Mathematics and Youth Magazine Problems 2004


Issue 319

  1. Find solutions in positive integers of the equation $$3^{x}+1=(y+1)^{2}.$$
  2. Let be given a triangle $A B C$ with $B C=2 A B$. Let $M$ be the midpoint of $B C$ and $D$ be the midpoint of $B M$. Prove that $A C=2 A D$.
  3. Find the prime divisor $p<300$ of the number $2^{37}-1=137438953471$.
  4. Solve the equation $$\left(16 x^{4 n}+1\right)\left(y^{4 n}+1\right)\left(z^{4 n}+1\right)=32 x^{2 n} y^{2 n} z^{2 n}$$ where $n$ is a given positive integer.
  5. Let $a, b, c$ be real numbers satisfying the conditions $$a b c>0,\quad |a b+b c+c a|=2 \sqrt{2004 a b c}.$$ Prove that $$(a+b-2004)(b+c-2004)(c+a-2004) \leq 0 .$$
  6. $A B C$ is an arbitrary not acute triangle. Put $A B=c$, $B C=a$, $C A=b$. Find the least value of the expression $\dfrac{(a+b)(b+c)(c+a)}{a b c}$.
  7. The circle $(O, R)$ with center $O$, radius $R$ cuts the circle $\left(O^{\prime}, R\right)$ with center $O^{\prime}$, radius $R^{\prime}$ at $A$ and $B$. From a point $C$ on the opposite ray of the ray $A B$, draw the tangents $C D$ and $C E$ to the circle $(O, R)$ ($D$ and $E$ are tangent points, $E$ lies inside $\left(O^{\prime}, R^{\prime}\right)$. $A D$ and $A E$ cut again the circle $\left(O^{\prime}, R\right)$ respectively at $M$ and $N$. Prove that the line $D E$ passes through the midpoint of $M N$.
  8. Consider the colourings of a rectangular board of size $m \times n(m+n \geq 3)$ such that $k$ little squares of the board are coloured and each not coloured little squares has at least a common point with a coloured little square. Find the least value of $k$.
  9. Prove that $$x^{2} y+y^{2} z+z^{2} x \leq x^{3}+y^{3}+z^{3} \leq 1+\frac{1}{2}\left(x^{4}+y^{4}+z^{4}\right)$$ for non negative real numbers $x, y, z$ satisfying the condition $x+y+z=2$.
  10. Find all functions $f: \mathbb N^{*} \rightarrow \mathbb N^{*}$ satisfying the condition $$2\left(f\left(m^{2}+n^{2}\right)\right)^{3}=f^{2}(m) \cdot f(n)+f^{2}(n) \cdot f(m)$$ for all distinct $m, n \in \mathbb N^{*}$.
  11. Let $A D$, $B E$, $C F$ be the altitudes of an acute triangle $A B C$. Let $M$, $N$, $P$ be respectively the points of intersection of the segments $A D$ and $E F$, $B E$ and $F D$, $C F$ and $D E$. Let $S$ denote the area of triangle. Prove that $$\frac{1}{S_{A B C}} \leq \frac{S_{M N P}}{S_{D E F}^{2}} \leq \frac{1}{8 \cos A \cdot \cos B \cdot \cos C \cdot S_{A B C}}$$
  12. Consider arbitrary regular quadrilateral pyramids $S A B C D$, the measure $\alpha$ of the flat angle $\widehat{A S B}$ of which satisfies $0<\alpha \leq$ $60^{\circ}$. Let $\varphi$ be the measure of the bihedral angle of side $S A$. Determine $\alpha$ so that the expression $P=\cos 3 \varphi-9 \cos \varphi$ attains its greatest value.

Issue 320

  1. Write the sum of $18$ fractions $$1, \frac{1}{2}, \frac{1}{3}, \ldots, \frac{1}{17}, \frac{1}{18}$$ in the form of an irreducible fraction $\dfrac{a}{b}$. Prove that $b$ is divisible by $2431$.
  2. Given a triangle $A B C$ with $A B > A C$, the foot of its altitude $A H$ lies inside $B C$. The angled-bisectors of $\widehat{A B C}$ and of $\widehat{A C B}$ cut $A H$ respectively at $E$ and $F$. Prove that $B E>E F+F C$.
  3. Find positive integers $a \geq b \geq c$ and $x \geq y \geq z$ so that $$\begin{cases} a+b+c &=x y z \\ x+y+z &=a b c \end{cases}$$
  4. Solve the equation $$(x-2) \sqrt{x-1}-\sqrt{2} x+2=0.$$
  5. Find the greatest value of the expression $$\sqrt{4 x-x^{3}}+\sqrt{x+x^{3}}$$ where $0 \leq x \leq 2$.
  6. The circle $(O)$ with center $O$ cuts the circle $\left(O^{\prime}\right)$ with center $O^{\prime}$ at $P$ and $Q$. Their common tangent (nearer to $P$) touches $(O)$ at $A$, $\left(O^{\prime}\right)$ at $B$. Let $C$ be the point of intersection of the tangents to $(O)$ at $P$ with the circle $\left(O^{\prime}\right)$. Let $D$ be the point of intersection of the tangents to $\left(O^{\prime}\right)$ at $P$ with the circle $(O)$. Let $M$ be the point such that $A B$ and $P M$ have common midpoint. The line $A P$ cuts $B C$ at $E$ and the line $B P$ cuts $A D$ at $F$. Prove that $A M B E Q F$ is a hexagone inscribed in a circle.
  7. Construct a triangle $A B C$ with given $P$, $Q$, $R$ so that $B$ is the midpoint of $A P$, $C$ is the midpoint of $B Q$, $A$ is the midpoint of $C R$.
  8. Prove the following equalities for positive integer $n$.
    a) $\displaystyle \sum_{k=1}^{n} \frac{(-1)^{k-1}}{2 k-1} C_{n}^{k} \cdot C_{n+k-1}^{k-1}=1$.
    b) $\displaystyle \sum_{k=1}^{n} \frac{(-1)^{k-1} \cdot k^{n}}{2 k-1} C_{n}^{k}=\frac{(n !)^{2} \cdot 2^{n}}{(2 n) !}$
  9. Solve the following system of equations of $n$ unknowns $$\begin{cases}\sqrt{x_{1}}+\sqrt{x_{2}}+\ldots+\sqrt{x_{n}} &=n \\ \sqrt{x_{1}+8}+\sqrt{x_{2}+8}+\ldots+\sqrt{x_{11}+8} &=3 n\end{cases}$$ ($n$ is a given positive integer). Generalize the problem.
  10. Find the greatest value of the function $$f(x)=\sqrt{2} \sin x+\sqrt{15-10 \sqrt{2} \cos x}$$
  11. Let $r$ and $R$ be respectively the inradius and the circumradius of triangle $A B C$. Let $p$ and $p^{\prime}$ be respectively the perimeter of $\triangle A B C$ and $\triangle A^{\prime} B^{\prime} C^{\prime}$ where $A^{\prime}$, $B^{\prime}$, $C^{\prime}$ are the touching points of $B C$, $C A$, $A B$ with the incircle. Prove that $$\frac{r}{R} \leq \frac{p^{\prime}}{p} \leq \frac{1}{2}$$
  12. Let be given a cube $A B C D A_{1} B_{1} C_{1} D_{1}$ with side $A B=a$. From a point $E$ on the side $C D$ ($E$ distinct from $C$, $D$) draw a line cutting the lines $A A_{1}$ and $B_{1} C_{1}$ respectively at $M$ and $N$. From $M$ draw a line cutting the lines $B C$ and $C_{1} D_{1}$ respectively at $F$ and $P$. Determine the position of $E$ so that the perimeter of triangle $M N P$ attains its least value and calculate this least value.

