$hide=mobile$type=ticker$c=12$cols=3$l=0$sr=random$b=0

Mathematics and Youth Magazine Problems 2004

This article has
views, Facebook comments and 0 Blogger comments. Leave a comment.

Issue 319

  1. Find solutions in positive integers of the equation $$3^{x}+1=(y+1)^{2}.$$
  2. Let be given a triangle $A B C$ with $B C=2 A B$. Let $M$ be the midpoint of $B C$ and $D$ be the midpoint of $B M$. Prove that $A C=2 A D$.
  3. Find the prime divisor $p<300$ of the number $2^{37}-1=137438953471$.
  4. Solve the equation $$\left(16 x^{4 n}+1\right)\left(y^{4 n}+1\right)\left(z^{4 n}+1\right)=32 x^{2 n} y^{2 n} z^{2 n}$$ where $n$ is a given positive integer.
  5. Let $a, b, c$ be real numbers satisfying the conditions $$a b c>0,\quad |a b+b c+c a|=2 \sqrt{2004 a b c}.$$ Prove that $$(a+b-2004)(b+c-2004)(c+a-2004) \leq 0 .$$
  6. $A B C$ is an arbitrary not acute triangle. Put $A B=c$, $B C=a$, $C A=b$. Find the least value of the expression $\dfrac{(a+b)(b+c)(c+a)}{a b c}$.
  7. The circle $(O, R)$ with center $O$, radius $R$ cuts the circle $\left(O^{\prime}, R\right)$ with center $O^{\prime}$, radius $R^{\prime}$ at $A$ and $B$. From a point $C$ on the opposite ray of the ray $A B$, draw the tangents $C D$ and $C E$ to the circle $(O, R)$ ($D$ and $E$ are tangent points, $E$ lies inside $\left(O^{\prime}, R^{\prime}\right)$. $A D$ and $A E$ cut again the circle $\left(O^{\prime}, R\right)$ respectively at $M$ and $N$. Prove that the line $D E$ passes through the midpoint of $M N$.
  8. Consider the colourings of a rectangular board of size $m \times n(m+n \geq 3)$ such that $k$ little squares of the board are coloured and each not coloured little squares has at least a common point with a coloured little square. Find the least value of $k$.
  9. Prove that $$x^{2} y+y^{2} z+z^{2} x \leq x^{3}+y^{3}+z^{3} \leq 1+\frac{1}{2}\left(x^{4}+y^{4}+z^{4}\right)$$ for non negative real numbers $x, y, z$ satisfying the condition $x+y+z=2$.
  10. Find all functions $f: \mathbb N^{*} \rightarrow \mathbb N^{*}$ satisfying the condition $$2\left(f\left(m^{2}+n^{2}\right)\right)^{3}=f^{2}(m) \cdot f(n)+f^{2}(n) \cdot f(m)$$ for all distinct $m, n \in \mathbb N^{*}$.
  11. Let $A D$, $B E$, $C F$ be the altitudes of an acute triangle $A B C$. Let $M$, $N$, $P$ be respectively the points of intersection of the segments $A D$ and $E F$, $B E$ and $F D$, $C F$ and $D E$. Let $S$ denote the area of triangle. Prove that $$\frac{1}{S_{A B C}} \leq \frac{S_{M N P}}{S_{D E F}^{2}} \leq \frac{1}{8 \cos A \cdot \cos B \cdot \cos C \cdot S_{A B C}}$$
  12. Consider arbitrary regular quadrilateral pyramids $S A B C D$, the measure $\alpha$ of the flat angle $\widehat{A S B}$ of which satisfies $0<\alpha \leq$ $60^{\circ}$. Let $\varphi$ be the measure of the bihedral angle of side $S A$. Determine $\alpha$ so that the expression $P=\cos 3 \varphi-9 \cos \varphi$ attains its greatest value.

