$hide=mobile$type=ticker$c=12$cols=3$l=0$sr=random$b=0

Mathematics and Youth Magazine Problems 2010

This article has
views, Facebook comments and 0 Blogger comments. Leave a comment.

Issue 391

  1. Does there exist a positive integer $k$ such that $2^{k}+3^{k}$ is a perfect square?
  2. Let $A B C$ be a triangle and let $M$ be the midpoint of $B C$ such that $A B=5cm$,$ A M=6cm$ and $A C=13cm$. The line through $B$ and perpendicular to $B C$ meets $A M$ at $D,$ the line through $C$ and perpendicular to $B C$ meets $A B$ at $E$. Prove that $C D$ is perpendicular to $M E$
  3. Find all pair of real numbers $a$ and $b$ so that $a+b=\dfrac{\sqrt[4]{8}}{2}$ and $A=a^{4}-6 a^{2} b^{2}+b^{4}$ is a positive integer.
  4. Let $O$ be the midpoint of a line segment $A B=2 a$. In the half-plane with edge $A B$, draw two rays $A x$, $B y$, both perpendicular to $A B$. Choose $M$ and $N$ on $A x$ and $B y$ respectively such that $M N=A M+B N$. Let $H$ be the foot of the altitude from $O$ onto $M N$. Find the positions of $M$ and $N$ such that the area of the triangle $H A B$ is greatest possible.
  5. Without using trigonometry formula, prove the following equalities
    a) $\cos 36^{\circ} \cdot \cos 72^{\circ}=\dfrac{1}{4}$.
    b) $\tan 36^{\circ} \cdot \tan 72^{\circ}=\sqrt{5}$.
  6. Solve the equation $$3 x^{4}-4 x^{3}=1-\sqrt{\left(1+x^{2}\right)^{3}}$$
  7. Does there exist a polynomial $P(x)$ of degree $2010$ such that $P\left(x^{2}-2010\right)$ is divisible to $P(x)$?.
  8. Let $Oxyz$ be a right trihedral with right angle at $O$ and $A$, $B$, $C$ move on the sides $O x$, $O y$ and $O z$ respectively so that the area of the triangle $A B C$ is a constant $S$. Let $S_{1}$, $S_{2}$, $S_{3}$ be the areas of the triangles $O B C$, $OCA$, $OAB$ respectively. Find the greatest value of the expression $$P=\frac{S_{1}}{S+2 S_{1}}+\frac{S_{2}}{S+2 S_{2}}+\frac{S_{3}}{S+2 S_{3}}$$
  9. Let $a, b, c$ be positive real numbers. Prove that $$\min \left\{\frac{a b}{c^{2}}+\frac{b c}{a^{2}}+\frac{c a}{b^{2}} ; \frac{a^{2}}{b c}+\frac{b^{2}}{c a}+\frac{c^{2}}{a b}\right\} \geq \max \left\{\frac{a}{b}+\frac{b}{c}+\frac{c}{a} ; \frac{b}{a}+\frac{c}{b}+\frac{a}{c}\right\}$$
  10. For a given positive integer $n$, how many $n$ -digit natural numbers can be formed from five possible digits $1,2,3,4$ and $5$ so that an odd numbers of $1$ and even numbers of $2$ are used?
  11.  sequence $\left(x_{n}\right)$, $n=0,1, \ldots$ is given by $$x_{0}=\alpha,\quad x_{n}=\sqrt{1+\frac{1}{x_{n}+1}},\, n=0,1, \ldots$$ where $\alpha$ is greater than $1$. Determine $\displaystyle\lim_{n\to\infty} x_{n}$.
  12. Let $A B C$ be a triangle with the altitudes $A A^{\prime}$, $B B^{\prime}$, $C C^{\prime}$ meet at $H$. Prove that $$\frac{H A}{H A^{\prime}}+\frac{H B}{H B^{\prime}}+\frac{H C}{H C^{\prime}}+6 \sqrt{3} \geq 6+\frac{a}{H A^{\prime}}+\frac{b}{H B^{\prime}}+\frac{c}{H C^{\prime}}$$

Issue 392

  1. Does there exist a pair of integers $x$, $y$ such that $$x^{3}-y^{3}=10 \times 10 \times 2010$$
  2. Let $n$ be a natural number, greater than $1$. Prove that $$\frac{1+n}{1+n^{n+1}}>\left(\frac{1+n^{n}}{1+n^{n+1}}\right)^{n}$$
  3. Let $a, b, c, x, y, z$ be positive integers satisfying the conditions $$\begin{cases}\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z} &=2010 \\ a x^{3}=b y^{3}=c z^{3}\end{cases}.$$ Prove that $$x+y+z \geq \frac{3}{670}.$$
  4. Let $A B C$ be a triangle whose sides satisfying the relation $$B C^{2}+A B \cdot A C-A B^{2}=0.$$ Determine the sum $\hat{A}+\dfrac{2}{3} \hat{B}$.
  5. Two orthogonal diameters $A E$ and $B F$ of a circle center $O$ radius $R$ are given. $A$ point $C$ is chosen on the minor arc $E F$. The chord $A C$ intersects $B F$ at $P$ and the chord $B C$ meets $A E$ at $Q$. Find the area of the quadrilateral $A P Q B$ in term of $R$.
  6. Solve the system of equations $$\begin{cases}\sqrt{y^{2}-8 x+9}-\sqrt[3]{x y+12-6 x} &\leq 1 \\ \sqrt{2(x-y)^{2}+10 x-6 y+12}-\sqrt{y} &=\sqrt{x+2}\end{cases}.$$
  7. A quadrilateral $A B C D$ is inscribed in a circle centered $I$ and circumscribed another circle with center at $O$. The diagonals $A C$ and $B D$ intersect at $E$. Prove that $E$, $I$ and $O$ are collinear.
  8. Let $\left(x_{n}\right)$ be a sequence given by $$x_{1}=5, \quad x_{n+1}=x_{n}^{2}-2,\,\forall n \geq 1 .$$ Find
    a) $\displaystyle\lim _{n \rightarrow+\infty} \frac{x_{n+1}}{x_{1} x_{2} \ldots x_{n}}$.
    b) $\displaystyle\lim _{n \rightarrow+\infty}\left(\frac{1}{x_{1}}+\frac{1}{x_{1} x_{2}}+\ldots+\frac{1}{x_{1} x_{2} \ldots x_{n}}\right)$.
  9. Prove that the equation $P(x)=2^{x}$ where $P(x)$ is a polynomial of degree $n,$ has less than $n+1$ roots.
  10. Find all continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying the condition $$f(2010 x-f(y))=f(2009 x)-f(y)+x,\, \forall x, y \in \mathbb{R}$$
  11. Let $\left(a_{n}\right)$ be a sequence with $$a_{1}=a_{2}=1,\quad a_{n+2}=a_{n+1}+a_{n},\,\forall n \geq 1.$$ Find all pair of positive integers $a$, $b$, $a<b$ so that $a_{n}-2 n a^{n}$ is a multible of $b$ for any $n \geq 1$.
  12. $I$ and $R$ are the incenter and the circumradius of a gven triangle $A B C$. $I A$, $I B$, $I C$ intersect the circumcircle at $A_{1}$, $B_{1}$, $C_{1}$ respectively. Prove the inequality $$2 R+\frac{L A+I B+I C}{3} \leq L A_{1}+I B_{1}+I C_{1} \leq \frac{5}{2} R+\frac{I A+I B+I C}{6}$$

Issue 393

  1. Let $a_{1}, a_{2}, \ldots, a_{2010}$ be natural numbers such that $$\frac{1}{a_{1}^{11}}+\frac{1}{a_{2}^{11}}+\frac{1}{a_{3}^{11}}+\ldots+\frac{1}{a_{2010}^{11}}=\frac{1005}{1024}.$$ Determine the value of the following expression $$A=\frac{a_{2010}^{6}}{a_{1}^{5}}+\frac{a_{2009}^{6}}{a_{2}^{5}}+\frac{a_{2008}^{6}}{a_{3}^{5}}+\ldots+\frac{a_{1}^{6}}{a_{2010}^{5}}$$
  2. In a triangle $A B C$ where $B$ and $C$ are acute angles, let $B D$ and $A H$ be respectively the angle bisector and the altitude. Given that $\widehat{A D B}=\widehat{A H D}=\alpha,$ find the measure of $\alpha$.
  3. Find all integer solutions of the equation $$y^{3}=x^{6}+2 x^{4}-1000$$
  4. Find the minimum value of the expression $$P=\frac{a}{b+c+d-a}+\frac{b}{c+d+a-b}+\frac{c}{d+a+b-c}+\frac{d}{a+b+c-d}$$ where $a, b, c, d$ are the length of 4 sides of a convex quadrilateral.
  5. Let $A B C$ be an isosceles triangle with vertex at $C$. Let $O$, $I$ be its circumcenter and incenter respctively. $D$ is a point chosen on the side $B C$ so that $D O$ is perpendicular to $B I$. Prove that $D I$ is parallel to $A C$.
  6. Let $a, b, c$ be positive real numbers satisfying the condition $$\frac{1}{a+b+1}+\frac{1}{b+c+1}+\frac{1}{c+a+1} \geq 1.$$ Prove that $$a+b+c=a b+b c+c a$$
  7. Let $A B C D E$ be a cyclic pentagon with $A C \parallel D E$ and $\widehat{A M B}=\widehat{B M C}$ where $M$ is the midpoint of $B D$. Prove that the line $B E$ passes through the midpoint of $A C$.
  8. Let $O A B C$ be a tetrahedron with right trihedral angle at vertex $O$. Prove that $$\cot A B \cdot \cot B C+\cot B C \cdot \cot C A+\cot C A \cdot \cot A B \leq \frac{3}{2}$$ where cot $A B$ is the cotangent of the dihedral angle of side $A B$.
  9. Let $A B C$ be an acute triangle. The altitudes $B K$ and $C L$ meet at $H$. The line passing through $H$ meets $A B$, $A C$ at $P$, $Q$ respectively. Prove that $H P=H Q$ if and only if $M P=M Q$ where $M$ is the midpoint of $B C$
  10. Find all real numbers $k$ and $m$ such that $$k\left(x^{3}+y^{3}+z^{3}\right)+m x y z \geq(x+y+z)^{3}$$ for any non-negative numbers $x, y, z$
  11. Let $\left(x_{n}\right)$ be a sequence of real numbers, $n=1,2, \ldots$ satisfying $$\ln \left(1+x_{n}^{2}\right)+n x_{n}=1$$ for any positive integers $n$. Find $$\lim _{n \rightarrow+\infty} \frac{n\left(1+n x_{n}\right)}{x_{n}}$$
  12. Find all continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $$f(x+f(y))=2 y+f(x),\, \forall x, y \in \mathbb{R}$$

