(B)$ is greater than or equal to $ l(A)$ for each nonempty subset $ A$ of $ V.$
    sisting of $ n \geq 1$ vectors the number of maximal subsets is less than or equal to $ 2n.$
  4. An $ n \times n$ matrix whose entries come from the set $ S = \{1, 2, \ldots , 2n - 1\}$ is called a silver matrix if, for each $ i = 1, 2, \ldots , n$, the $ i$-th row and the $ i$-th column together contain all elements of $ S$. Show that
    a) There is no silver matrix for $ n = 1997$;
    b) Silver matrices exist for infinitely many values of $ n$.
  5. Let $ ABCD$ be a regular tetrahedron and $ M,N$ distinct points in the planes $ ABC$ and $ ADC$ respectively. Show that the segments $ MN,BN,MD$ are the sides of a triangle.
  6. a) Let $ n$ be a positive integer. Prove that there exist distinct positive integers $ x, y, z$ such that \[ x^{n-1} + y^n = z^{n+1}.\] b) Let $ a, b, c$ be positive integers such that $ a$ and $ b$ are relatively prime and $ c$ is relatively prime either to $ a$ or to $ b.$ Prove that there exist infinitely many triples $ (x, y, z)$ of distinct positive integers $ x, y, z$ such that \[ x^a + y^b = z^c.\]
  7. The lengths of the sides of a convex hexagon $ ABCDEF$ satisfy $ AB = BC$, $ CD = DE$, $ EF = FA$. Prove that \[ \frac {BC}{BE} + \frac {DE}{DA} + \frac {FA}{FC} \geq \frac {3}{2}. \]
  8. It is known that $ \angle BAC$ is the smallest angle in the triangle $ ABC$. The points $ B$ and $ C$ divide the circumcircle of the triangle into two arcs. Let $ U$ be an interior point of the arc between $ B$ and $ C$ which does not contain $ A$. The perpendicular bisectors of $ AB$ and $ AC$ meet the line $ AU$ at $ V$ and $ W$, respectively. The lines $ BV$ and $ CW$ meet at $ T$. Show that $ AU = TB + TC$.
  9. Let $ A_1A_2A_3$ be a non-isosceles triangle with incenter $ I.$ Let $ C_i,$ $ i = 1, 2, 3,$ be the smaller circle through $ I$ tangent to $ A_iA_{i+1}$ and $ A_iA_{i+2}$ (the addition of indices being mod 3). Let $ B_i, i = 1, 2, 3,$ be the second point of intersection of $ C_{i+1}$ and $ C_{i+2}.$ Prove that the circumcentres of the triangles $ A_1 B_1I,A_2B_2I,A_3B_3I$ are collinear.
  10. Find all positive integers $ k$ for which the following statement is true: If $ F(x)$ is a polynomial with integer coefficients satisfying the condition $ 0 \leq F(c) \leq k$ for each $ c\in \{0,1,\ldots,k + 1\}$, then $$ F(0) = F(1) = \ldots = F(k + 1).$$
  11. Let $ P(x)$ be a polynomial with real coefficients such that $ P(x) > 0$ for all $ x \geq 0.$ Prove that there exists a positive integer n such that $ (1 + x)^n \cdot P(x)$ is a polynomial with nonnegative coefficients.
  12. Let $ p$ be a prime number and $ f$ an integer polynomial of degree $ d$ such that $ f(0) = 0,f(1) = 1$ and $ f(n)$ is congruent to $ 0$ or $ 1$ modulo $ p$ for every integer $ n$. Prove that $ d\geq p - 1$.
  13. In town $ A,$ there are $ n$ girls and $ n$ boys, and each girl knows each boy. In town $ B,$ there are $ n$ girls $ g_1, g_2, \ldots, g_n$ and $ 2n - 1$ boys $ b_1, b_2, \ldots, b_{2n-1}.$ The girl $ g_i,$ $ i = 1, 2, \ldots, n,$ knows the boys $ b_1, b_2, \ldots, b_{2i-1},$ and no others. For all $ r = 1, 2, \ldots, n,$ denote by $ A(r),B(r)$ the number of different ways in which $ r$ girls from town $ A,$ respectively town $ B,$ can dance with $ r$ boys from their own town, forming $ r$ pairs, each girl with a boy she knows. Prove that $ A(r) = B(r)$ for each $ r = 1, 2, \ldots, n.$