Issue 321

  1. Write the number $2003^{2004}$ as a sum of positive integers. What is the remainder of the division by $3$ of the sum of the cubes of these integers?
  2. Simplify the expression $$\frac{(a-2)(a-1002)}{a(a-b)(a-c)}+\frac{(b-2)(b-1002)}{b(b-a)(b-c)}+\frac{(c-2)(c-1002)}{c(c-a)(c-b)}$$ where $a, b, c$ are distinct numbers such that $a b c \neq 0$.
  3. Let $a, b, c, d$ be positive numbers. Prove that
    a) $\displaystyle \frac{a}{b}+\frac{b}{c}+\frac{c}{a} \geq \frac{a+b+c}{\sqrt[3]{a b c}}$.
    b) $\displaystyle \frac{a^{2}}{b^{2}}+\frac{b^{2}}{c^{2}}+\frac{c^{2}}{d^{2}}+\frac{d^{2}}{a^{2}} \geq \frac{a+b+c+d}{\sqrt[4]{a b c d}}$.
  4. Find a necessary and sufficient condition on the number $m$ so that the following system of equations has a unique solution $$\begin{cases} x^{2} &=(2+m) y^{3}-3 y^{2}+m y \\ y^{2} &=(2+m) z^{3}-3 z^{2}+m z \\ z^{2} &=(2+m) x^{3}-3 x^{2}+m x\end{cases}$$
  5. Let $A B C D$ be a trapezoid inscribed in a circle with radius $R=3cm$ such that $B C=2 cm$, $A D=4cm$. Let $M$ be the point on side $A B$ such that $M B=3 M A$. Let $N$ be the midpoint of $C D$. The line $M N$ cuts $A C$ at $P$. Calculate the area of the quadrilateral $A P N D$.
  6. Let be given three positive integers $m$, $n, p$ such that $n+1$ is divisible by $m$. Find a formula to calculate the number of $p$-uples of positive integers $\left(x_{1}, x_{2}, \ldots, x_{p}\right)$ satisfying the conditions: the sum $x_{1}+x_{2}+\ldots+x_{p}$ is divisible by $m$ and $x_{1}, x_{2}, \ldots, x_{p}$ are not greater than $n$.
  7. $a$, $b$ are arbitrary positive numbers such that the equation $x^{3}-a x^{2}+b x-a=0$ has three roots greater than $1$. Determine $a$, $b$ so that the expression $\dfrac{b^{n}-3^{n}}{a^{n}}$ attains its least value and find this value.
  8. The incircle of triangle $A B C$ touches the sides $B C$, $C A$, $A B$ respectively at $D$, $E$, $F$. Prove that $$\frac{D E}{\sqrt{B C . C A}}+\frac{E F}{\sqrt{C A \cdot A B}}+\frac{F D}{\sqrt{A B \cdot B C}} \leq \frac{3}{2}.$$

Issue 322

  1. Find all integers $x$ satisfying $$|x-3|+|x-10|+|x+101|+|x+990|+|x+1000|=2004.$$
  2. Let $A B C$ be a triangle with its median $A M$. Let $O_{1}$, $O_{2}$. be the incenters of triangles $A B M$, $A C M$ respectively. Prove that $M O_{1}=M O_{2}$ when and only when $A B=A C$.
  3. Consider the six pairs of marbles selected from a set of four given marbles, and consider the sum of masses of two marbles of each pair. Let $a, b, c, d, e, f$ be these sums. Determine the mass of each marble, known that $$a+b+c+d+e+f=a^{3}+b^{3}+c^{3}+d^{3}+e^{3}+f^{3}=6.$$
  4. Find the least value of the expressions $$\frac{a^{6}}{b^{3}+c^{3}}+\frac{b^{6}}{c^{3}+a^{3}}+\frac{c^{6}}{a^{3}+b^{3}}$$ where $a, b, c, d$ are positive real numbers satisfying the condition $a+b+c=1$.
  5. The circumcircle of triangle $A B C$ has center $O$ and diameter $A D$. Let $I$ be the incenter of triangle $A B C$. The lines $A I$, $D I$ cut again the circumcircle at $H, K$ respectively. Draw the line IJ perpendicular to $B C$ at $J$. Prove that $H$, $K$, $J$ are collinear.
  6. Prove the inequality $$\frac{1}{2}\left(\sum_{i=1}^{n} x_{i}+\sum_{i=1}^{n} \frac{1}{x_{i}}\right) \geq n-1+\frac{n}{\sum_{i=1}^{n} x_{i}}$$ where $x_{i}(i=1,2, \ldots, n)$ are positive real numbers satisfying $\sum_{i=1}^{n} x_{i}^{2}=n$ and $n$ is an integer greater than $1$.
  7. The sequence of numbers $\left(u_{n}\right)(n=$ $1,2,3, \ldots)$ is defined by $$u_{n}=\sum_{k=1}^{n} \frac{1}{(k !)^{2}},\,\forall n=1,2,3, \ldots.$$ Prove that this sequence has a limit and this limit is an irrational.
  8. Let $S A B C$ be a tetrahedron. The points $M$, $N$, $P$ lie respectively on the sides $S A$, $S B$, $S C$ so that $A M=B N=C P$ ($M$, $N$, $P$ are distinct from the vertices $S$, $A$, $B$, $C)$. Let $G$ be the centroid of triangle $M N P$. Prove that $G$ lies on a fixed line when $M$, $N$, $P$ move on $S A$, $S B$, $SC$ respectively.