Issue 394

  1. Find all pair of natural numbers $x, y$ such that $$\left(2^{x}+1\right)\left(2^{x}+2\right)\left(2^{x}+3\right)\left(2^{x}+4\right)-5^{y}=11879$$
  2. Let $n$ be a positive integer and let $U(n)=\left\{d_{1} ; d_{2} ; \ldots ; d_{m}\right\}$ be the set of all positive divisors of $n$. Prove that $$d_{1}^{2}+d_{2}^{2}+\ldots+d_{m}^{2} \leq n^{2} \sqrt{n}$$
  3. Prove that $$\frac{1}{a^{4}(a+b)}+\frac{1}{b^{4}(b+c)}+\frac{1}{c^{4}(c+a)} \geq \frac{3}{2}$$ where $a$, $b$, $c$ are three positive numbers satisfying $a b c=1$.
  4. Solve the equation $$3 \sqrt{x^{3}+8}=2 x^{2}-6 x+4$$
  5. Let $A B C D$ be a square, $M$ is a point lying on $C D$ ($M \neq C$, $M \neq D$).  Through the point $C$ draw a line perpendicular to $A M$ at $H$ $B H$ meets $A C$ at $K$. Prove that a) $M K$ is always parallel to a fixed line when $M$ moves on the side $C D$.
    b) The circumcenter of the quadrilateral $ADMK$ lies on a fixed line.
  6. Let $a, b, c$ be positive real numbers such that $a b c=1$. Prove that $$\frac{1}{\sqrt{a^{3}+2 b^{3}+6}}+\frac{1}{\sqrt{b^{3}+2 c^{3}+6}}+\frac{1}{\sqrt{c^{3}+2 a^{3}+6}} \leq 1$$
  7. Consider all triangles $A B C$ where $A<B<C \leq \frac{\pi}{2}$. Find the least value of the expression $$M=\cot ^{2} A+\cot ^{2} B+\cot ^{2} C +2(\cot A-\cot B)(\cot B-\cot C)(\cot C-\cot A)$$
  8. Let $A B C$ be a triangle with $B C=a$, $A C=b$, $A B=c$. A line $d$ passing through its incenter meets $A B$, $A C$, $B C$ respectively at $M$, $N$, $P$. Prove that $$\frac{a}{\overline{B P} \cdot \overline{P C}}+\frac{b}{C N \cdot N A}+\frac{c}{\overline{A M} \cdot \overline{M B}}=\frac{(a+b+c)^{2}}{a b c}$$
  9. Let $x, y, z$ be non-zero real numbers such that $x+2 y+3 z=5$ and $2 x y+6 y z+3 x z=8$. Prove that $$1 \leq x \leq \frac{7}{3} ; \frac{1}{2} \leq y \leq \frac{7}{6} ; \frac{1}{3} \leq z \leq \frac{7}{9}$$
  10. Solve the system of equations $$\begin{cases} \sqrt[3]{x}+\sqrt[3]{y} &=\sqrt[3]{3(x+y)} \\ 4 x^{3}+6 x^{2}+4 x+1 &=15 y^{4}\end{cases}$$
  11. Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfy $$f(f(x)+y)=f(x+y)+x f(y)-x y-x+1$$
  12. Suppose that the tetrahedron $A B C D$ satisfies the following conditions: All faces are acute triangles and $B C$ is perpendicular to $AD$. Let $h_{a}$, $h_{d}$ be respectively the lengths of the altitudes from $A$, $D$ onto the opposite faces, and let $2 \alpha\left(0^{\circ}<\alpha<45^{\circ}\right)$ be the measure of the dihedral angle at edge $B C$, $d$ is the distance between $B C$ and $A D$. Prove the inequality $$\frac{1}{h_{a}}+\frac{1}{h_{d}} \leq \frac{1}{d \cdot \sin \alpha}$$

Issue 395

  1. Compare the following two numbers $$A=\frac{2^{2009}+1}{2^{2010}+1} \text { and } B=\frac{2^{2010}+1}{2^{2011}+1}.$$
  2. Let $A B C$ be a triangle with $\widehat{B A C}=45^{\circ}$, $A M$ is its median, $A D$ is the angle bisector of the triangle $M A C$, draw $D K$ perpendicular to $A B$ ($K$ lies on $A B$). $A M$ cuts $D K$ at $I$. Prove that if $A M$ is the angle bisector of $\widehat{B A D}$ then $B I$ is the angle bisector of $\widehat{A B D}$.
  3. Find all positive numbers $a$ and $b$ such that $\dfrac{a^{2}+b}{b^{2}-a}$ and $\dfrac{b^{2}+a}{a^{2}-b}$ are both integers.
  4. Find the minimum value of the expression $P=a+b+c$ given that $3 \leq a, b,c \leq 5$ and $a^{2}+b^{2}+c^{2}=50$.
  5. Let $A B C$ be a triangle. The angle bisector of $\widehat{B A C}$ cuts the angle bisector of $\widehat{A B C}$ at $I$ and meets $B C$ at $E$. The line perpendicular to $A E$ at $E$ meets the arc $\widehat{B I C}$ of the circumcircle of the triangle $B I C$ at $H$. Prove that $A H$ touches the arc $\widehat{B I C}$.
  6. Let $I$ be the incenter of the triangle $A B C$ with $B C=a$, $C A=b$ and $A B=c$. The lines $A I$, $B I$, $C I$ cut the circumcircle of $A B C$ at $A^{\prime}$, $B^{\prime}$, $C^{\prime}$ respectively. Prove that $$(p-a) I A^{\prime 2}+(p-b) I B^{\prime 2}+(p-c) I C^{\prime 2}=\frac{1}{2} a b c$$ where $p=\dfrac{1}{2}(a+b+c)$.
  7. Let $A B C$ ($B C=a$, $A C=b$, $A B=c$) be a triangle where $A$, $B$, $C$ satisfying the condition $$\cos A+\cos B=2 \cos C.$$ Prove the inequality $$c \geq \frac{8}{9} \max \{a, b\}.$$ When does the equality occur?
  8. Solve the equation $$x^{\log _{7} 11}+3^{\log _{7} x}=2 x.$$
  9. Solve the equation $$\sqrt[3]{3 x+4}=x^{3}+3 x^{2}+x-2$$
  10. Let $X$ be the subset of the set $\{1,2,\ldots, 2010\}$ satisfying conditions $|X|=62$ and for every $x \in X$, there exist $a, b \in X \cup\{0 ; 2011\}$ ($a$ and $b$ differ from $x$) such that $x=\dfrac{a+b}{2}$. Prove that there exist two elements $x$, $y$ in $X$ such that $|x-y| \geq 11$ and $\dfrac{x+y}{2}$ is not in $X$.
  11. Make a torus-shaped chessboard by first identifying a pair of opposite edges of an $n \times n$ chessboard to get a cylinder and then identifying the opposite bases of the resulting cylinder. Prove that it is possible to place $n$ queens on this torus chessboard so that none of them are able to capture any other using the standard chess queen's moves if and only if $(n, 6)=1$. (A queen can capture another if they share the same row, column or diagonal.)
  12. Let ABCDEF be an inscribed hexagon, $A C$ is parallel to $D F$ and $B E$ is the circumdiameter. $A B$ cuts $E F$ at $M$ and $B C$ cuts $D E$ at $N$; $I$ is the intersection point of $A N$ and $CM$. Prove that $E I$ is perpendicular to $A C$.