  14. Let $ b, m, n$ be positive integers such that $ b > 1$ and $ m \neq n.$ Prove that if $ b^m - 1$ and $ b^n - 1$ have the same prime divisors, then $ b + 1$ is a power of 2.
  15. An infinite arithmetic progression whose terms are positive integers contains the square of an integer and the cube of an integer. Show that it contains the sixth power of an integer.
  16. In an acute-angled triangle $ ABC,$ let $ AD,BE$ be altitudes and $ AP,BQ$ internal bisectors. Denote by $ I$ and $ O$ the incenter and the circumcentre of the triangle, respectively. Prove that the points $ D, E,$ and $ I$ are collinear if and only if the points $ P, Q,$ and $ O$ are collinear.
  17. Find all pairs $ (a,b)$ of positive integers that satisfy the equation: $ a^{b^2} = b^a$.
  18. The altitudes through the vertices $ A,B,C$ of an acute-angled triangle $ ABC$ meet the opposite sides at $ D,E, F,$ respectively. The line through $ D$ parallel to $ EF$ meets the lines $ AC$ and $ AB$ at $ Q$ and $ R,$ respectively. The line $ EF$ meets $ BC$ at $ P.$ Prove that the circumcircle of the triangle $ PQR$ passes through the midpoint of $ BC.$
  19. Let $ a_1\geq \cdots \geq a_n \geq a_{n + 1} = 0$ be real numbers. Show that \[ \sqrt {\sum_{k = 1}^n a_k} \leq \sum_{k = 1}^n \sqrt k (\sqrt {a_k} - \sqrt {a_{k + 1}}). \]
  20. Let $ ABC$ be a triangle. $ D$ is a point on the side $ (BC)$. The line $ AD$ meets the circumcircle again at $ X$. $ P$ is the foot of the perpendicular from $ X$ to $ AB$, and $ Q$ is the foot of the perpendicular from $ X$ to $ AC$. Show that the line $ PQ$ is a tangent to the circle on diameter $ XD$ if and only if $ AB = AC$.
  21. Let $ x_1$, $ x_2$, $ \ldots$, $ x_n$ be real numbers satisfying the conditions \[ \left\{\begin{array}{cccc} |x_1 + x_2 + \cdots + x_n | & = & 1 & \ \\ |x_i| & \leq & \displaystyle \frac {n + 1}{2} & \ \textrm{ for }i = 1, 2, \ldots , n. \end{array} \right. \] Show that there exists a permutation $ y_1$, $ y_2$, $ \ldots$, $ y_n$ of $ x_1$, $ x_2$, $ \ldots$, $ x_n$ such that \[ | y_1 + 2 y_2 + \cdots + n y_n | \leq \frac {n + 1}{2}. \]
  22. Does there exist functions $ f,g: \mathbb{R}\to\mathbb{R}$ such that $ f(g(x)) = x^2$ and $ g(f(x)) = x^k$ for all real numbers $ x$
    a) if $ k = 3$?
    b) if $ k = 4$?
  23. Let $ ABCD$ be a convex quadrilateral. The diagonals $ AC$ and $ BD$ intersect at $ K$. Show that $ ABCD$ is cyclic if and only if $$ AK \sin A + CK \sin C = BK \sin B + DK \sin D.$$
  24. For each positive integer $ n$, let $ f(n)$ denote the number of ways of representing $ n$ as a sum of powers of 2 with nonnegative integer exponents. Representations which differ only in the ordering of their summands are considered to be the same. For instance, $ f(4) = 4$, because the number 4 can be represented in the following four ways: 4; 2+2; 2+1+1; 1+1+1+1. Prove that, for any integer $ n \geq 3$ we have $$ 2^{\frac {n^2}{4}} < f(2^n) < 2^{\frac {n^2}2}.$$
  25. Let $ X,Y,Z$ be the midpoints of the small arcs $ BC,CA,AB$ respectively (arcs of the circumcircle of $ ABC$). $ M$ is an arbitrary point on $ BC$, and the parallels through $ M$ to the internal bisectors of $ \angle B,\angle C$ cut the external bisectors of $ \angle C,\angle B$ in $ N,P$ respectively. Show that $ XM,YN,ZP$ concur.
  26. For every integer $ n \geq 2$ determine the minimum value that the sum $ \sum^n_{i=0} a_i$ can take for nonnegative numbers $ a_0, a_1, \ldots, a_n$ satisfying the condition $ a_0 = 1,$ $ a_i \leq a_{i+1} + a_{i+2}$ for $ i = 0, \ldots, n - 2.$