Issue 320

  1. Write the sum of $18$ fractions $$1, \frac{1}{2}, \frac{1}{3}, \ldots, \frac{1}{17}, \frac{1}{18}$$ in the form of an irreducible fraction $\dfrac{a}{b}$. Prove that $b$ is divisible by $2431$.
  2. Given a triangle $A B C$ with $A B > A C$, the foot of its altitude $A H$ lies inside $B C$. The angled-bisectors of $\widehat{A B C}$ and of $\widehat{A C B}$ cut $A H$ respectively at $E$ and $F$. Prove that $B E>E F+F C$.
  3. Find positive integers $a \geq b \geq c$ and $x \geq y \geq z$ so that $$\begin{cases} a+b+c &=x y z \\ x+y+z &=a b c \end{cases}$$
  4. Solve the equation $$(x-2) \sqrt{x-1}-\sqrt{2} x+2=0.$$
  5. Find the greatest value of the expression $$\sqrt{4 x-x^{3}}+\sqrt{x+x^{3}}$$ where $0 \leq x \leq 2$.
  6. The circle $(O)$ with center $O$ cuts the circle $\left(O^{\prime}\right)$ with center $O^{\prime}$ at $P$ and $Q$. Their common tangent (nearer to $P$) touches $(O)$ at $A$, $\left(O^{\prime}\right)$ at $B$. Let $C$ be the point of intersection of the tangents to $(O)$ at $P$ with the circle $\left(O^{\prime}\right)$. Let $D$ be the point of intersection of the tangents to $\left(O^{\prime}\right)$ at $P$ with the circle $(O)$. Let $M$ be the point such that $A B$ and $P M$ have common midpoint. The line $A P$ cuts $B C$ at $E$ and the line $B P$ cuts $A D$ at $F$. Prove that $A M B E Q F$ is a hexagone inscribed in a circle.
  7. Construct a triangle $A B C$ with given $P$, $Q$, $R$ so that $B$ is the midpoint of $A P$, $C$ is the midpoint of $B Q$, $A$ is the midpoint of $C R$.
  8. Prove the following equalities for positive integer $n$.
    a) $\displaystyle \sum_{k=1}^{n} \frac{(-1)^{k-1}}{2 k-1} C_{n}^{k} \cdot C_{n+k-1}^{k-1}=1$.
    b) $\displaystyle \sum_{k=1}^{n} \frac{(-1)^{k-1} \cdot k^{n}}{2 k-1} C_{n}^{k}=\frac{(n !)^{2} \cdot 2^{n}}{(2 n) !}$
  9. Solve the following system of equations of $n$ unknowns $$\begin{cases}\sqrt{x_{1}}+\sqrt{x_{2}}+\ldots+\sqrt{x_{n}} &=n \\ \sqrt{x_{1}+8}+\sqrt{x_{2}+8}+\ldots+\sqrt{x_{11}+8} &=3 n\end{cases}$$ ($n$ is a given positive integer). Generalize the problem.
  10. Find the greatest value of the function $$f(x)=\sqrt{2} \sin x+\sqrt{15-10 \sqrt{2} \cos x}$$
  11. Let $r$ and $R$ be respectively the inradius and the circumradius of triangle $A B C$. Let $p$ and $p^{\prime}$ be respectively the perimeter of $\triangle A B C$ and $\triangle A^{\prime} B^{\prime} C^{\prime}$ where $A^{\prime}$, $B^{\prime}$, $C^{\prime}$ are the touching points of $B C$, $C A$, $A B$ with the incircle. Prove that $$\frac{r}{R} \leq \frac{p^{\prime}}{p} \leq \frac{1}{2}$$
  12. Let be given a cube $A B C D A_{1} B_{1} C_{1} D_{1}$ with side $A B=a$. From a point $E$ on the side $C D$ ($E$ distinct from $C$, $D$) draw a line cutting the lines $A A_{1}$ and $B_{1} C_{1}$ respectively at $M$ and $N$. From $M$ draw a line cutting the lines $B C$ and $C_{1} D_{1}$ respectively at $F$ and $P$. Determine the position of $E$ so that the perimeter of triangle $M N P$ attains its least value and calculate this least value.