Issue 396

  1. Let $A=14916 . . .4040100$ be the number obtained by writing the perfect squares $1^{2}, 2^{2}, \ldots, 2010^{2}$ consecutively. Let $B+C$ be the sum obtained by putting the sign "$+$" in between certain two digits of $A$. Is $B+C$ divisible by $9$? Explain your reasoning?
  2. Let $A B C$ be a triangle with the altitude $A H$ satisfying $B C=A H \sqrt{2}$. Compute the measure of the angle $\widehat{A C B}$, given that $\widehat{A B C}=67^{\circ} 30^{\prime}$.
  3. Let $n_{1}, n_{2}, \ldots, n_{m}$ be a sequence of strictly decreasing natural numbers. For each natural number $n$, put $$P_{n}=2\left(3^{n}+3^{n_{1}}+3^{n_{2}}+\ldots+3^{n_{m}}\right).$$ Does there exist an $n$ with $n>n_{1}$ such that $P_{n}$ is a perfect square?
  4. Let $x, y, z$ be real numbers satisfying $x \geq 2$, $y \geq 9$, $z \geq 1945$, $x+y+z=2010$. Find the greatest value of the product $x y z$.
  5. Let $A B C$ be a triangle. Let $M$, $N$, $P$ be the points of contact of its incircle $(I)$ with the sides $A B$, $A C$, $B C$ respectively and let $M D$, $N E$, $P F$ be the altitudes of the triangle $M N P$. Prove that $$D A \cdot F B \cdot E C=E A \cdot D B \cdot F C.$$
  6. Let $a, b, c$ be positive real numbers satisfying $a^{2}+b^{2}+c^{2}=1$. Prove the inequality $$\frac{1}{1-a b}+\frac{1}{1-b c}+\frac{1}{1-c a} \leq \frac{9}{2(1+9 a b c-a-b-c)}$$
  7. Let $\alpha \in\left(0 ; \frac{\pi}{2}\right)$. Find the minimum value of the expression $$P=(\cos \alpha+1)\left(1+\frac{1}{\sin \alpha}\right)+(\sin \alpha+1)\left(1+\frac{1}{\cos \alpha}\right)$$
  8. Let $S . A B C$ be a pyramid with $S A=a$, $S B=b$, $S C=c$ and $$\widehat{A S B}=\widehat{B S C}=\widehat{C S A}=\alpha.$$ Compute its volume in term of $a, b, c$ and $\alpha$.
  9. Let $n$ be a positive integer. Let $p(n)$ be the product of its nonzero digits. (If $n$ has a single digit then $p(n)=n$). Consider the expression $S=p(1)+p(2)+\ldots+p(999)$. What is the greatest prime divisor of $S ?$
  10. Let $(u_n)$ $(n = 0, 1, 2, ...)$ be the sequence given by $$u_{0}=0,\quad u_{n+1}=\frac{u_{n}+2008}{-u_{n}+2010}.$$ a) Prove that the sequence $\left(u_{n}\right)$ $(n=0,1,2, \ldots)$ converges and find limit of $u_{n}$.
    b) Put $\displaystyle T_{n}=\sum_{k=0}^{n} \frac{1}{u_{k}-2008} \cdot$ Find $\displaystyle \lim_{n\to\infty} \frac{T_{n}}{n+2009}$.
  11. Solve the equation $$4 \sqrt{x+2}+\sqrt{22-3 x}=x^{2}+8$$
  12. Let $A B C$ be an acute triangle with orthocenter $H$. Let $R$, $r$ be its the circumradius and inradius respectively. Prove that $$\max \left\{\frac{H B}{H C}+\frac{H C}{H B^{\prime}} + \frac{H C}{H A}+\frac{H A}{H C^{\prime}} + \frac{H A}{H B}+\frac{H B}{H A}\right\} \geq \frac{2 R}{r}-2$$

Issue 397

  1. Compare the following two fractions $$A=\frac{1010^{1010}}{2010^{2010}} \text { and } B=\frac{2010^{2010}}{3010^{3010}}$$
  2. Let $A B C$ be a triangle with $\widehat{B A C} \geq 60^{\circ}$. Prove that $A B+A C \leq 2 B C$.
  3. Find the remainder when dividing $3^{2^{n}}$ by $2^{n+3}$ where $n$ is a positive integer.
  4. Let $A B C$ be a triangle. Construct a parallelogram $AMPN$ so that the points $M$, $N$ are in $A B$, $A C$ respectively; $P$ lies inside the triangle $A B C$. Let $Q$ be the intersection of the line $A P$ and $B C$. Prove that $$\frac{A M \cdot A N \cdot P Q}{A B \cdot A C \cdot A Q} \leq \frac{1}{27}.$$ Find the position of $P$ when the equality occurs.
  5. Solve the equation $$\left(x+\frac{5-x}{\sqrt{x}+1}\right)^{2}=\frac{-192(\sqrt{x}+1)}{5 \sqrt{x}-x \sqrt{x}}$$
  6. Two circles $\left(O_{1}\right)$ and $\left(O_{2}\right)$ meet at points $K$ and $L$ such that their centers $O_{1}$ and $O_{2}$ lie on the same side of the line $K L .$ The tangent line to $\left(O_{1}\right)$ at $K$ meets $\left(O_{2}\right)$ at $A .$ The tangent line to $\left(O_{2}\right)$ at $K$ meets $\left(O_{1}\right)$ at $B$. Find the area of the triangle $A K B,$ given that $A L=3$, $B L=6$ and $\tan \widehat{A K B}=-\dfrac{1}{2}$.
  7. Let $a, b, c$ be positive real numbers satisfying $a+b+c=3$. Prove the following inequality $$\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}+5 \geq(a+b)(b+c)(c+a).$$ When does equality occur?
  8. Solve the system of equations $$\begin{cases}x&=3 z^{3}+2 z^{2} \\ y&=3 x^{3}+2 x^{2} \\ z&=3 y^{3}+2 y^{2}\end{cases}$$
  9. Let $A B C$ be an acute triangle. Let $a$, $b$, $c$ be the side lengths of the triangle and $h_{a}$, $h_{b}$, $h_{c}$ be the length of the corresponding altitudes. Let $r$, $R$ be respectively the inradius and circumradius of this triangle. Prove the inequality $$\frac{9 R}{a^{2}+b^{2}+c^{2}} \leq \frac{1}{h_{a}+\sqrt{h_{b} h_{c}}}+\frac{1}{h_{b}+\sqrt{h_{c} h_{a}}}+\frac{1}{h_{c}+\sqrt{h_{a} h_{b}}} \leq \frac{1}{2 r}$$
  10. Let $A$ be the set of $n$ distinct points on the plane $(n \geq 2)$ and $T(A)$ be the set of vectors whose endpoints are in $A$. Find the maximum and minimum value of $|T(A)|$. (where $|T(A)|$ denotes the cardinality of $T(A)$.)
  11. Let $f$ be a continuous function on $\mathbb{R}$ satisfying the following two conditions $$f(2012)=2011,\quad f(x)f_{4}(x)=1,\, \forall x \in \mathbb{R}.$$ Denote $f_{n}(x)=\underbrace{f(f \ldots f(x)))}_{n \text { times } f}$. Find $f(2010)$
  12. Let $\left(x_{n}\right)$ $(n=1,2, \ldots)$ be a sequence given by $$x_{1}=2,1;\quad x_{n+1}=\frac{x_{n}-2+\sqrt{x_{n}^{2}+8 x_{n}-4}}{2}.$$ For each positive integer $n$, let $\displaystyle y_{n}=\sum_{i=1}^{n} \frac{1}{x_{i+1}^{2}-4}$. Find $\displaystyle\lim_{n \rightarrow+\infty} y_{n}$.

