- How many positive integers $N$ satisfy all of the following three conditions?
- $N$ is divisible by $2020$.
- $N$ has at most $2020$ decimal digits.
- The decimal digits of $N$ are a string of consecutive ones followed by a string of consecutive zeros.
- Let $k$ be a nonnegative integer. Evaluate \[ \sum_{j=0}^k 2^{k-j} \binom{k+j}{j}. \]
- Let $a_0=\pi /2$, and let $a_n=\sin (a_{n-1})$ for $n\ge 1$. Determine whether \[ \sum_{n=1}^{\infty}a_n^2 \] converges.
- Consider a horizontal strip of $N+2$ squares in which the first and the last square are black and the remaining $N$ squares are all white. Choose a white square uniformly at random, choose one of its two neighbors with equal probability, and color tis neighboring square black if it is not already black. Repeat this process until all the remaining white squares have only black neighbors. Let $w(N)$ be the expected number of white squares remaining. Find \[ \lim_{N\to\infty}\frac{w(N)}{N}.\]
- Let $a_n$ be the number of sets $S$ of positive integers for which \[ \sum_{k\in S}F_k=n,\]where the Fibonacci sequence $(F_k)_{k\ge 1}$ satisfies $F_{k+2}=F_{k+1}+F_k$ and begins $F_1=1$, $F_2=1$, $F_3=2$, $F_4=3$. Find the largest number $n$ such that $a_n=2020$.
- For a positive integer $N$, let $f_N$ be the function defined by \[ f_N (x)=\sum_{n=0}^N \frac{N+1/2-n}{(N+1)(2n+1)} \sin\left((2n+1)x \right). \] Determine the smallest constant $M$ such that $f_N (x)\le M$ for all $N$ and all real $x$.
- For a positive integer $n$, define $d(n)$ to be the sum of the digits of $n$ when written in binary (for example, $d(13)=1+1+0+1=3$). Let \[S=\sum_{k=1}^{2020}(-1)^{d(k)}k^3.\] Determine $S$ modulo $2020$.
- Let $k$ and $n$ be integers with $1\leq k<n$. Alice and Bob play a game with $k$ pegs in a line of $n$ holes. At the beginning of the game, the pegs occupy the $k$ leftmost holes. A legal move consists of moving a single peg to any vacant hole that is further to the right. The players alternate moves, with Alice playing first. The game ends when the pegs are in the $k$ rightmost holes, so whoever is next to play cannot move and therefore loses. For what values of $n$ and $k$ does Alice have a winning strategy?
- Let $x_0=1$, and let $\delta$ be some constant satisfying $0<\delta<1$. Iteratively, for $n=0,1,2,\dots$, a point $x_{n+1}$ is chosen uniformly form the interval $[0,x_n]$. Let $Z$ be the smallest value of $n$ for which $x_n<\delta$. Find the expected value of $Z$, as a function of $\delta$.
- Let $n$ be a positive integer, and let $V_n$ be the set of integer $(2n+1)$-tuples $\mathbf{v}=(s_0,s_1,\cdots,s_{2n-1},s_{2n})$ for which $s_0=s_{2n}=0$ and $|s_j-s_{j-1}|=1$ for $j=1,2,\cdots,2n$. Define \[q(\mathbf{v})=1+\sum_{j=1}^{2n-1}3^{s_j},\] and let $M(n)$ be the average of $\frac{1}{q(\mathbf{v})}$ over all $\mathbf{v}\in V_n$. Evaluate $M(2020)$.
- For $j \in \{ 1,2,3,4\}$, let $z_j$ be a complex number with $| z_j | = 1$ and $z_j \neq 1$. Prove that $$3 - z_1 - z_2 - z_3 - z_4 + z_1z_2z_3z_4 \neq 0.$$
- Let $n$ be a positive integer. Prove that $$\sum_{k=1}^n (-1)^{\lfloor k (\sqrt{2} - 1) \rfloor} \geq 0.$$(As usual, $\lfloor x \rfloor$ denotes the greatest integer less than or equal to $x$.)
[Solutions] William Lowell Putnam Mathematical Competition 2020
# Chọn Đội Tuyển
# Contest
# Đề Thi HSG
# Duyên Hải Bắc Bộ
# Gặp Gỡ Toán Học
# HSG 10
# HSG 11
# HSG 12
# HSG 9
# IMO
# International
# Journal
# National
# Kỷ Yếu
# Olympic 10
# Olympic 11
# Olympic 12
# Olympic KHTN
# Olympic Sinh Viên
# Tạp Chí
# Trường Đông
# Trường Hè
# Trường Thu
# Trường Xuân
# Trại Hè Hùng Vương
# Trại Hè Phương Nam
# TST
# Tuyển Sinh 10
# VMO
# VNTST
Contest
Putnam
Undergraduate
MOlympiad.NET là dự án thu thập và phát hành các đề thi tuyển sinh và học sinh giỏi toán. Quý bạn đọc muốn giúp chúng tôi chỉnh sửa bài viết này, xin hãy để lại bình luận facebook (có thể đính kèm hình ảnh) hoặc google (có thể sử dụng $\LaTeX$) bên dưới. BBT rất mong bạn đọc ủng hộ UPLOAD đề thi và đáp án mới hoặc liên hệ Chúng tôi nhận tất cả các định dạng của tài liệu: $\TeX$, PDF, WORD, IMG,... | |
- Đề Thi Chọn Đội Tuyển Tỉnh Bình Phước Dự Thi Học Sinh Giỏi Quốc Gia THPT 2021-2022
- Toán Học Tuổi Trẻ
- [Phạm Văn Thuận, Lê Vĩ] Bất Đẳng Thức Suy Luận Và Khám Phá
- [Trần Phương] Những Viên Kim Cương Trong Bất Đẳng Thức Toán Học
- [Nguyễn Nhất Huy, Nguyễn Minh Tuấn, Phan Quang Đạt, Dương Quỳnh Châu, Lăng Hồng Nguyệt Anh, Doãn Quang Tiến] Số Học Hướng Tới Kì Thi Chuyên Toán
- [Nguyễn Song Thiên Long] Tổng Hợp Các Bài Toán Hay Luyện Thi Olympic Toán
- [Nguyễn Tài Chung] Bồi Dưỡng Học Sinh Giỏi Phương Trình Hàm
- Đề Thi Tuyển Sinh Lớp 10 THPT Chuyên TP Hải Phòng 2022-2023 (Toán Chung)
- Ứng Dụng Nguyên Lý Dirichlet Trong Chứng Minh Bất Đẳng Thức
- [Kỷ Yếu] Chuyên Đề Hội Thảo Các Trường THPT Chuyên Khu Vực Duyên Hải - Đồng Bằng Bắc Bộ 2020