Issue 321

  1. Write the number $2003^{2004}$ as a sum of positive integers. What is the remainder of the division by $3$ of the sum of the cubes of these integers?
  2. Simplify the expression $$\frac{(a-2)(a-1002)}{a(a-b)(a-c)}+\frac{(b-2)(b-1002)}{b(b-a)(b-c)}+\frac{(c-2)(c-1002)}{c(c-a)(c-b)}$$ where $a, b, c$ are distinct numbers such that $a b c \neq 0$.
  3. Let $a, b, c, d$ be positive numbers. Prove that
    a) $\displaystyle \frac{a}{b}+\frac{b}{c}+\frac{c}{a} \geq \frac{a+b+c}{\sqrt[3]{a b c}}$.
    b) $\displaystyle \frac{a^{2}}{b^{2}}+\frac{b^{2}}{c^{2}}+\frac{c^{2}}{d^{2}}+\frac{d^{2}}{a^{2}} \geq \frac{a+b+c+d}{\sqrt[4]{a b c d}}$.
  4. Find a necessary and sufficient condition on the number $m$ so that the following system of equations has a unique solution $$\begin{cases} x^{2} &=(2+m) y^{3}-3 y^{2}+m y \\ y^{2} &=(2+m) z^{3}-3 z^{2}+m z \\ z^{2} &=(2+m) x^{3}-3 x^{2}+m x\end{cases}$$
  5. Let $A B C D$ be a trapezoid inscribed in a circle with radius $R=3cm$ such that $B C=2 cm$, $A D=4cm$. Let $M$ be the point on side $A B$ such that $M B=3 M A$. Let $N$ be the midpoint of $C D$. The line $M N$ cuts $A C$ at $P$. Calculate the area of the quadrilateral $A P N D$.
  6. Let be given three positive integers $m$, $n, p$ such that $n+1$ is divisible by $m$. Find a formula to calculate the number of $p$-uples of positive integers $\left(x_{1}, x_{2}, \ldots, x_{p}\right)$ satisfying the conditions: the sum $x_{1}+x_{2}+\ldots+x_{p}$ is divisible by $m$ and $x_{1}, x_{2}, \ldots, x_{p}$ are not greater than $n$.
  7. $a$, $b$ are arbitrary positive numbers such that the equation $x^{3}-a x^{2}+b x-a=0$ has three roots greater than $1$. Determine $a$, $b$ so that the expression $\dfrac{b^{n}-3^{n}}{a^{n}}$ attains its least value and find this value.
  8. The incircle of triangle $A B C$ touches the sides $B C$, $C A$, $A B$ respectively at $D$, $E$, $F$. Prove that $$\frac{D E}{\sqrt{B C . C A}}+\frac{E F}{\sqrt{C A \cdot A B}}+\frac{F D}{\sqrt{A B \cdot B C}} \leq \frac{3}{2}.$$

Issue 322

  1. Find all integers $x$ satisfying $$|x-3|+|x-10|+|x+101|+|x+990|+|x+1000|=2004.$$
  2. Let $A B C$ be a triangle with its median $A M$. Let $O_{1}$, $O_{2}$. be the incenters of triangles $A B M$, $A C M$ respectively. Prove that $M O_{1}=M O_{2}$ when and only when $A B=A C$.
  3. Consider the six pairs of marbles selected from a set of four given marbles, and consider the sum of masses of two marbles of each pair. Let $a, b, c, d, e, f$ be these sums. Determine the mass of each marble, known that $$a+b+c+d+e+f=a^{3}+b^{3}+c^{3}+d^{3}+e^{3}+f^{3}=6.$$
  4. Find the least value of the expressions $$\frac{a^{6}}{b^{3}+c^{3}}+\frac{b^{6}}{c^{3}+a^{3}}+\frac{c^{6}}{a^{3}+b^{3}}$$ where $a, b, c, d$ are positive real numbers satisfying the condition $a+b+c=1$.
  5. The circumcircle of triangle $A B C$ has center $O$ and diameter $A D$. Let $I$ be the incenter of triangle $A B C$. The lines $A I$, $D I$ cut again the circumcircle at $H, K$ respectively. Draw the line IJ perpendicular to $B C$ at $J$. Prove that $H$, $K$, $J$ are collinear.
  6. Prove the inequality $$\frac{1}{2}\left(\sum_{i=1}^{n} x_{i}+\sum_{i=1}^{n} \frac{1}{x_{i}}\right) \geq n-1+\frac{n}{\sum_{i=1}^{n} x_{i}}$$ where $x_{i}(i=1,2, \ldots, n)$ are positive real numbers satisfying $\sum_{i=1}^{n} x_{i}^{2}=n$ and $n$ is an integer greater than $1$.
  7. The sequence of numbers $\left(u_{n}\right)(n=$ $1,2,3, \ldots)$ is defined by $$u_{n}=\sum_{k=1}^{n} \frac{1}{(k !)^{2}},\,\forall n=1,2,3, \ldots.$$ Prove that this sequence has a limit and this limit is an irrational.
  8. Let $S A B C$ be a tetrahedron. The points $M$, $N$, $P$ lie respectively on the sides $S A$, $S B$, $S C$ so that $A M=B N=C P$ ($M$, $N$, $P$ are distinct from the vertices $S$, $A$, $B$, $C)$. Let $G$ be the centroid of triangle $M N P$. Prove that $G$ lies on a fixed line when $M$, $N$, $P$ move on $S A$, $S B$, $SC$ respectively.