Post a Comment


$hide=home

$type=three$count=6$sr=random$t=oot$h=1$l=0$meta=hide$rm=hide$sn=0

$hide=post$type=three$count=6$sr=random$t=oot$h=1$l=0$meta=hide$rm=hide$sn=0

$hide=home

Kỷ Yếu$cl=violet$type=three$count=6$sr=random$t=oot$h=1$l=0$meta=hide$rm=hide$sn=0

Journals$cl=green$type=three$count=6$sr=random$t=oot$h=1$l=0$meta=hide$rm=hide$sn=0

Name

Ả-rập Xê-út,1,Abel,5,Albania,2,AMM,2,Amsterdam,5,Ấn Độ,1,An Giang,22,Andrew Wiles,1,Anh,2,Áo,1,APMO,19,Ba Đình,2,Ba Lan,1,Bà Rịa Vũng Tàu,52,Bắc Giang,49,Bắc Kạn,1,Bạc Liêu,9,Bắc Ninh,47,Bắc Trung Bộ,7,Bài Toán Hay,5,Balkan,37,Baltic Way,30,BAMO,1,Bất Đẳng Thức,66,Bến Tre,46,Benelux,13,Bình Định,44,Bình Dương,21,Bình Phước,38,Bình Thuận,34,Birch,1,Booklet,11,Bosnia Herzegovina,3,BoxMath,3,Brazil,2,Bùi Đắc Hiên,1,Bùi Thị Thiện Mỹ,1,Bùi Văn Tuyên,1,Bùi Xuân Diệu,1,Bulgaria,5,Buôn Ma Thuột,1,BxMO,12,Cà Mau,13,Cần Thơ,14,Canada,39,Cao Bằng,6,Cao Quang Minh,1,Câu Chuyện Toán Học,36,Caucasus,2,CGMO,10,China,10,Chọn Đội Tuyển,347,Chu Tuấn Anh,1,Chuyên Đề,124,Chuyên Sư Phạm,31,Chuyên Trần Hưng Đạo,3,Collection,8,College Mathematic,1,Concours,1,Cono Sur,1,Contest,610,Correspondence,1,Cosmin Poahata,1,Crux,2,Czech-Polish-Slovak,25,Đà Nẵng,39,Đa Thức,2,Đại Số,20,Đắk Lắk,54,Đắk Nông,7,Đan Phượng,1,Danube,7,Đào Thái Hiệp,1,ĐBSCL,2,Đề Thi HSG,1643,Đề Thi JMO,1,Điện Biên,8,Định Lý,1,Định Lý Beaty,1,Đỗ Hữu Đức Thịnh,1,Do Thái,3,Doãn Quang Tiến,4,Đoàn Quỳnh,1,Đoàn Văn Trung,1,Đống Đa,4,Đồng Nai,49,Đồng Tháp,51,Du Hiền Vinh,1,Đức,1,Duyên Hải Bắc Bộ,25,E-Book,33,EGMO,16,ELMO,19,EMC,8,Epsilon,1,Estonian,5,Euler,1,Evan Chen,1,Fermat,3,Finland,4,Forum Of Geometry,2,Furstenberg,1,G. Polya,3,Gặp Gỡ Toán Học,26,Gauss,1,GDTX,3,Geometry,12,Gia Lai,25,Gia Viễn,2,Giải Tích Hàm,1,Giảng Võ,1,Giới hạn,2,Goldbach,1,Hà Giang,2,Hà Lan,1,Hà Nam,29,Hà Nội,231,Hà Tĩnh,72,Hà Trung Kiên,1,Hải Dương,49,Hải Phòng,42,Hàn Quốc,5,Hậu Giang,4,Hậu Lộc,1,Hilbert,1,Hình Học,33,HKUST,7,Hòa Bình,13,Hoài Nhơn,1,Hoàng Bá Minh,1,Hoàng Minh Quân,1,Hodge,1,Hojoo Lee,2,HOMC,5,HongKong,8,HSG 10,100,HSG 11,87,HSG 12,581,HSG 9,402,HSG Cấp Trường,78,HSG Quốc Gia,99,HSG Quốc Tế,16,Hứa Lâm Phong,1,Hứa Thuần Phỏng,1,Hùng Vương,2,Hưng Yên,32,Hương Sơn,2,Huỳnh Kim Linh,1,Hy Lạp,1,IMC,25,IMO,54,India,45,Inequality,13,InMC,1,International,307,Iran,11,Jakob,1,JBMO,41,Jewish,1,Journal,20,Junior,38,K2pi,1,Kazakhstan,1,Khánh Hòa,16,KHTN,53,Kiên