Issue 398

  1. Let $n$ be a positive integer so that the first digit of $2^{n}$ and $5^{n}$ are the same. Prove that the number obtained by writing $2^{n}$ and $5^{n}$ consecutively has $n+1$ digits, where the digit 3 appears at least twice.
  2. Let $A B C$ be an isosceles triangle with $A B=A C$. Point $E$ on the median $B D$ is chosen so that $\widehat{D A E}=\widehat{A B D}$. Prove that $\widehat{D A E}=\widehat{E C B}$.
  3. Find all positive integer solutions of the equation $$x(x+2 y)^{3}-y(y+2 x)^{3}=27$$
  4. Find the value of the following expression $$P=\sqrt{12 \sqrt[3]{2}-15}+2 \sqrt{3 \sqrt[3]{4}-3}$$
  5. Let $ABC$ be a triangle with $\widehat{A C B}=70^{\circ}$, $\widehat{A B C}=50^{\circ}$. Let $D$, $E$ be respectively the midpoints of $B C$ and $A D$. Draw $EF$ perpendicular to $B C$ ($F$ is on $B C$). Let $M$ be a point on $E F$; let $N$, $P$ be respectively the orthogonal projections of $M$ onto $A C$, $A B$. Given that the three points $N$, $E$, $P$ are colinear, find the measure of angle $M A B$.
  6. Find the least value of the expression $$T=3 \sqrt{1+2 x^{2}}+2 \sqrt{40+9 y^{2}}$$ where $x, y$ are non-negative real numbers such that $x+y=1$.
  7. Let $A B C$ be an acute triangle. Prove that $$\frac{\cos A}{\cos \frac{B}{2} \cos \frac{C}{2}}+\frac{\cos B}{\cos \frac{C}{2} \cos \frac{A}{2}}+\frac{\cos C}{\cos \frac{A}{2} \cos \frac{B}{2}} \geq 2.$$
  8. Let $A B C$ be a triangle. A straight line cut the lines $B C$, $C A$ and $A B$ at $A^{\prime}$, $B^{\prime}$ and $C^{\prime}$ respectively. Let $A^{\prime \prime}$, $B^{\prime \prime}$ and $C^{\prime \prime}$ be the points reflection of $A^{\prime}$, $B^{\prime}$ and $C^{\prime}$ with centers at $A$, $B$ and $C$ respectively. Prove that the area of the triangle $A B C$.
  9. The positive integers are colored with either black or white such that the sum of two numbers with different color is painted black, and there are infinitely many numbers with white color. Let $q$ $(q>1)$ be the smallest positive integer with black color. Prove that $q$ is prime.
  10. Find all functions $f: \mathbb{N}^{*} \rightarrow \mathbb{N}^{*}$ such that $$f\left(f^{2}(m)+2 f^{2}(n)\right)=m^{2}+2 n^{2},\,\forall m, n \in \mathbb{N}^{*}$$
  11. The sequence $\left(x_{n}\right)(n \geq 1)$ of real numbers is defined inductively as follows $$x_{1}=a \in \mathbb{R},\quad x_{n+1}=2 x_{n}^{3}-5 x_{n}^{2}+4 x_{n},\,\forall n \geq 1 .$$ Find all possible values of $a$ such that the sequence $\left(x_{n}\right)$ has finite limit. Determine the limit of $\left(x_{n}\right)$ with respect to each such value of $a$.
  12. Let $A B C D$ be a tetrahedron. Find all points $P$ inside the tetrahedron such that $$x d_{A}+y d_{B}+z d_{C}+t d_{D}=c$$ where $x, y, z, t, c$ are given positive constants and $d_{A}$, $d_{B}$, $d_{C}$, $d_{D}$ are respectively the distances from $P$ to the four faces $B C D$, $C D A$, $D A B$, $A B C$ of the tetrahedron.

Issue 399

  1. Find a four digits perfect square, given that all four digits are distinct, and if these digits are written in reverse order, the result is also a perfect square, and is divisible by the original number. 
  2. Determine all possible choices of three integers $x$, $y$ and $z$ such that $$x^{2}+y^{2}+z^{2}+3<x y+3 y+2 z.$$
  3. Let $A B C$ be a triangle where the length of the altitudes $A H$ is $6 \mathrm{cm}, B H$ is $3 \mathrm{cm}$ and the measure of angle $C A H$ is three times the measure of angle $B A H$. Find the area of this triangle. 
  4. Find the greatest value of the expression $$M=\frac{232 y^{3}-x^{3}}{2 x y+24 y^{2}}+\frac{783 z^{3}-8 y^{3}}{6 y z+54 z^{2}}+\frac{29 x^{3}-27 z^{3}}{3 x z+6 x^{2}}$$ where $x, y$ and $z$ are positive numbers satisfying the condition $x+2 y+3 z=\dfrac{1}{4}$ 
  5. Let $A B C$ be a right triangle with right angle at $A$ and $A B<A C$. Let $H$ be the projection of $A$ onto $B C$, let $M$ be the point reflection of $H$ across $A B$. $M C$ meets the circumcircle of triangle $A B H$ at $P$ $(P \neq M)$, $H P$ meets the circumcircle of triangle $A P C$ at $N$ $(N \neq P)$. Let $E$ and $K$ be respectively the intersections of $A B$ and $B C$ with the circumcircle of triangle $A P C$ $(E \neq A, K \neq C)$. Prove that
    a) $E N$ is parallel to $B C$.
    b) $H$ is the midpoint of $B K$. 
  6. Find the interger part of $A$, where $$A=\sqrt{2}+\sqrt[3]{\frac{3}{2}}+\sqrt[4]{\frac{4}{3}}+\ldots+2010 \sqrt{\frac{2010}{2009}}$$
  7. Find the least value of the following expression $$A=\frac{x}{1+y^{2}}+\frac{y}{1+x^{2}}+\frac{z}{1+t^{2}}+\frac{t}{1+z^{2}}$$ where $x, y, z, t$ are nonnegative real numbers satisfying $x+y+z+t=k$ ($k$ is a given positive number).
  8. Let $A B C$ be a given triangle and $M$ is a point which is not on its sides. Prove that $$P_{A /(M C B)}=P_{B /(M C A)}=P_{A /(M A B)}$$ if and only if $M$ is the centroid of triangle $A B C$. ($P_{T /(X Y Z))}$ is the power of the point $T$ with respect to the circle through $X$, $Y$, $Z$.)
  9. Let $A B C$ be a triangle. A circle intersects with the sides $B C$, $C A$ and $A B$ at pairs of two points $(M, N)$; $(P, Q)$ and $(S, T)$ respectively, where $M$ lies between $B$ and $N$; $P$ lies between $C$ and $Q,$ and $S$ lies between $A$ and $T$. Let $K$, $H$, $L$ be respectively the intersections of $S N$ and $Q M$; $Q M$ and $T P$; $T P$ and $S N$. Prove that the lines $A K$, $B H$, $C L$ are concurrent.
  10. Let $\left(a_{n}\right)$ be a sequence of numbers such that $$a_{0}=10,\quad \left(6-a_{n}\right)\left(16+a_{n-1}\right)=96,\, n=0,1,2, \ldots$$ Find the sum $$S=\frac{1}{a_{0}}+\frac{1}{a_{1}}+\ldots+\frac{1}{a_{2010}}$$
  11. Find all functions $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$ such that the following equality holds $$f(x+y)+f(x y)=x+y+x y,\,\forall x, y \in \mathbb{R}^{+}.$$
  12. Let $A B C$ be a triangle. Prove that $$\cos A \cos B \cos C+8 \sqrt{3} \cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2} \geq 24 \cos ^{2} \frac{A}{2} \cos ^{2} \frac{B}{2} \cos ^{2} \frac{C}{2}-1$$

Issue 400

  1. Given $$A=\frac{1}{4} \cdot \frac{3}{6} \cdot \frac{5}{8} \cdot . . \frac{995}{998} \cdot \frac{997}{1000}$$ and $$B=\frac{2}{5} \cdot \frac{4}{7} \cdot \frac{6}{9} \ldots \frac{996}{999} \cdot \frac{998}{1001}.$$
    a) Compare $A$ and $B$.
    b) Prove that $A<\dfrac{1}{12900}$.
  2. Let $A B C$ be a triangle, the median $B M$ and the angle bisector $C D$ meets at $J$ and $J B=J C .$ From $A$ draw $A H$ perpendicular to $B C$. Prove that $J M=J H$.
  3. Assume that $n \in \mathbb{N}$, $n \geq 2$. Consider all natural numbers $a_{n}=\overline{11 \ldots 1}$ consisting of exactly $n$ digits $1 .$ Prove that if $a_{n}$ is a prime number then $n$ is a divisor of $a_{n}-1$.
  4. Let $a, b, c, d$ be real numbers in the half-open interval $\left(0 ; \frac{1}{2}\right] .$ Prove that $$\left(\frac{a+b+c+d}{4-a-b-c-d}\right)^{4} \geq \frac{a b c d}{(1-a)(1-b)(1-c)(1-d)}$$
  5. Let $A B C D$ be a square whose side length is $a, M$ is an arbitrary point on $A B$ $(M \neq A, M \neq B)$. $M C$ meets $B D$ at $P$, $M D$ cuts $A C$ at $Q$. Find the maximum value of the area of triangle $M P Q$ and the minimum value of the area of the quadrilateral $C P Q D$.
  6. Solve the equation $$25 x+9 \sqrt{9 x^{2}-4}=\frac{2}{x}+\frac{18 x}{x^{2}+1}$$
  7. Let $A B C$ be a triangle with incenter $I$ and centroid $G$. Let $R_{1}$, $R_{2}$, $R_{3}$ be the circumradii of the triangles $I B C$, $I C A$ and $I A B$ respectively. Let $R_{1}^{\prime}$, $R_{2}^{\prime}$, $R_{3}^{\prime}$ be the of circumradii of the triangles $G B C$, $G C A$ and $G A B$ respectively. Prove that $$R_{1}^{\prime}+R_{2}^{\prime}+R_{3}^{\prime} \geq R_{1}+R_{2}+R_{3}$$
  8. Let $f:|a ; b| \rightarrow \mathbb{R}(0<a<b)$ be a continuous function on $|a ; b|$ and differentiable on $(a ; b)$, $f(x) \neq 0$ for all $x \in(a ; b)$. Prove that there exists $c \in(a ; b)$ so that $$\frac{2}{a-c}<\frac{f^{\prime}(c)}{f(c)}<\frac{2}{b-c}$$
  9. Let $\left(a_{n}\right)(n=1,2, \ldots)$ be a sequence given by $$a_{1}=1,\quad a_{n+1}=1+\frac{1}{a_{n}+1},\,\forall n \in \mathbb{N}^{\circ} .$$ Prove that $$a_{1}^{2}+a_{2}^{2}+\ldots+a_{2010}^{2}<4020$$
  10. Given any set $A \subset \mathbb{R},$ let $A+1$ be the set $A+1=\{a+1 \mid a \in A\} .$ How many subsets $A$ of set $\{1,2, \ldots, n\}(n \geq 1, n \in \mathbb{N})$ are there such that $A \cup(A+1)=\{1,2, \ldots, n\}$?
  11. Find all the functions $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$ so that $$f(x) f(y)=\beta f(x+y f(x)),\,\forall x, y \in \mathbb{R}^{+}$$ (for a given $\beta \in \mathbb{R}$, $\beta>1$.)
  12. Let $A B C$ be a triangle and $M$ be the midpoint of the arc $B C$ of its circumcircle. Let $I$, $J$, $K$ be the projections of $M$ onto the lines $A B$, $B C$, $C A$ respectively; $X$ is the intersection of $B K$ and $A J$; $L$ is the intersection of $C X$ and $1 J$. The ray $J y$ perpendicular to $M K$ cuts $A L$ at $T$. Prove that $C T$ is perpendicular to $I M$.