Issue 323

  1. Compare $\dfrac{1}{16}$ with the following sum $A$ of 11 numbers $$A=\frac{1}{5^{2}}+\frac{2}{5^{3}}+\ldots+\frac{n}{5^{n+1}}+\ldots+\frac{11}{5^{12}}$$
  2. Prove that $$\frac{a}{2 a+b+c}+\frac{b}{2 b+c+a}+\frac{c}{2 c+a+b} \leq \frac{3}{4}$$ where $a, b, c$ are positive integers.
  3. Consider the following sum $A$ of $50$ numbers $$A=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\ldots+\frac{1}{\sqrt{2 n-1}+\sqrt{2 n}}+\ldots+\frac{1}{\sqrt{99}+\sqrt{100}}.$$ Find the greatest integer not exceeding $A$.
  4. Prove that $$\frac{a}{\sqrt[3]{b^{3}+c^{3}}}+\frac{b}{\sqrt[3]{c^{3}+a^{3}}}+\frac{c}{\sqrt[3]{a^{3}+b^{3}}}<2 \sqrt[3]{4}$$ where $a, b, c$ are the lengths of the sides of a triangle.
  5. Let $A B C D$ be a given convex quadrilateral. On the lines $B C$, $A D$, take respectively the points $E$, $F$ so that $A E || C D$, $C F || A B$. Prove that the quadrilateral $A B C D$ circumscribes about a circle when and only when the quadrilateral $A E C F$ circumscribes about a circle.
  6. Prove that $$a^{\log _{b} c}+b^{\log _{c} a}+c^{\log _{a} b} \geq 3 \sqrt[3]{a b c}$$ where $a, b, c$ are numbers greater than $1$.
  7. Prove that for every acute triangle $A B C$, we have $$\frac{1}{3}(\cos 3 A+\cos 3 B)+\cos A+\cos B+\cos C \geq \frac{5}{6}$$
  8. In space, let be given a fixed line $d$ and a fixed point $A$ not lying on $d$. A right angle $x M y$ moves so that its side $M x$ passes through $A$ and its side $M y$ cuts orthogonally $d$. Find the locus of $M$.

Issue 324

  1. How many digits does contain the decimal representation of the number $2^{100}$ ? What is the first digit on the left in this representation?
  2. Let $A B C$ be a triangle with $\widehat{A B C}=70^{\circ}$, $\widehat{A C B}=50^{\circ}$. On the side $A C$, take $M$ so that $\widehat{A B M}=20^{\circ}$, on the side $A B$, take $N$ so that $\widehat{A C N}=10^{\circ}$. Let $P$ be the point of intersection of $B M$ and $C N$. Prove that $M N=2 P M$.
  3. Solve the system of equations $$\begin{cases}x^{3}+y &=2 \\ y^{3}+x &=2\end{cases}$$
  4. Prove the inequality $$\sqrt{a^{4}+b^{4}+c^{4}}+\sqrt{a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}} \geq \sqrt{a^{3} b+b^{3} c+c^{3} a}+\sqrt{a b^{3}+b c^{3}+c a^{3}}$$ where $a, b, c$ are non negative real numbers.)
  5. Let $A B C$ be a triangle right at $A$. For every point $K$ on the side $A C$, construct the circle $(K)$ with center $K$, touching the line $B C$ at $E$. Draw the line $B D$ touching the circle $(K)$ at $D$ (distinct from $E)$. Let $M$, $N$, $P$ and $Q$ be the midpoints of $A B$, $A D$, $B D$ and $M P$ respectively. Let $S$ be the point of intersection of $Q N$ and $B D$. Find the line on which moves the point $S$ when $K$ moves on the side $A C$?.
  6. Let $f(x)$ be a polynomial of degree 2003 with $$f(k)=\frac{k^{2}}{k+1},\,\forall k=1,2,3, \ldots 2004.$$ Calculate $f(2005)$.
  7. Prove that $$4 x^{2}+4 y^{2} \leq x y+y z+z x+5 z^{2}$$ where $x, y, z$ are positive real numbers satisfying the conditions $x \leq y \leq z$. When does equality occur?
  8. Let $r_{a}$, $r_{b}$, $r_{c}$ be the radii of the escribed circles in angles $A, B, C$ of the triangle $A B C$ respectively. Prove that  $$r_{a} \sin (A / 2)+r_{b} \sin (B / 2)+r_{c} \sin (C / 2) \leq \frac{r_{a}^{3}+r_{b}^{3}+r_{c}^{3}}{6}\left(\frac{1}{r_{a}^{2}}+\frac{1}{r_{b}^{2}}+\frac{1}{r_{c}^{2}}\right) $$

Issue 325

  1. Prove that the sum $$A=\frac{2004}{2003^{2}+1}+\frac{2004}{2003^{2}+2}+\ldots+\frac{2004}{2003^{2}+n}+\ldots+\frac{2004}{2003^{2}+2003}$$ ($2003$ terms) is not an integer.
  2. Let $A B C D$ be a rectangle with $A B=2 A D$ and let $M$ be the midpoint of the segment $A B$. Let $H$ be the point on side $A B$ such that $\widehat{A D H}=15^{\circ}$. The lines $C H$ and $D M$ intersect at $K$. Compare the lengths of the segments $D H$ and $D K$.
  3. Solve the system of equations $$\begin{cases}x^{3}(2+3 y) &=1 \\ x\left(y^{3}-2\right) &=3\end{cases}$$
  4. Find the least value of the expression $$A=\frac{1}{x^{3}+y^{3}}+\frac{1}{x y}$$ where $x, y$ are positive real numbers satisfying $x+y=1$.
  5. Let be given a convex quadrilateral $A B C D$. $O$ is the midpoint of side $B C$, $E$ is symmetric to $D$ with respect to $O$. A point $M$ moves on the side $A D$. The line $E M$ cuts $O A$ at $I$. The line passing through $I$, parallel to $B C$, cuts $A B$ and $A C$ respectively at $K$ and $H$. Prove that the expression $$\frac{A B}{A K}+\frac{A C}{A H}-\frac{A D}{A M}$$ takes constant value.
  6. Let be given $a>1$. Find all triples $(x, y, z)$ such that $|y| \geq 1$ and $$\log _{a}^{2}(x y)+\log _{a}\left(x^{3} y^{3}+x y z\right)^{2}+\frac{8+\sqrt{4 z-y^{2}}}{2}=0$$
  7. Find the greatest value of the expression $a c+b d+c d$ where $a, b, c, d$ are real numbers satisfying the conditions $a^{2}+b^{2}=4$ and $c+d=4$.
  8. The circles $C_{1}$, $C_{2}$, $C_{3}$ internally touch the circle $C$ respectively at $A_{1}$, $A_{2}$, $A_{3}$ and they externally touch each other. Let $B_{1}$, $B_{2}$, $B_{3}$ be respectively the touching point of $C_{2}$ and $C_{3}$, of $K_{3}$ and $C_{1}$, of $C_{1}$ and $C_{2}$. Prove that the lines $A_{1} B_{1}$, $A_{2} B_{2}$, $A_{3} B_{3}$ are concurrent.