Giang,64,Kim Liên,1,Kon Tum,18,Korea,5,Kvant,2,Kỷ Yếu,42,Lai Châu,4,Lâm Đồng,33,Lạng Sơn,21,Langlands,1,Lào Cai,16,Lê Hải Châu,1,Lê Hải Khôi,1,Lê Hoành Phò,4,Lê Khánh Sỹ,3,Lê Minh Cường,1,Lê Phúc Lữ,1,Lê Phương,1,Lê Quý Đôn,1,Lê Viết Hải,1,Lê Việt Hưng,1,Leibniz,1,Long An,42,Lớp 10,10,Lớp 10 Chuyên,452,Lớp 10 Không Chuyên,230,Lớp 11,1,Lục Ngạn,1,Lượng giác,1,Lương Tài,1,Lưu Giang Nam,2,Lý Thánh Tông,1,Macedonian,1,Malaysia,1,Margulis,2,Mark Levi,1,Mathematical Excalibur,1,Mathematical Reflections,1,Mathematics Magazine,1,Mathematics Today,1,Mathley,1,MathLinks,1,MathProblems Journal,1,Mathscope,8,MathsVN,5,MathVN,1,MEMO,10,Metropolises,4,Mexico,1,MIC,1,Michael Guillen,1,Mochizuki,1,Moldova,1,Moscow,1,Mỹ,9,MYTS,4,Nam Định,32,Nam Phi,1,Nam Trung Bộ,1,National,249,Nesbitt,1,Newton,4,Nghệ An,50,Ngô Bảo Châu,2,Ngô Việt Hải,1,Ngọc Huyền,2,Nguyễn Anh Tuyến,1,Nguyễn Bá Đang,1,Nguyễn Đình Thi,1,Nguyễn Đức Tấn,1,Nguyễn Đức Thắng,1,Nguyễn Duy Khương,1,Nguyễn Duy Tùng,1,Nguyễn Hữu Điển,3,Nguyễn Mình Hà,1,Nguyễn Minh Tuấn,8,Nguyễn Phan Tài Vương,1,Nguyễn Phú Khánh,1,Nguyễn Phúc Tăng,1,Nguyễn Quản Bá Hồng,1,Nguyễn Quang Sơn,1,Nguyễn Tài Chung,5,Nguyễn Tăng Vũ,1,Nguyễn Tất Thu,1,Nguyễn Thúc Vũ Hoàng,1,Nguyễn Trung Tuấn,8,Nguyễn Tuấn Anh,2,Nguyễn Văn Huyện,3,Nguyễn Văn Mậu,25,Nguyễn Văn Nho,1,Nguyễn Văn Quý,2,Nguyễn Văn Thông,1,Nguyễn Việt Anh,1,Nguyễn Vũ Lương,2,Nhật Bản,3,Nhóm $\LaTeX$,4,Nhóm Toán,1,Ninh Bình,41,Ninh Thuận,15,Nội Suy Lagrange,2,Nội Suy Newton,1,Nordic,19,Olympiad Corner,1,Olympiad Preliminary,2,Olympic 10,98,Olympic 10/3,5,Olympic 11,89,Olympic 12,30,Olympic 24/3,6,Olympic 27/4,20,Olympic 30/4,66,Olympic KHTN,6,Olympic Sinh Viên,73,Olympic Tháng 4,12,Olympic Toán,300,Olympic Toán Sơ Cấp,3,PAMO,1,Phạm Đình Đồng,1,Phạm Đức Tài,1,Phạm Huy Hoàng,1,Pham Kim Hung,3,Phạm Quốc Sang,2,Phan Huy Khải,1,Phan Thành Nam,1,Pháp,2,Philippines,8,Phú Thọ,30,Phú Yên,26,Phùng Hồ Hải,1,Phương Trình Hàm,11,Phương Trình Pythagoras,1,Pi,1,Polish,32,Problems,1,PT-HPT,14,PTNK,45,Putnam,25,Quảng Bình,44,Quảng Nam,31,Quảng Ngãi,33,Quảng Ninh,43,Quảng Trị,26,Quỹ Tích,1,Riemann,1,RMM,12,RMO,24,Romania,36,Romanian Mathematical,1,Russia,1,Sách Thường Thức Toán,7,Sách Toán,69,Sách Toán Cao Học,1,Sách Toán THCS,7,Saudi Arabia,7,Scholze,1,Serbia,17,Sharygin,24,Shortlists,56,Simon Singh,1,Singapore,1,Số Học - Tổ Hợp,27,Sóc Trăng,28,Sơn La,11,Spain,8,Star Education,5,Stars