Issue 401

  1. Let $n$ be a natural number greater than $11$. Does there exist a natural number $x$ so that $n^{2010}<x<n^{2011}$ and the last 2011 digits of $x$ are $0 ?$
  2. Let $p$ be a prime number, $a$ and $b$ are natural numbers $(a<b)$ such that the sum of all irreducible fractions with denominator $p$ which lies between $a$ and $b$ is equal to $2011 .$ Find the values of $p$, $a$, $b$.
  3. Let $a$ be an $n$ -digits natural number (in decimal system) and $a^{3}$ has $m$ digits. Can $n+m$ be equal to $2011 ?$ Why?
  4. Solve the equation $$x+y+z+\sqrt{x y z}=2(\sqrt{x y}+\sqrt{y z}+\sqrt{z x}-2).$$
  5. Let $A B C D$ be a parallelogram. The angle-bisector of $B A D$ meets $B C$, $D C$ at $M$, $N$ respectively. Let $E$ be the other intersection point of the circumcircles of the triangles $B C D$ and $C M N .$ Find the measure of angle $A E C$.
  6. Find the least value of $$A=\frac{2}{|a-b|}+\frac{2}{|b-c|}+\frac{2}{|c-a|}+\frac{5}{\sqrt{a b+b c+c a}}$$ where $a$, $b$, $c$ are real numbers satisfying $a+b+c=1$ and $a b+b c+c a>0$
  7. Solve the system of equations $$\begin{cases}4+9.3^{x^{2}-2 y} &= \left(4+9^{x^{2}-2 y}\right) \cdot 7^{2 y-x^{2}+2} \\ 4^{x}+4 &= 4 x+4 \sqrt{2 y-2 x+4}\end{cases}$$
  8. Let $A B C D$ be a square of side $4 a$. $M$, $N$ are points on the spheres $S(D ; a)$, $S(C ; 2 a)$ Determine the minimum value of the sum $M A+2 N B+4 M N$.
  9. Let $A B C$ be an acute triangle with $A B \neq A C$. Let $P$ be a point inside the triangle so that $\widehat{P B A}=\widehat{P C A},$ draw lines $P M$ and $P N$ perpendicular to $A B$ and $A C$ respectively. $O$ is the midpoint of $B C$. The angle-bisectors of $B A C$ and $M O N$ intersects at $R .$ Prove that the circumcircles of the triangles $B M R$ and $C N R$ meet at another point on the line segment $B C$.
  10. Let $a$ be a positive real number. Let $\left(x_{n}\right)(n=1,2, \ldots)$ be a sequence defined by $$x_{1}=a,\quad x_{n+1}=\frac{x_{n} \sqrt{2+\sqrt{2+\ldots+\sqrt{2}}}}{x_{n}+1},\,\forall n=1,2, \ldots$$ (there are exactly $n$ numbers $2$ in the numerator). Prove that the sequence $\left(x_{n}\right)(n=1,2, \ldots)$ has a finite limit and find this limit.
  11. Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying the condition $$f(x+f(y))=f^{4}(y)+4 x^{3} f(y)+6 x^{2} f^{2}(y)+4 x f^{3}(y)+f(-x)$$ for all $x$, $y$ in $\mathbb{R}$.
  12. Let $A B C$ be an equilateral triangle with circumradius $R$ and let $P$ be a point inside the triangle. Prove that $$P A \cdot P B \cdot P C \leq \frac{9}{8} R^{3}.$$

Issue 402

  1. Compare $\dfrac{5}{24}$ ưith the sum $$\frac{1}{1.2 .4}+\frac{1}{2.5 .7}+\frac{1}{3.8 .10}+\ldots+\frac{1}{1000.2999 .3001}$$
  2. Let $A B C$ be an isosceles right triangle, with right angle at vertex $A .$ Let $D$ be a point inside the triangle such that $\Delta A B D$ is an isosceles triangle and $\widehat{A D B}=150^{\circ} .$ Let $A C E$ be an equilateral triangle so that points $D$ and $E$ are on the different side of the half-plane $A C .$ Prove that $B$, $D$, $E$ are collinear.
  3. Find all positive integer numbers $m$ such that the following equation $$x^{2}-m x y+y^{2}+1=0$$ has positive integer roots.
  4. Let $A B C$ be an acute triangle and let $A H$, $B K$, $C L$ be its three altitudes. Prove that $$A K \cdot B L \cdot C H=A L \cdot B H \cdot C K=H K \cdot K L \cdot L H.$$
  5. Solve the equation. $$\frac{8 x\left(1-x^{2}\right)}{\left(1+x^{2}\right)^{2}}-\frac{2 \sqrt{2} x(x+3)}{1+x^{2}}=5-\sqrt{2}$$
  6. Let $a$, $b$, $c$ be three positive real numbers such that $a b c=1$. Prove that $$\dfrac{1}{\sqrt{a^{5}-a^{2}+3 a b+6}}+\dfrac{1}{\sqrt{b^{5}-b^{2}+3 b c+6}} +\frac{1}{\sqrt{c^{5}-c^{2}+3 c a+6}} \leq 1.$$
  7. Solve the equation $$2 \sin \left(x+\frac{\pi}{3}\right) +2^{2} \sin \left(x+\frac{2 \pi}{3}\right)+\ldots +2^{2010} \sin \left(x+\frac{2010 \pi}{3}\right)=0.$$
  8. Let $O A B C$ be a tetrahedron where $O A$, $O B$, $O C$ are pairwise orthogonal. Let $M$ be a point on the plane containing the base $A B C$. Let $G_{1}$, $G_{2}$, $G_{3}$ be respectively the centroids of triangles $O A B$, $O B C$ and $O C A$. Put $O A=a$, $O B=b$, $O C=c$. Prove the inequality $$M G_{1}^{2}+M G_{2}^{2}+M G_{3}^{2} \geq \frac{a^{2} b^{2} c^{2}}{a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}}.$$ When does equality occur?
  9. Let $A B C$ be an acute triangle with altitude $A D$. $M$ is a point on $A D$. The lines $B M$, $C M$ meets $A C$, $A B$ at $E$, $F$ respectively. $D E$, $D F$ intersects with the circles whose diameters $A B$, $A C$ at $K$, $L$ respectively. Prove that the line connecting the midpoints of $E F$, $K L$ goes through $A$.
  10. Prove that there exist infinitely many triples of positive integers $(a, b, c)$ such that $a b+1$, $b c+1$, $c a+1$ are all square numbers.
  11. Find all positive integers $a$, $b$, $c$ so that the equation $$x+3 \sqrt[4]{x}+\sqrt{4-x}+3 \sqrt[4]{4-x}=a+b+c$$ has solution and the expression $P=a b+2 a c+3 b c$ is greatest possible.
  12. Find all positive real numbers $a$ such that there exists a positive real number $k$ and a function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $$\frac{f(x)+f(y)}{2} \geq f\left(\frac{x+y}{2}\right)+k|x-y|^{a}$$ for all real numbers $x$, $y$.