Issue 326

  1. Factorize $2003^{2004}$ in the product of two natural numbers $a$ and $b$. Is the sum $a+b$ divisible by $2004$?
  2. The positive integers $a, b, c, d$ satisfy the conditions $a^{2}+c^{2}=1$ and $\dfrac{a^{4}}{b}+\dfrac{c^{4}}{d}=\dfrac{1}{b+d}$. Prove that $$\frac{a^{2004}}{b^{1002}}+\frac{c^{2004}}{d^{1002}}=\frac{2}{(b+d)^{1002}}.$$
  3. Find the least prime number $p$ such that $p$ can be written in ten sums of the forms $$p=x_{1}^{2}+y_{1}^{2}=x_{2}^{2}+2 y_{2}^{2}=x_{3}^{2}+3 y_{3}^{2}=\ldots=x_{10}^{2}+10 y_{10}^{2},$$ where $x_{i}, y_{i}$ $(i=1,2, \ldots, 10)$ are positive integers.
  4. Solve the equation $$\sqrt[3]{3 x+1}+\sqrt[3]{5-x}+\sqrt[3]{2 x-9}-\sqrt[3]{4 x-3}=0$$
  5. Prove that $$\frac{1}{a(b+1)}+\frac{1}{b(c+1)}+\frac{1}{c(a+1)} \geq \frac{3}{a b c+1}$$ for arbitrary positive numbers $a, b, c$.
  6. Prove that for every polygon, there exist at least two sides such that the measures $a$, $b$ of which satisfy the conditions $a \leq b \leq 2 a$.
  7. From a point $P$ at the outside of a circle with center $O$, draw two tangents $P A$, $P B$ to the circle. Let $M$ and $N$ be respectively the midpoints of $A P$ and $O P$. The line $B M$ cuts again the circle at $K$. Prove that $K N \perp A K$.
  8. Find integer-solutions of the equation of two unknowns $$x^{y^{x}}=y^{x^{y}}.$$
  9. Prove that $$x y+\max \{x, y\} \leq \frac{3 \sqrt{3}}{4}$$ for arbitrary real nonnegative numbers $x, y$ satisfying the condition $x^{2}+y^{2}=1$.
  10. Find all functions $f: \mathbb R^{+} \rightarrow \mathbb R^{+}$ satisfying the condition $$x f(x f(y))=f(f(y)),\,\forall x, y \in \mathbb R^{+}.$$
  11. Let $R$ and $r$ bc respectively the circumradius and the inradius of a triangle $A B C$. and let $I$ be its incenter. Prove that $$\frac{1}{I A . I B}+\frac{1}{I B \cdot I C}+\frac{1}{I C . I A} \leq \frac{5 R+2 r}{8 R r^{2}}$$
  12. Let $A B C D$ be a regular tetrahedron with side $a$. Let $H$ and $K$ be the midpoints of $A B$ and $C D$ respectively. An arbitrary plane containing the line $H K$ cuts the sides $B C$ and $A D$ at $E$ and $F$ respectively. Prove that $E F \perp$ $H K$. Find the least value of the area of the quadrilateral $H E K F$.

Issue 327

  1. Can my friend write $7$ distinct $7$-digit numbers so that a) for writing each number, he uses $7$ distinct digits $1,2,3,4,5,6,7$. b) the sum of the $7^{\text {th }}$ powers of some (distinct) numbers among them is equal to the sum of the $7^{\text {h }}$ powers of the others?
  2. Prove that $$\frac{1}{65}<\frac{1}{5^{3}}+\frac{1}{6^{3}}+\ldots+\frac{1}{n^{3}}+\ldots+\frac{1}{2004^{3}}<\frac{1}{40}$$ (the sum consists of $2000$ terms).
  3. Find all integers $x$ such that $x^{3}-2 x^{2}+7 x-7$ is divisible by $x^{2}+3$.
  4. Solve the equation $$4 x^{2}-4 x-10=\sqrt{8 x^{2}-6 x-10}.$$
  5. Prove that $$\left(1+\frac{1}{a^{3}}\right)\left(1+\frac{1}{b^{3}}\right)\left(1+\frac{1}{c^{3}}\right) \geq \frac{729}{512}$$ where $a, b, c$ are positive real numbers satisfying $a+b+c=6$.
  6. The circle $\left(O_{1}\right)$ with center $O_{1}$, radius $R_{1}$ cuts the circle $\left(O_{2}\right)$ with center $O_{2}$, radius $R_{2}$ at the points $A$ and $B$. The tangent to $\left(O_{1}\right)$ at $A$ cuts $\left(O_{2}\right)$ at $C$. The tangent to $\left(O_{2}\right)$ at $A$ cuts $\left(O_{1}\right)$ at $D .$ Let $M$ be the point of intersection of $A B$ and $C D$, let $N$ be the midpoint of $C D$. Prove that $\widehat{C A M}=\widehat{D A N}$ and $\dfrac{M C}{M D}=\dfrac{R_{2}^{2}}{R_{1}^{2}}$.
  7. The quadrilateral $A B C D$ is inscribed in a circle with radius $R$ and circumscribes about a circle with radius $r$. Prove that $R \geq r \sqrt{2}$.
  8. The sequences $\left(x_{n}\right)$ and $\left(y_{n}\right)$ $(n=1,$, $2,3, \ldots)$ are defined by $x_{1}=-1$, $y_{1}=1$ and $$x_{n+1}=-3 x_{n}^{2}-2 x_{n} y_{n}+8 y_{n}^{2},\, y_{n+1}=2 x_{n}^{2}+3 x_{n} y_{n}-2 y_{n}^{2},\,\forall n=1,2,3 \ldots$$ Find all prime numbers $p$ such that $x_{p}+y_{p}$ is not divisible by $p$.
  9. The positive real numbers $a, b, c, d$ satisfy the conditions $a \leq b \leq c \leq d$ and $b c \leq a d$. Prove that $$a^{b} b^{c} c^{d} d^{a} \geq a^{d} b^{a} c^{b} d^{c}.$$
  10. For each positive integer $n$, consider the function $$f_{n}(x)=e^{-x}\sum_{m=0}^{n} \frac{x^{m}}{m !},$$ defined on the set of positive real numbers. a) Prove that for every positive real numbers $k$ with $0<k<1$ and for every positive integer $n$, the equation $f_{n}(x)=k$ has a unique root. b) Let $\alpha_{n}$ be the above mentioned root. Find $\displaystyle\lim_{n \rightarrow+\infty} \frac{1}{\alpha_{n}}$.
  11. Let be given a triangle $A B C$ with $B C=a$, $C A=b$, $A B=c$ and with circumradius $R$. Let $l_{a}$, $l_{b}$, $l_{c}$ be respectively the measure of the angled bisector of the angle $A$, $B$, $C$ and let $r_{a}$, $r_{b}$, $r_{c}$ be respectively the radius of the escribed circle in the angle $A$, $B$, $C$. Prove that $$\frac{l_{a}^{2} \cdot l_{b}^{2} \cdot l_{c}^{2}}{a^{2} b^{2} c^{2}} \leq\left(\frac{r_{a}+r_{b}+r_{c}}{6 R}\right)^{3}$$
  12. Let $A_{1} A_{2} A_{3} A_{4}$ be a tetrahedron, circumscribing about a sphere with center $O$. Let $B_{i}$ be the touching point of the sphere with the face opposite to the vertex $A_{i}$ $(i=1,2,3,4)$. Prove that among the angles formed by a pair of distinct rays $O B_{1}$, $O B_{2}$, $O B_{3}$, $O B_{4}$ there exists an angle $\alpha$ with $$\sin \alpha \leq \frac{2 \sqrt{2}}{3}.$$