of Mathematics,11,Swinnerton-Dyer,1,Talent Search,1,Tăng Hải Tuân,2,Tạp Chí,14,Tập San,6,Tây Ban Nha,1,Tây Ninh,29,Thạch Hà,1,Thái Bình,39,Thái Nguyên,49,Thái Vân,2,Thanh Hóa,57,THCS,2,Thổ Nhĩ Kỳ,5,Thomas J. Mildorf,1,THPT Chuyên Lê Quý Đôn,1,THPTQG,15,THTT,6,Thừa Thiên Huế,35,Tiền Giang,19,Tin Tức Toán Học,1,Titu Andreescu,2,Toán 12,7,Toán Cao Cấp,3,Toán Chuyên,2,Toán Rời Rạc,5,Toán Tuổi Thơ,3,Tôn Ngọc Minh Quân,2,TOT,1,TPHCM,126,Trà Vinh,5,Trắc Nghiệm,1,Trắc Nghiệm Toán,2,Trại Hè,34,Trại Hè Hùng Vương,25,Trại Hè Phương Nam,5,Trần Đăng Phúc,1,Trần Minh Hiền,2,Trần Nam Dũng,9,Trần Phương,1,Trần Quang Hùng,1,Trần Quốc Anh,2,Trần Quốc Luật,1,Trần Quốc Nghĩa,1,Trần Tiến Tự,1,Trịnh Đào Chiến,2,Trung Quốc,12,Trường Đông,19,Trường Hè,7,Trường Thu,1,Trường Xuân,2,TST,55,Tuyên Quang,6,Tuyển Sinh,3,Tuyển Tập,44,Tuymaada,4,Undergraduate,66,USA,44,USAJMO,10,USATST,7,Uzbekistan,1,Vasile Cîrtoaje,4,Vật Lý,1,Viện Toán Học,2,Vietnam,4,Viktor Prasolov,1,VIMF,1,Vinh,27,Vĩnh Long,20,Vĩnh Phúc,63,Virginia Tech,1,VLTT,1,VMEO,4,VMF,12,VMO,46,VNTST,22,Võ Anh Khoa,1,Võ Quốc Bá Cẩn,26,Võ Thành Văn,1,Vojtěch Jarník,6,Vũ Hữu Bình,7,Vương Trung Dũng,1,WFNMC Journal,1,Wiles,1,Yên Bái,17,Yên Định,1,Yên Thành,1,Zhautykov,11,Zhou Yuan Zhe,1,
ltr
item
MOlympiad: [Shortlists] International Mathematical Olympiad 1997
[Shortlists] International Mathematical Olympiad 1997
MOlympiad
https://www.molympiad.net/2017/08/imo-1997-shortlists.html
https://www.molympiad.net/
https://www.molympiad.net/
https://www.molympiad.net/2017/08/imo-1997-shortlists.html
true
2506595080985176441
UTF-8
Loaded All Posts Not found any posts VIEW ALL Readmore Reply Cancel reply Delete By Home PAGES POSTS View All RECOMMENDED FOR YOU LABEL ARCHIVE SEARCH ALL POSTS Not found any post match with your request Back Home Sunday Monday Tuesday Wednesday Thursday Friday Saturday Sun Mon Tue Wed Thu Fri Sat January February March April May June July August September October November December Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec just now 1 minute ago $$1$$ minutes ago 1 hour ago $$1$$ hours ago Yesterday $$1$$ days ago $$1$$ weeks ago more than 5 weeks ago Followers Follow THIS PREMIUM CONTENT IS LOCKED Please share to unlock Copy All Code Select All Code All codes were copied to your clipboard Can not copy the codes / texts, please press [CTRL]+[C] (or CMD+C with Mac) to copy