$hide=mobile$type=ticker$c=36$cols=2$l=0$sr=random$b=0

Name

Abel,5,Albania,2,AMM,2,Amsterdam,4,An Giang,45,Andrew Wiles,1,Anh,2,APMO,21,Austria (Áo),1,Ba Lan,1,Bà Rịa Vũng Tàu,77,Bắc Bộ,2,Bắc Giang,62,Bắc Kạn,4,Bạc Liêu,18,Bắc Ninh,53,Bắc Trung Bộ,3,Bài Toán Hay,5,Balkan,41,Baltic Way,32,BAMO,1,Bất Đẳng Thức,69,Bến Tre,72,Benelux,16,Bình Định,65,Bình Dương,38,Bình Phước,52,Bình Thuận,42,Birch,1,BMO,41,Booklet,12,Bosnia Herzegovina,3,BoxMath,3,Brazil,2,British,16,Bùi Đắc Hiên,1,Bùi Thị Thiện Mỹ,1,Bùi Văn Tuyên,1,Bùi Xuân Diệu,1,Bulgaria,6,Buôn Ma Thuột,2,BxMO,15,Cà Mau,22,Cần Thơ,27,Canada,40,Cao Bằng,12,Cao Quang Minh,1,Câu Chuyện Toán Học,43,Caucasus,3,CGMO,11,China - Trung Quốc,25,Chọn Đội Tuyển,515,Chu Tuấn Anh,1,Chuyên Đề,125,Chuyên SPHCM,7,Chuyên SPHN,30,Chuyên Trần Hưng Đạo,3,Collection,8,College Mathematic,1,Concours,1,Cono Sur,1,Contest,675,Correspondence,1,Cosmin Poahata,1,Crux,2,Czech-Polish-Slovak,28,Đà Nẵng,50,Đa Thức,2,Đại Số,20,Đắk Lắk,76,Đắk Nông,15,Danube,7,Đào Thái Hiệp,1,ĐBSCL,2,Đề Thi,1,Đề Thi HSG,2249,Đề Thi JMO,1,DHBB,30,Điện Biên,15,Định Lý,1,Định Lý Beaty,1,Đỗ Hữu Đức Thịnh,1,Do Thái,3,Doãn Quang Tiến,5,Đoàn Quỳnh,1,Đoàn Văn Trung,1,Đồng Nai,64,Đồng Tháp,63,Du Hiền Vinh,1,Đức,1,Dương Quỳnh Châu,1,Dương Tú,1,Duyên Hải Bắc Bộ,30,E-Book,31,EGMO,30,ELMO,19,EMC,11,Epsilon,1,Estonian,5,Euler,1,Evan Chen,1,Fermat,3,Finland,4,Forum Of Geometry,2,Furstenberg,1,G. Polya,3,Gặp Gỡ Toán Học,30,Gauss,1,GDTX,3,Geometry,14,GGTH,30,Gia Lai,40,Gia Viễn,2,Giải Tích Hàm,1,Giới hạn,2,Goldbach,1,Hà Giang,5,Hà Lan,1,Hà Nam,45,Hà Nội,255,Hà Tĩnh,91,Hà Trung Kiên,1,Hải Dương,70,Hải Phòng,57,Hậu Giang,14,Hélènne Esnault,1,Hilbert,2,Hình Học,33,HKUST,7,Hòa Bình,33,Hoài Nhơn,1,Hoàng Bá Minh,1,Hoàng Minh Quân,1,Hodge,1,Hojoo Lee,2,HOMC,5,HongKong,8,HSG 10,126,HSG 10 2010-2011,4,HSG 10 2011-2012,7,HSG 10 2012-2013,8,HSG 10 2013-2014,7,HSG 10 2014-2015,6,HSG 10 2015-2016,2,HSG 10 2016-2017,8,HSG 10 2017-2018,4,HSG 10 2018-2019,4,HSG 10 2019-2020,7,HSG 10 2020-2021,3,HSG 10 2021-2022,4,HSG 10 2022-2023,11,HSG 10 2023-2024,1,HSG 10 Bà Rịa Vũng Tàu,2,HSG 10 Bắc Giang,1,HSG 10 Bạc Liêu,2,HSG 10 Bình Định,1,HSG 10 Bình Dương,1,HSG 10 Bình Thuận,4,HSG 10 Chuyên SPHN,5,HSG 10 Đắk Lắk,2,HSG 10 Đồng Nai,4,HSG 10 Gia Lai,2,HSG 10 Hà Nam,4,HSG 10 Hà Tĩnh,15,HSG 10 Hải Dương,10,HSG 10 KHTN,9,HSG 10 Nghệ An,1,HSG 10 Ninh Thuận,1,HSG 10 Phú Yên,2,HSG 10 PTNK,10,HSG 10 Quảng Nam,1,HSG 10 Quảng Trị,2,HSG 10 Thái Nguyên,9,HSG 10 Vĩnh Phúc,14,HSG 1015-2016,3,HSG 11,135,HSG 11 2009-2010,1,HSG 11 2010-2011,6,HSG 11 2011-2012,10,HSG 11 2012-2013,9,HSG 11 2013-2014,7,HSG 11 2014-2015,10,HSG 11 2015-2016,6,HSG 11 2016-2017,8,HSG 11 2017-2018,7,HSG 11 2018-2019,8,HSG 11 2019-2020,5,HSG 11 2020-2021,8,HSG 11 2021-2022,4,HSG 11 2022-2023,7,HSG 11 2023-2024,1,HSG 11 An Giang,2,HSG 11 Bà Rịa Vũng Tàu,1,HSG 11 Bắc Giang,4,HSG 11 Bạc Liêu,3,HSG 11 Bắc Ninh,2,HSG 11 Bình Định,12,HSG 11 Bình Dương,3,HSG 11 Bình Thuận,1,HSG 11 Cà Mau,1,HSG 11 Đà Nẵng,9,HSG 11 Đồng Nai,1,HSG 11 Hà Nam,2,HSG 11 Hà Tĩnh,12,HSG 11 Hải Phòng,1,HSG 11 Kiên Giang,4,HSG 11 Lạng Sơn,11,HSG 11 Nghệ An,6,HSG 11 Ninh Bình,2,HSG 11 Quảng Bình,12,HSG 11 Quảng Nam,1,HSG 11 Quảng Ngãi,9,HSG 11 Quảng Trị,3,HSG 11 Sóc Trăng,1,HSG 11 Thái Nguyên,8,HSG 11 Thanh Hóa,3,HSG 11 Trà Vinh,1,HSG 11 Tuyên Quang,1,HSG 11 Vĩnh Long,3,HSG 11 Vĩnh Phúc,11,HSG 12,668,HSG 12 2009-2010,2,HSG 12 2010-2011,39,HSG 12 2011-2012,44,HSG 12 2012-2013,58,HSG 12 2013-2014,53,HSG 12 2014-2015,44,HSG 12 2015-2016,37,HSG 12 2016-2017,46,HSG 12 2017-2018,55,HSG 12 2018-2019,43,HSG 12 2019-2020,43,HSG 12 2020-2021,52,HSG 12 2021-2022,35,HSG 12 2022-2023,42,HSG 12 2023-2024,23,HSG 12 2023-2041,1,HSG 12 An Giang,8,HSG 12 Bà Rịa Vũng Tàu,13,HSG 12 Bắc Giang,18,HSG 12 Bạc Liêu,3,HSG 12 Bắc Ninh,13,HSG 12 Bến Tre,19,HSG 12 Bình Định,17,HSG 12 Bình Dương,8,HSG 12 Bình Phước,9,HSG 12 Bình Thuận,8,HSG 12 Cà Mau,7,HSG 12 Cần Thơ,7,HSG 12 Cao Bằng,5,HSG 12 Chuyên SPHN,11,HSG 12 Đà Nẵng,3,HSG 12 Đắk Lắk,21,HSG 12 Đắk Nông,1,HSG 12 Điện Biên,3,HSG 12 Đồng Nai,20,HSG 12 Đồng Tháp,18,HSG 12 Gia Lai,14,HSG 12 Hà Nam,5,HSG 12 Hà Nội,17,HSG 12 Hà Tĩnh,16,HSG 12 Hải Dương,16,HSG 12 Hải Phòng,20,HSG 12 Hậu Giang,4,HSG 12 Hòa Bình,10,HSG 12 Hưng Yên,10,HSG 12 Khánh Hòa,4,HSG 12 KHTN,26,HSG 12 Kiên Giang,12,HSG 12 Kon Tum,3,HSG 12 Lai Châu,4,HSG 12 Lâm Đồng,11,HSG 12 Lạng Sơn,8,HSG 12 Lào Cai,17,HSG 12 Long An,18,HSG 12 Nam Định,7,HSG 12 Nghệ An,13,HSG 12 Ninh Bình,12,HSG 12 Ninh Thuận,7,HSG 12 Phú Thọ,18,HSG 12 Phú Yên,13,HSG 12 Quảng Bình,14,HSG 12 Quảng Nam,11,HSG 12 Quảng Ngãi,6,HSG 12 Quảng Ninh,20,HSG 12 Quảng Trị,10,HSG 12 Sóc Trăng,4,HSG 12 Sơn La,5,HSG 12 Tây Ninh,6,HSG 12 Thái Bình,11,HSG 12 Thái Nguyên,13,HSG 12 Thanh Hóa,17,HSG 12 Thừa Thiên Huế,19,HSG 12 Tiền Giang,3,HSG 12 TPHCM,13,HSG 12 Tuyên Quang,3,HSG 12 Vĩnh Long,7,HSG 12 Vĩnh Phúc,20,HSG 12 Yên Bái,6,HSG 9,573,HSG 9 2009-2010,1,HSG 9 2010-2011,21,HSG 9 2011-2012,42,HSG 9 2012-2013,41,HSG 9 2013-2014,35,HSG 9 2014-2015,41,HSG 9 2015-2016,38,HSG 9 2016-2017,42,HSG 9 2017-2018,45,HSG 9 2018-2019,41,HSG 9 