Issue 328

  1. Compare the numbers $2^{3^{2^{3}}}$ and $3^{2^{3^{2}}}$.
  2. Calculate the following sum of 2004 numbers $$f\left(\frac{1}{2005}\right)+f\left(\frac{2}{2005}\right)+\ldots+f\left(\frac{2004}{2005}\right)$$ where $f(x)=\dfrac{100^{x}}{100^{x}+10}$.
  3. Find positive integer solutions of the equation $$(n+1)(2 n+1)=10 m^{2}$$
  4. Find all positive integers $n$ such that the polynomial with $n+1$ terms $$P(x)=x^{4 n}+x^{4(n-1)}+\ldots+x^{8}+x^{4}+1$$ is divisible by the polynomial with $n+1$ terms $$Q(x)=x^{2 n}+x^{2(n-1)}+\ldots+x^{4}+x^{2}+1.$$
  5. Find the greatest value of the expression $$T=\frac{a^{2}+1}{b^{2}+1}+\frac{b^{2}+1}{c^{2}+1}+\frac{c^{2}+1}{a^{2}+1}$$ where $a, b, c$ are non negative real numbers satisfying $a+b+c=1$.
  6. Let $A B C$ be a triangle with acute angle $A$ and $A C=2 A B$. The angle bisector $A D$ cuts the altitude $B H$ at $K$ ($D$ lies on $B C$, $H$ on $A C)$. The line $C K$ cuts $A B$ at $E$. Prove that $\triangle A B C$ is right at $B$ when and only when the areas of the triangles $B D E$ and $H D E$ are equal.
  7. On the side $A B$ of an equilateral triangle $A B C$ take a point $N$, on the side $A C$ take a point $M$ so that $A N>N B$ and $A M>M C$. The line $B M$ cuts $C N$ at $H$. Let $P$ and $Q$ be respectively the orthocenters of $\triangle A B M$ and $\triangle A C N$. Prove that $B N=C M$ when and only when $H P=H Q$.
  8. Find the least prime number $p$ such that $\left[(3+\sqrt{p})^{2 n}\right]+1$ is divisible by $2^{n+1}$ for every natural number $n$, where $[x]$ denotes the greatest integer not exceeding $x$.
  9. Prove that $$\left(\frac{a}{b+c}\right)^{k}+\left(\frac{b}{c+a}\right)^{k}+\left(\frac{c}{a+b}\right)^{k} \geq \frac{3}{2^{k}}$$ where $a, b, c, k$ are positive real numbers and $k \geq \dfrac{2}{3}$.
  10. Find all positive real numbers $a$ such that there exist a positive real number $k$ and a function $f: \mathbb R \rightarrow \mathbb R$ satisfying the condition $$\frac{f(x)+f(y)}{2} \geq f\left(\frac{x+y}{2}\right)+k \cdot|x-y|^{a}$$ for all real numbers $x, y$.
  11. The altitudes $A D$, $B E$, $C F$ of an acute triangle $A B C$ intersect at $H$ so that $A H>H D$, $B H>H E$, $C H>H F$. Prove that $$\tan^{2} A+\tan^{2} B+\tan^{2} C>6$$
  12. Let be given $n$ dinstinct points $A_{1}$, $A_{2}, \ldots, A_{n}$. Prove that $$\sum_{i=1}^{n} \widehat{A_{i}A_{i+1}A_{i+2}} \geq \pi \quad \text{and} \quad \sum_{i=1}^{n} \widehat{A_{i} Q A_{i+1}} \leq(n-1) \pi$$ where $A_{n+1}$ is considered as $A_{1}, A_{n+2}$ is considered as $A_{2}$ and $Q$ is an arbitrary point distinct from $A_{1}, A_{2}, \ldots, A_{n}$.

Issue 329

  1. Let $p$ and $q$ be two primes satisfying $p>q>3$ and $p-q=2$. Prove that $p+q$ is divisible by $12$.
  2. Find the greatest value of the expression $$P=(a-b)^{4}+(b-c)^{4}+(c-a)^{4}$$ where $a, b, c$ are real numbers not less than $1$ and not greater than $2$.
  3. Prove that the following sum (of $1999$ terms) $$s=1^{100}-2^{100}+3^{100}-4^{100}+\ldots+n^{100}-(n+1)^{100}+\ldots-1998^{100}+1999^{100}$$ is divisible by $201899$.
  4. Solve the equation $$x=(2004+\sqrt{x})(1-\sqrt{1-\sqrt{x}})^{2}.$$
  5. Prove that $$\frac{a}{a+\sqrt{(a+b)(a+c)}}+\frac{b}{b+\sqrt{(b+c)(b+a)}}+\frac{c}{c+\sqrt{(c+a)(c+b)}} \leq 1$$ where $a, b, c$ are positive real numbers.
  6. Let $M N P Q$ be a quadrilateral inscribed in a circle and let $E$ be the point of intersection of $M P$ and $N Q$. Let $K$ be a point on the segment $M E$ ($K$ distinct from $M$, $E$). The tangent at $E$ to the circumcircle of triangle $N E K$ cuts the lines $Q M$ and $Q P$ respectively at $F$ and $G$. Prove that $$\dfrac{E G}{E F}=\dfrac{K P}{K M}$$
  7. Consider the triangles $A B C$ with given perimeter $a+b+c=k$ (const), $a=B C$, $b=C A$, $c=A B$. Find the greatest value of the expression $$T=\frac{a b}{a+b+2 c}+\frac{b c}{2 a+b+c}+\frac{a c}{a+2 b+c}$$
  8. Let $a$, $b$ be two real numbers distinct from $0$. Consider the sequence of numbers $\left(u_{n}\right)(n=0,1,2, \ldots)$ defined by $$u_{0}=0,\, u_{1}=1,\quad u_{n+2}=a u_{n+1}-b u_{n},\,\forall n=2,3, \ldots$$ Prove that if there exist four consecutive terms of the sequence that are integers then all terms of the sequence are intergers.
  9. Find all values of the parameter $p$ so that the roots $x_{1}, x_{2}, x_{3}$ of the equation $$x^{3}-3 x^{2}-p x-1=0$$ satisfy the conditions $$\frac{1}{2005}<\frac{1}{\left(x_{1}-1\right)^{3}}+\frac{1}{\left(x_{2}-1\right)^{3}}+\frac{1}{\left(x_{3}-1\right)^{3}}<\frac{1}{2004}$$
  10. Given positive numbers $a_{i}$, $b_{i}$ $(i=1,2, \ldots, n)$. Prove that $$\frac{a_{1}^{r}}{b_{1}^{s}}+\frac{a_{2}^{r}}{b_{2}^{s}}+\ldots+\frac{a_{n}^{r}}{b_{n}^{s}} \geq \frac{\left(a_{1}+a_{2}+\ldots+a_{n}\right)^{r}}{n^{r-s-1}\left(b_{1}+b_{2}+\ldots+b_{n i}\right)^{s}}$$ where $r, s$ are positive rational numbers and $r \geq s+1$.
  11. Suppose that the quadrilateral $A B C D$ is inscribed in a circle with center $O$ with radius $R$ and the opposite rays of the rays $B A$, $D A$, $C B$, $C D$ touch a circle with center $I$ and radius $r$. Prove that by putting $d=O I$, we have $$\frac{1}{(d+R)^{2}}+\frac{1}{(d-R)^{2}}=\frac{1}{r^{2}}$$
  12. For a tetrahedron $A B C D$ with $A B=C D$, $A C=B D$, $A D=B C$, let $\varphi_{1}$, $\varphi_{2}$, $\varphi_{3}$ be respectively the measures of the dihedral angles with sides $B C$, $C A$, $A B$. Prove that $$\cos \frac{\varphi_{1}}{2} \cdot \cos \frac{\varphi_{2}}{2} \cdot \cos \frac{\varphi_{3}}{2}=\frac{\sqrt{\cos A \cdot \cos B \cdot \cos C}}{\sin A \cdot \sin B \cdot \sin C}$$ where $A$, $B$, $C$ denote the angles of triangle $A B C$.

Issue 330

  1. Find the integers $x$, $y$, $z$ satisfying the equalities $$\frac{x}{y}+\frac{y}{z}+\frac{z}{x}=\frac{y}{x}+\frac{z}{y}+\frac{x}{z}=x+y+z=3$$
  2. Let $A B C$ be a triangle with $\widehat{A C B}=50^{\circ}, \widehat{B A C}=100^{\circ}$, let $M$ be the point on the side $A B$ such that $A M=A C$. Compare $C M$ with $A B$.
  3. Find all integer roots of the equation $$x^{y}+y^{z}+z^{x}=2(x+y+z).$$
  4. Solve the equation $$\sqrt{\sqrt{3}-x}=x \sqrt{\sqrt{3}+x}$$
  5. Prove the inequality $$\frac{a^{3}+b^{3}+c^{3}}{2 a b c}+\frac{a^{2}+b^{2}}{c^{2}+a b}+\frac{b^{2}+c^{2}}{a^{2}+b c}+\frac{c^{2}+a^{2}}{b^{2}+a c} \geq \frac{9}{2}$$ where $a, b, c$ are positive real numbers.
  6. Let be given a triangle $A B C$ with $A B=A C$. From every point $M$ on the side $B C$, draw $M P \perp A B$ and $M Q \perp A C$ ($P$, $Q$ lie respectively on the lines $A B$, $A C)$. Prove that the perpendicular bisector of $P Q$ passes through a fixed point when $M$ moves on the side $B C$.
  7. Let $A B C$ be a triangle with the altitude $A H$ ($H$ distinct from $B$, $C$). Draw $H E \| A C$, $H M \perp A B$ ($E$ and $M$ lie on the line $A B$), draw $H F \| A B$, $H N \perp A C$ ($F$ and $N$ lie on the line $A C$). Prove that the lines $E F$, $M N$ and $B C$ are concurrent.
  8. Find the greatest and the least values of the expression $P=x^{y^{z}}$ where $x, y, z$ are integers greater than $2$ and satisfy $x+y+z=20$.
  9. Let $M$ and $m$ be respectively the greatest value and the least value of the function $$f(x)=\cos (2002 x)+k \cos (x+\alpha)$$ where $k$, $\alpha$ are real parameters. Prove that $$M^{2}+m^{2} \geq 2.$$
  10. Let be given a postive integer $n$. Consider a continuous function $f(x):[0 ; n] \rightarrow \mathbb R$ satisfying $f(0)=f(n)$. Prove that there exist $n$ couples of numbers $a_{i}, b_{i}$ $(i=1,2, \ldots, n)$ belonging to $[0 ; n]$ such that $b_{i}-a_{i}$ are positive integers and $f\left(a_{i}\right)=f\left(b_{i}\right)$ for all $i=1,2, \ldots, n$
  11. In plane let be given a line $x y$, a segment $A B$ perpendicular to $x y$ at $A$, a point $C$ on the ray $A x$, a point $D$ on the ray $A y$ ($C$, $D$ distinct from $A$). Draw $A E \perp B C$ ($E$ lies on $B C$), $A F \perp B D$ ($F$ lies on $B D$). A line passing through the midpoint $Q$ of $A B$ cuts the lines $x y$, $B C$, $B D$ respectively at $P$, $M$, $N$. Prove that $P$, $E$, $F$ are collinear when and only when $Q$ is the midpoint of $M N$.
  12. Given a regular tetrahedron $A_{1} A_{2} A_{3} A_{4}$. Let $d_{i}(i=1,2,3,4)$ be the distance from a point $M$ in space to the face opposite to vertex $A_{i}$ of the tetrahedron $A_{1} A_{2} A_{3} A_{4}$. Prove that $$x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2} \leq 9\left(d_{1}^{2}+d_{2}^{2}+d_{3}^{2}+d_{4}^{2}\right)$$ where $x_{i}=M A_{i}$ $(i=1,2,3,4)$.
MOlympiad.NET là dự án thu thập và phát hành các đề thi tuyển sinh và học sinh giỏi toán. Quý bạn đọc muốn giúp chúng tôi chỉnh sửa đề thi này, xin hãy để lại bình luận facebook (có thể đính kèm hình ảnh) hoặc google (có thể sử dụng $\LaTeX$) bên dưới. BBT rất mong bạn đọc ủng hộ UPLOAD đề thi và đáp án mới hoặc liên hệ
Chúng tôi nhận tất cả các định dạng của tài liệu: $\TeX$, PDF, WORD, IMG,...