2019-2020,18,HSG 9 2020-2021,50,HSG 9 2021-2022,53,HSG 9 2022-2023,55,HSG 9 2023-2024,15,HSG 9 An Giang,9,HSG 9 Bà Rịa Vũng Tàu,8,HSG 9 Bắc Giang,14,HSG 9 Bắc Kạn,1,HSG 9 Bạc Liêu,1,HSG 9 Bắc Ninh,12,HSG 9 Bến Tre,9,HSG 9 Bình Định,11,HSG 9 Bình Dương,7,HSG 9 Bình Phước,13,HSG 9 Bình Thuận,5,HSG 9 Cà Mau,2,HSG 9 Cần Thơ,4,HSG 9 Cao Bằng,2,HSG 9 Đà Nẵng,11,HSG 9 Đắk Lắk,12,HSG 9 Đắk Nông,3,HSG 9 Điện Biên,5,HSG 9 Đồng Nai,8,HSG 9 Đồng Tháp,10,HSG 9 Gia Lai,9,HSG 9 Hà Giang,4,HSG 9 Hà Nam,10,HSG 9 Hà Nội,15,HSG 9 Hà Tĩnh,13,HSG 9 Hải Dương,16,HSG 9 Hải Phòng,8,HSG 9 Hậu Giang,6,HSG 9 Hòa Bình,4,HSG 9 Hưng Yên,11,HSG 9 Khánh Hòa,6,HSG 9 Kiên Giang,16,HSG 9 Kon Tum,9,HSG 9 Lai Châu,2,HSG 9 Lâm Đồng,14,HSG 9 Lạng Sơn,10,HSG 9 Lào Cai,4,HSG 9 Long An,10,HSG 9 Nam Định,9,HSG 9 Nghệ An,21,HSG 9 Ninh Bình,14,HSG 9 Ninh Thuận,4,HSG 9 Phú Thọ,13,HSG 9 Phú Yên,9,HSG 9 Quảng Bình,14,HSG 9 Quảng Nam,12,HSG 9 Quảng Ngãi,13,HSG 9 Quảng Ninh,17,HSG 9 Quảng Trị,10,HSG 9 Sóc Trăng,9,HSG 9 Sơn La,5,HSG 9 Tây Ninh,16,HSG 9 Thái Bình,11,HSG 9 Thái Nguyên,5,HSG 9 Thanh Hóa,12,HSG 9 Thừa Thiên Huế,9,HSG 9 Tiền Giang,7,HSG 9 TPHCM,11,HSG 9 Trà Vinh,2,HSG 9 Tuyên Quang,6,HSG 9 Vĩnh Long,12,HSG 9 Vĩnh Phúc,12,HSG 9 Yên Bái,5,HSG Cấp Trường,80,HSG Quốc Gia,113,HSG Quốc Tế,16,Hứa Lâm Phong,1,Hứa Thuần Phỏng,1,Hùng Vương,2,Hưng Yên,43,Huỳnh Kim Linh,1,Hy Lạp,1,IMC,26,IMO,58,IMT,2,IMU,2,India - Ấn Độ,47,Inequality,13,InMC,1,International,349,Iran,13,Jakob,1,JBMO,41,Jewish,1,Journal,30,Junior,38,K2pi,1,Kazakhstan,1,Khánh Hòa,30,KHTN,64,Kiên Giang,74,Kon Tum,24,Korea - Hàn Quốc,5,Kvant,2,Kỷ Yếu,46,Lai Châu,12,Lâm Đồng,47,Lăng Hồng Nguyệt Anh,1,Lạng Sơn,37,Langlands,1,Lào Cai,35,Lê Hải Châu,1,Lê Hải Khôi,1,Lê Hoành Phò,4,Lê Hồng Phong,5,Lê Khánh Sỹ,3,Lê Minh Cường,1,Lê Phúc Lữ,1,Lê Phương,1,Lê Viết Hải,1,Lê Việt Hưng,2,Leibniz,1,Long An,52,Lớp 10 Chuyên,709,Lớp 10 Không Chuyên,355,Lớp 11,1,Lục Ngạn,1,Lượng giác,1,Lưu Giang Nam,2,Lưu Lý Tưởng,1,Macedonian,1,Malaysia,1,Margulis,2,Mark Levi,1,Mathematical Excalibur,1,Mathematical Reflections,1,Mathematics Magazine,1,Mathematics Today,1,Mathley,1,MathLinks,1,MathProblems Journal,1,Mathscope,8,MathsVN,5,MathVN,1,MEMO,13,Menelaus,1,Metropolises,4,Mexico,1,MIC,1,Michael Atiyah,1,Michael Guillen,1,Mochizuki,1,Moldova,1,Moscow,1,MYM,25,MYTS,4,Nam Định,45,Nam Phi,1,National,276,Nesbitt,1,Newton,4,Nghệ An,73,Ngô Bảo Châu,2,Ngô Việt Hải,1,Ngọc Huyền,2,Nguyễn Anh Tuyến,1,Nguyễn Bá Đang,1,Nguyễn Đình Thi,1,Nguyễn Đức Tấn,1,Nguyễn Đức Thắng,1,Nguyễn Duy Khương,1,Nguyễn Duy Tùng,1,Nguyễn Hữu Điển,3,Nguyễn Minh Hà,1,Nguyễn Minh Tuấn,9,Nguyễn Nhất Huy,1,Nguyễn Phan Tài Vương,1,Nguyễn Phú Khánh,1,Nguyễn Phúc Tăng,2,Nguyễn Quản Bá Hồng,1,Nguyễn Quang Sơn,1,Nguyễn Song Thiên Long,1,Nguyễn Tài Chung,5,Nguyễn Tăng Vũ,1,Nguyễn Tất Thu,1,Nguyễn Thúc Vũ Hoàng,1,Nguyễn Trung Tuấn,8,Nguyễn Tuấn Anh,2,Nguyễn Văn Huyện,3,Nguyễn Văn Mậu,25,Nguyễn Văn Nho,1,Nguyễn Văn Quý,2,Nguyễn Văn Thông,1,Nguyễn Việt Anh,1,Nguyễn Vũ Lương,2,Nhật Bản,4,Nhóm $\LaTeX$,4,Nhóm Toán,1,Ninh Bình,61,Ninh Thuận,26,Nội Suy Lagrange,2,Nội Suy Newton,1,Nordic,21,Olympiad Corner,1,Olympiad Preliminary,2,Olympic 10,134,Olympic 10/3,6,Olympic 10/3 Đắk Lắk,6,Olympic 11,122,Olympic 12,52,Olympic 23/3,2,Olympic 24/3,10,Olympic 24/3 Quảng Nam,10,Olympic 27/4,24,Olympic 30/4,61,Olympic KHTN,8,Olympic Sinh Viên,78,Olympic Tháng 4,12,Olympic Toán,344,Olympic Toán Sơ Cấp,3,Ôn Thi 10,2,PAMO,1,Phạm Đình Đồng,1,Phạm Đức Tài,1,Phạm Huy Hoàng,1,Pham Kim Hung,3,Phạm Quốc Sang,2,Phan Huy Khải,1,Phan Quang Đạt,1,Phan Thành Nam,1,Pháp,2,Philippines,8,Phú Thọ,32,Phú Yên,42,Phùng Hồ Hải,1,Phương Trình Hàm,11,Phương Trình Pythagoras,1,Pi,1,Polish,32,Problems,1,PT-HPT,14,PTNK,64,Putnam,27,Quảng Bình,64,Quảng Nam,57,Quảng Ngãi,49,Quảng Ninh,60,Quảng Trị,42,Quỹ Tích,1,Riemann,1,RMM,14,RMO,24,Romania,38,Romanian Mathematical,1,Russia,1,Sách Thường Thức Toán,7,Sách Toán,70,Sách Toán Cao Học,1,Sách Toán THCS,7,Saudi Arabia - Ả Rập Xê Út,9,Scholze,1,Serbia,17,Sharygin,28,Shortlists,56,Simon Singh,1,Singapore,1,Số Học - Tổ Hợp,28,Sóc Trăng,36,Sơn La,22,Spain,8,Star Education,1,Stars of Mathematics,11,Swinnerton-Dyer,1,Talent Search,1,Tăng Hải Tuân,2,Tạp Chí,17,Tập San,3,Tây Ban Nha,1,Tây Ninh,37,Thái Bình,45,Thái Nguyên,61,Thái Vân,2,Thanh Hóa,69,THCS,2,Thổ Nhĩ Kỳ,5,Thomas J. Mildorf,1,Thông Tin Toán Học,43,THPT Chuyên Lê Quý Đôn,1,THPT Chuyên Nguyễn Du,9,THPTQG,16,THTT,31,Thừa Thiên Huế,56,Tiền Giang,30,Tin Tức Toán Học,1,Titu Andreescu,2,Toán 12,7,Toán Cao Cấp,3,Toán Rời Rạc,5,Toán Tuổi Thơ,3,Tôn Ngọc Minh Quân,2,TOT,1,TPHCM,158,Trà Vinh,10,Trắc Nghiệm,1,Trắc Nghiệm Toán,2,Trại Hè,39,Trại Hè Hùng Vương,30,Trại Hè Phương Nam,7,Trần Đăng Phúc,1,Trần Minh Hiền,2,Trần Nam Dũng,12,Trần Phương,1,Trần Quang Hùng,1,Trần Quốc Anh,2,Trần Quốc Luật,1,Trần Quốc Nghĩa,1,Trần Tiến Tự,1,Trịnh Đào Chiến,2,Trường Đông,23,Trường Hè,10,Trường Thu,1,Trường Xuân,3,TST,544,TST 2008-2009,1,TST 2010-2011,22,TST 2011-2012,23,TST 2012-2013,32,TST 2013-2014,29,TST 2014-2015,27,TST 2015-2016,26,TST 2016-2017,41,TST 2017-2018,42,TST 2018-2019,30,TST 