Name

Abel Albania AMM Amsterdam An Giang Andrew Wiles Anh APMO Austria (Áo) Ba Đình Ba Lan Bà Rịa Vũng Tàu Bắc Bộ Bắc Giang Bắc Kạn Bạc Liêu Bắc Ninh Bắc Trung Bộ Bài Toán Hay Balkan Baltic Way BAMO Bất Đẳng Thức Bến Tre Benelux Bình Định Bình Dương Bình Phước Bình Thuận Birch BMO Booklet Bosnia Herzegovina BoxMath Brazil British Bùi Đắc Hiên Bùi Thị Thiện Mỹ Bùi Văn Tuyên Bùi Xuân Diệu Bulgaria Buôn Ma Thuột BxMO Cà Mau Cần Thơ Canada Cao Bằng Cao Quang Minh Câu Chuyện Toán Học Caucasus CGMO China - Trung Quốc Chọn Đội Tuyển Chu Tuấn Anh Chuyên Đề Chuyên Sư Phạm Chuyên Trần Hưng Đạo Collection College Mathematic Concours Cono Sur Contest Correspondence Cosmin Poahata Crux Czech-Polish-Slovak Đà Nẵng Đa Thức Đại Số Đắk Lắk Đắk Nông Đan Phượng Danube Đào Thái Hiệp ĐBSCL Đề Thi Đề Thi HSG Đề Thi JMO Điện Biên Định Lý Định Lý Beaty Đỗ Hữu Đức Thịnh Do Thái Doãn Quang Tiến Đoàn Quỳnh Đoàn Văn Trung Đống Đa Đồng Nai Đồng Tháp Du Hiền Vinh Đức Duyên Hải Bắc Bộ E-Book EGMO ELMO EMC Epsilon Estonian Euler Evan Chen Fermat Finland Forum Of Geometry Furstenberg G. Polya Gặp Gỡ Toán Học Gauss GDTX Geometry Gia Lai Gia Viễn Giải Tích Hàm Giảng Võ Giới hạn Goldbach Hà Giang Hà Lan Hà Nam Hà Nội Hà Tĩnh Hà Trung Kiên Hải Dương Hải Phòng Hậu Giang Hậu Lộc Hilbert Hình Học HKUST Hòa Bình Hoài Nhơn Hoàng Bá Minh Hoàng Minh Quân Hodge Hojoo Lee HOMC HongKong HSG 10 HSG 10 Bắc Giang HSG 10 Thái Nguyên HSG 10 Vĩnh Phúc HSG 11 HSG 11 Bắc Giang HSG 11 Lạng Sơn HSG 11 Thái Nguyên HSG 11 Vĩnh Phúc HSG 12 HSG 12 2010-2011 HSG 12 2011-2012 HSG 12 2012-2013 HSG 12 2013-2014 HSG 12 2014-2015 HSG 12 2015-2016 HSG 12 2016-2017 HSG 12 2017-2018 HSG 12 2018-2019 HSG 12 2019-2020 HSG 12 2020-2021 HSG 12 2021-2022 HSG 12 Bắc Giang HSG 12 Bình Phước HSG 12 Đồng Tháp HSG 12 Lạng Sơn HSG 12 Long An HSG 12 Quảng Nam HSG 12 Quảng Ninh HSG 12 Thái Nguyên HSG 12 Vĩnh Phúc HSG 9 HSG 9 2010-2011 HSG 9 2011-2012 HSG 9 2012-2013 HSG 9 2013-2014 HSG 9 2014-2015 HSG 9 2015-2016 HSG 9 2016-2017 HSG 9 2017-2018 HSG 9 2018-2019 HSG 9 2019-2020 HSG 9 2020-2021 HSG 9 2021-202 HSG 9 2021-2022 HSG 9 Bắc Giang HSG 9 Bình Phước HSG 9 Đồng Tháp HSG 9 Lạng Sơn HSG 9 Long An HSG 9 Quảng Nam HSG 9 Quảng Ninh HSG 9 Vĩnh Phúc HSG Cấp Trường HSG Quốc Gia HSG Quốc Tế Hứa Lâm Phong Hứa Thuần Phỏng Hùng Vương Hưng Yên Hương Sơn Huỳnh Kim Linh Hy Lạp IMC IMO IMT India - Ấn Độ Inequality InMC International Iran Jakob JBMO Jewish Journal Junior K2pi Kazakhstan Khánh Hòa KHTN Kiên Giang Kim Liên Kon Tum Korea - Hàn Quốc Kvant Kỷ Yếu Lai Châu Lâm Đồng Lạng Sơn Langlands Lào Cai Lê Hải Châu Lê Hải Khôi Lê Hoành Phò Lê Khánh Sỹ Lê Minh Cường Lê Phúc Lữ Lê Phương Lê Quý Đôn Lê Viết Hải Lê Việt Hưng Leibniz Long An Lớp 10 Lớp 10 Chuyên Lớp 10 Không Chuyên Lớp 11 Lục Ngạn Lượng giác Lương Tài Lưu Giang Nam Lý Thánh Tông Macedonian Malaysia Margulis Mark Levi Mathematical Excalibur Mathematical Reflections Mathematics Magazine Mathematics Today Mathley MathLinks MathProblems Journal Mathscope MathsVN MathVN MEMO Metropolises Mexico MIC Michael Guillen Mochizuki Moldova Moscow MYM MYTS Nam Định Nam Phi National Nesbitt Newton Nghệ An Ngô Bảo Châu Ngô Việt Hải Ngọc Huyền Nguyễn Anh Tuyến Nguyễn Bá Đang Nguyễn Đình Thi Nguyễn Đức Tấn Nguyễn Đức Thắng Nguyễn Duy Khương Nguyễn Duy Tùng Nguyễn Hữu Điển Nguyễn Mình Hà Nguyễn Minh Tuấn Nguyễn Phan Tài Vương Nguyễn Phú Khánh Nguyễn Phúc Tăng Nguyễn Quản Bá Hồng Nguyễn Quang Sơn Nguyễn Tài Chung Nguyễn Tăng Vũ Nguyễn Tất Thu Nguyễn Thúc Vũ Hoàng Nguyễn Trung Tuấn Nguyễn Tuấn Anh Nguyễn Văn Huyện Nguyễn Văn Mậu Nguyễn Văn Nho Nguyễn Văn Quý Nguyễn Văn Thông Nguyễn Việt Anh Nguyễn Vũ Lương Nhật Bản Nhóm $\LaTeX$ Nhóm Toán Ninh Bình Ninh Thuận Nội Suy Lagrange Nội Suy Newton Nordic Olympiad Corner Olympiad Preliminary Olympic 10 Olympic 10/3 Olympic 11 Olympic 12 Olympic 24/3 Olympic 24/3 Quảng Nam Olympic 27/4 Olympic 30/4 Olympic KHTN Olympic Sinh Viên Olympic Tháng 4 Olympic Toán Olympic Toán Sơ Cấp PAMO Phạm Đình Đồng Phạm Đức Tài Phạm Huy Hoàng Pham Kim Hung Phạm Quốc Sang Phan Huy Khải Phan Thành Nam Pháp Philippines Phú Thọ Phú Yên Phùng Hồ Hải Phương Trình Hàm Phương Trình Pythagoras Pi Polish Problems PT-HPT PTNK Putnam Quảng Bình Quảng Nam Quảng Ngãi Quảng Ninh Quảng Trị Quỹ Tích Riemann RMM RMO Romania Romanian Mathematical Russia Sách Thường Thức Toán Sách Toán Sách Toán Cao Học Sách Toán THCS Saudi Arabia - Ả Rập Xê Út Scholze Serbia Sharygin Shortlists Simon Singh Singapore Số Học - Tổ Hợp Sóc Trăng Sơn La Spain Star Education Stars of Mathematics Swinnerton-Dyer Talent Search Tăng Hải Tuân Tạp Chí Tập San Tây Ban Nha Tây Ninh Thạch Hà Thái Bình Thái Nguyên Thái Vân Thanh Hóa THCS Thổ Nhĩ Kỳ Thomas J. Mildorf THPT Chuyên Lê Quý Đôn THPTQG THTT Thừa Thiên Huế Tiền Giang Tin Tức Toán Học Titu Andreescu Toán 12 Toán Cao Cấp Toán Chuyên Toán Rời Rạc Toán Tuổi Thơ Tôn Ngọc Minh Quân TOT TPHCM Trà Vinh Trắc Nghiệm Trắc Nghiệm Toán Trại Hè Trại Hè Hùng Vương Trại Hè Phương Nam Trần Đăng Phúc Trần Minh Hiền Trần Nam Dũng Trần Phương Trần Quang Hùng Trần Quốc Anh Trần Quốc Luật Trần Quốc Nghĩa Trần Tiến Tự Trịnh Đào Chiến Trường Đông Trường Hè Trường Thu Trường Xuân TST TST 2010-2011 TST 2011-2012 TST 2012-2013 TST 2013-2014 TST 2014-2015 TST 2015-2016 TST 2016-2017 TST 2017-2018 TST 2018-2019 TST 2019-2020 TST 2020-2021 TST 2021-2022 TST Bắc Giang TST Bình Phước TST Đồng Tháp TST Lạng Sơn TST Long An TST Quảng Nam TST Quảng Ninh TST Thái Nguyên TST Vĩnh Phúc Tuyên Quang Tuyển Sinh Tuyển Sinh 10 Tuyển Sinh 10 Bắc Giang Tuyển Sinh 10 Bình Phước Tuyển Sinh 10 Đồng Tháp Tuyển Sinh 10 Lạng Sơn Tuyển Sinh 10 Long An Tuyển Sinh 10 Quảng Nam Tuyển Sinh 10 Quảng Ninh Tuyển Sinh 10 Thái Nguyên Tuyển Sinh 10 Vĩnh Phúc Tuyển Sinh 2010-2011 Tuyển Sinh 2011-2012 Tuyển Sinh 2011-2022 Tuyển Sinh 2012-2013 Tuyển Sinh 2013-2014 Tuyển Sinh 2014-2015 Tuyển Sinh 2015-2016 Tuyển Sinh 2016-2017 Tuyển Sinh 2017-2018 Tuyển Sinh 2018-2019 Tuyển Sinh 2019-2020 Tuyển Sinh 2020-2021 Tuyển Sinh 2021-202 Tuyển Sinh 2021-2022 Tuyển Tập Tuymaada UK - Anh Undergraduate USA - Mỹ USA TSTST USAJMO USATST USEMO Uzbekistan Vasile Cîrtoaje Vật Lý Viện Toán Học Vietnam Viktor Prasolov VIMF Vinh Vĩnh Long Vĩnh Phúc Virginia Tech VLTT VMEO VMF VMO VNTST Võ Anh Khoa Võ Quốc Bá Cẩn Võ Thành Văn Vojtěch Jarník Vũ Hữu Bình Vương Trung Dũng WFNMC Journal Wiles Yên Bái Yên Định Yên Thành Zhautykov Zhou Yuan Zhe
false
ltr
item
MOlympiad.NET: Mathematics and Youth Magazine Problems 2004
Mathematics and Youth Magazine Problems 2004
MOlympiad.NET
https://www.molympiad.net/2022/04/blog-post_636.html
https://www.molympiad.net/
https://www.molympiad.net/
https://www.molympiad.net/2022/04/blog-post_636.html
true
2506595080985176441
UTF-8
Not found any posts Not found any related posts VIEW ALL Readmore Reply Cancel reply Delete By Home PAGES POSTS View All RECOMMENDED FOR YOU Tag ARCHIVE SEARCH ALL POSTS Not found any post match with your request Back Home Contents See also related Sunday Monday Tuesday Wednesday Thursday Friday Saturday Sun Mon Tue Wed Thu Fri Sat January February March April May June July August September October November December Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec just now 1 minute ago $$1$$ minutes ago 1 hour ago $$1$$ hours ago Yesterday $$1$$ days ago $$1$$ weeks ago more than 5 weeks ago Followers Follow Copy All Code Select All Code All codes were copied to your clipboard Can not copy the codes / texts, please press [CTRL]+[C] (or CMD+C with Mac) to copy THIS PREMIUM CONTENT IS LOCKED
PLEASE FOLLOW THE INSTRUCTIONS TO VIEW THIS CONTENT
NỘI DUNG CAO CẤP NÀY ĐÃ BỊ KHÓA
XIN HÃY LÀM THEO HƯỚNG DẪN ĐỂ XEM NỘI DUNG NÀY
STEP 1: SHARE THIS ARTICLE TO A SOCIAL NETWORK
BƯỚC 1: CHIA SẺ BÀI VIẾT NÀY LÊN MẠNG XÃ HỘI
STEP 2: CLICK THE LINK ON YOUR SOCIAL NETWORK
BƯỚC 2: BẤM VÀO ĐƯỜNG DẪN TRÊN MẠNG XÃ HỘI CỦA BẠN