2019-2020,34,TST 2020-2021,30,TST 2021-2022,38,TST 2022-2023,42,TST 2023-2024,23,TST An Giang,8,TST Bà Rịa Vũng Tàu,11,TST Bắc Giang,5,TST Bắc Ninh,11,TST Bến Tre,10,TST Bình Định,5,TST Bình Dương,7,TST Bình Phước,9,TST Bình Thuận,9,TST Cà Mau,7,TST Cần Thơ,6,TST Cao Bằng,2,TST Đà Nẵng,8,TST Đắk Lắk,12,TST Đắk Nông,2,TST Điện Biên,2,TST Đồng Nai,13,TST Đồng Tháp,12,TST Gia Lai,4,TST Hà Nam,8,TST Hà Nội,12,TST Hà Tĩnh,15,TST Hải Dương,11,TST Hải Phòng,13,TST Hậu Giang,1,TST Hòa Bình,4,TST Hưng Yên,10,TST Khánh Hòa,8,TST Kiên Giang,11,TST Kon Tum,6,TST Lâm Đồng,12,TST Lạng Sơn,3,TST Lào Cai,4,TST Long An,6,TST Nam Định,8,TST Nghệ An,7,TST Ninh Bình,11,TST Ninh Thuận,4,TST Phú Thọ,13,TST Phú Yên,5,TST PTNK,15,TST Quảng Bình,12,TST Quảng Nam,7,TST Quảng Ngãi,8,TST Quảng Ninh,9,TST Quảng Trị,10,TST Sóc Trăng,5,TST Sơn La,7,TST Thái Bình,6,TST Thái Nguyên,8,TST Thanh Hóa,9,TST Thừa Thiên Huế,4,TST Tiền Giang,6,TST TPHCM,14,TST Trà Vinh,1,TST Tuyên Quang,1,TST Vĩnh Long,7,TST Vĩnh Phúc,7,TST Yên Bái,8,Tuyên Quang,14,Tuyển Sinh,4,Tuyển Sinh 10,1064,Tuyển Sinh 10 An Giang,18,Tuyển Sinh 10 Bà Rịa Vũng Tàu,22,Tuyển Sinh 10 Bắc Giang,19,Tuyển Sinh 10 Bắc Kạn,3,Tuyển Sinh 10 Bạc Liêu,9,Tuyển Sinh 10 Bắc Ninh,15,Tuyển Sinh 10 Bến Tre,34,Tuyển Sinh 10 Bình Định,19,Tuyển Sinh 10 Bình Dương,12,Tuyển Sinh 10 Bình Phước,21,Tuyển Sinh 10 Bình Thuận,15,Tuyển Sinh 10 Cà Mau,5,Tuyển Sinh 10 Cần Thơ,10,Tuyển Sinh 10 Cao Bằng,2,Tuyển Sinh 10 Chuyên SPHN,19,Tuyển Sinh 10 Đà Nẵng,18,Tuyển Sinh 10 Đại Học Vinh,13,Tuyển Sinh 10 Đắk Lắk,21,Tuyển Sinh 10 Đắk Nông,7,Tuyển Sinh 10 Điện Biên,5,Tuyển Sinh 10 Đồng Nai,18,Tuyển Sinh 10 Đồng Tháp,23,Tuyển Sinh 10 Gia Lai,10,Tuyển Sinh 10 Hà Giang,1,Tuyển Sinh 10 Hà Nam,16,Tuyển Sinh 10 Hà Nội,80,Tuyển Sinh 10 Hà Tĩnh,19,Tuyển Sinh 10 Hải Dương,17,Tuyển Sinh 10 Hải Phòng,15,Tuyển Sinh 10 Hậu Giang,3,Tuyển Sinh 10 Hòa Bình,15,Tuyển Sinh 10 Hưng Yên,12,Tuyển Sinh 10 Khánh Hòa,12,Tuyển Sinh 10 KHTN,21,Tuyển Sinh 10 Kiên Giang,31,Tuyển Sinh 10 Kon Tum,6,Tuyển Sinh 10 Lai Châu,6,Tuyển Sinh 10 Lâm Đồng,10,Tuyển Sinh 10 Lạng Sơn,6,Tuyển Sinh 10 Lào Cai,10,Tuyển Sinh 10 Long An,18,Tuyển Sinh 10 Nam Định,21,Tuyển Sinh 10 Nghệ An,23,Tuyển Sinh 10 Ninh Bình,20,Tuyển Sinh 10 Ninh Thuận,10,Tuyển Sinh 10 Phú Thọ,18,Tuyển Sinh 10 Phú Yên,12,Tuyển Sinh 10 PTNK,37,Tuyển Sinh 10 Quảng Bình,12,Tuyển Sinh 10 Quảng Nam,15,Tuyển Sinh 10 Quảng Ngãi,13,Tuyển Sinh 10 Quảng Ninh,12,Tuyển Sinh 10 Quảng Trị,7,Tuyển Sinh 10 Sóc Trăng,17,Tuyển Sinh 10 Sơn La,5,Tuyển Sinh 10 Tây Ninh,15,Tuyển Sinh 10 Thái Bình,17,Tuyển Sinh 10 Thái Nguyên,18,Tuyển Sinh 10 Thanh Hóa,27,Tuyển Sinh 10 Thừa Thiên Huế,24,Tuyển Sinh 10 Tiền Giang,14,Tuyển Sinh 10 TPHCM,23,Tuyển Sinh 10 Trà Vinh,6,Tuyển Sinh 10 Tuyên Quang,3,Tuyển Sinh 10 Vĩnh Long,12,Tuyển Sinh 10 Vĩnh Phúc,22,Tuyển Sinh 2008-2009,1,Tuyển Sinh 2009-2010,1,Tuyển Sinh 2010-2011,6,Tuyển Sinh 2011-2012,20,Tuyển Sinh 2012-2013,65,Tuyển Sinh 2013-2014,77,Tuyển Sinh 2013-2044,1,Tuyển Sinh 2014-2015,81,Tuyển Sinh 2015-2016,64,Tuyển Sinh 2016-2017,72,Tuyển Sinh 2017-2018,126,Tuyển Sinh 2018-2019,61,Tuyển Sinh 2019-2020,90,Tuyển Sinh 2020-2021,59,Tuyển Sinh 2021-202,1,Tuyển Sinh 2021-2022,69,Tuyển Sinh 2022-2023,113,Tuyển Sinh 2023-2024,49,Tuyển Sinh Chuyên SPHCM,7,Tuyển Sinh Yên Bái,6,Tuyển Tập,45,Tuymaada,6,UK - Anh,16,Undergraduate,69,USA - Mỹ,62,USA TSTST,6,USAJMO,12,USATST,8,USEMO,4,Uzbekistan,1,Vasile Cîrtoaje,4,Vật Lý,1,Viện Toán Học,6,Vietnam,4,Viktor Prasolov,1,VIMF,1,Vinh,32,Vĩnh Long,41,Vĩnh Phúc,86,Virginia Tech,1,VLTT,1,VMEO,4,VMF,12,VMO,58,VNTST,25,Võ Anh Khoa,1,Võ Quốc Bá Cẩn,26,Võ Thành Văn,1,Vojtěch Jarník,6,Vũ Hữu Bình,7,Vương Trung Dũng,1,WFNMC Journal,1,Wiles,1,Xác Suất,1,Yên Bái,25,Yên Thành,1,Zhautykov,14,Zhou Yuan Zhe,1,
ltr
item
MOlympiad.NET: Mathematics and Youth Magazine Problems 2010
Mathematics and Youth Magazine Problems 2010
MOlympiad.NET
https://www.molympiad.net/2022/04/mym-2010.html
https://www.molympiad.net/
https://www.molympiad.net/
https://www.molympiad.net/2022/04/mym-2010.html
true
2506595080985176441
UTF-8
Loaded All Posts Not found any posts VIEW ALL Readmore Reply Cancel reply Delete By Home PAGES POSTS View All RECOMMENDED FOR YOU Tag ARCHIVE SEARCH ALL POSTS Not found any post match with your request Back Home Sunday Monday Tuesday Wednesday Thursday Friday Saturday Sun Mon Tue Wed Thu Fri Sat January February March April May June July August September October November December Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec just now 1 minute ago $$1$$ minutes ago 1 hour ago $$1$$ hours ago Yesterday $$1$$ days ago $$1$$ weeks ago more than 5 weeks ago Followers Follow THIS PREMIUM CONTENT IS LOCKED
NỘI DUNG CAO CẤP NÀY ĐÃ BỊ KHÓA
STEP 1: SHARE THIS ARTICLE TO A SOCIAL NETWORK
BƯỚC 1: CHIA SẺ BÀI VIẾT NÀY LÊN MẠNG XÃ HỘI
STEP 2: CLICK THE LINK ON YOUR SOCIAL NETWORK
BƯỚC 2: BẤM VÀO ĐƯỜNG DẪN TRÊN MẠNG XÃ HỘI CỦA BẠN
Copy All Code Select All Code All codes were copied to your clipboard Can not copy the codes / texts, please press [CTRL]+[C] (or CMD+C with Mac) to copy Table of Content