Issue 323

  1. Compare $\dfrac{1}{16}$ with the following sum $A$ of 11 numbers $$A=\frac{1}{5^{2}}+\frac{2}{5^{3}}+\ldots+\frac{n}{5^{n+1}}+\ldots+\frac{11}{5^{12}}$$
  2. Prove that $$\frac{a}{2 a+b+c}+\frac{b}{2 b+c+a}+\frac{c}{2 c+a+b} \leq \frac{3}{4}$$ where $a, b, c$ are positive integers.
  3. Consider the following sum $A$ of $50$ numbers $$A=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\ldots+\frac{1}{\sqrt{2 n-1}+\sqrt{2 n}}+\ldots+\frac{1}{\sqrt{99}+\sqrt{100}}.$$ Find the greatest integer not exceeding $A$.
  4. Prove that $$\frac{a}{\sqrt[3]{b^{3}+c^{3}}}+\frac{b}{\sqrt[3]{c^{3}+a^{3}}}+\frac{c}{\sqrt[3]{a^{3}+b^{3}}}<2 \sqrt[3]{4}$$ where $a, b, c$ are the lengths of the sides of a triangle.
  5. Let $A B C D$ be a given convex quadrilateral. On the lines $B C$, $A D$, take respectively the points $E$, $F$ so that $A E || C D$, $C F || A B$. Prove that the quadrilateral $A B C D$ circumscribes about a circle when and only when the quadrilateral $A E C F$ circumscribes about a circle.
  6. Prove that $$a^{\log _{b} c}+b^{\log _{c} a}+c^{\log _{a} b} \geq 3 \sqrt[3]{a b c}$$ where $a, b, c$ are numbers greater than $1$.
  7. Prove that for every acute triangle $A B C$, we have $$\frac{1}{3}(\cos 3 A+\cos 3 B)+\cos A+\cos B+\cos C \geq \frac{5}{6}$$
  8. In space, let be given a fixed line $d$ and a fixed point $A$ not lying on $d$. A right angle $x M y$ moves so that its side $M x$ passes through $A$ and its side $M y$ cuts orthogonally $d$. Find the locus of $M$.

Issue 324

  1. How many digits does contain the decimal representation of the number $2^{100}$ ? What is the first digit on the left in this representation?
  2. Let $A B C$ be a triangle with $\widehat{A B C}=70^{\circ}$, $\widehat{A C B}=50^{\circ}$. On the side $A C$, take $M$ so that $\widehat{A B M}=20^{\circ}$, on the side $A B$, take $N$ so that $\widehat{A C N}=10^{\circ}$. Let $P$ be the point of intersection of $B M$ and $C N$. Prove that $M N=2 P M$.
  3. Solve the system of equations $$\begin{cases}x^{3}+y &=2 \\ y^{3}+x &=2\end{cases}$$
  4. Prove the inequality $$\sqrt{a^{4}+b^{4}+c^{4}}+\sqrt{a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}} \geq \sqrt{a^{3} b+b^{3} c+c^{3} a}+\sqrt{a b^{3}+b c^{3}+c a^{3}}$$ where $a, b, c$ are non negative real numbers.)
  5. Let $A B C$ be a triangle right at $A$. For every point $K$ on the side $A C$, construct the circle $(K)$ with center $K$, touching the line $B C$ at $E$. Draw the line $B D$ touching the circle $(K)$ at $D$ (distinct from $E)$. Let $M$, $N$, $P$ and $Q$ be the midpoints of $A B$, $A D$, $B D$ and $M P$ respectively. Let $S$ be the point of intersection of $Q N$ and $B D$. Find the line on which moves the point $S$ when $K$ moves on the side $A C$?.
  6. Let $f(x)$ be a polynomial of degree 2003 with $$f(k)=\frac{k^{2}}{k+1},\,\forall k=1,2,3, \ldots 2004.$$ Calculate $f(2005)$.
  7. Prove that $$4 x^{2}+4 y^{2} \leq x y+y z+z x+5 z^{2}$$ where $x, y, z$ are positive real numbers satisfying the conditions $x \leq y \leq z$. When does equality occur?
  8. Let $r_{a}$, $r_{b}$, $r_{c}$ be the radii of the escribed circles in angles $A, B, C$ of the triangle $A B C$ respectively. Prove that  $$r_{a} \sin (A / 2)+r_{b} \sin (B / 2)+r_{c} \sin (C / 2) \leq \frac{r_{a}^{3}+r_{b}^{3}+r_{c}^{3}}{6}\left(\frac{1}{r_{a}^{2}}+\frac{1}{r_{b}^{2}}+\frac{1}{r_{c}^{2}}\right) $$

Issue 325

  1. Prove that the sum $$A=\frac{2004}{2003^{2}+1}+\frac{2004}{2003^{2}+2}+\ldots+\frac{2004}{2003^{2}+n}+\ldots+\frac{2004}{2003^{2}+2003}$$ ($2003$ terms) is not an integer.
  2. Let $A B C D$ be a rectangle with $A B=2 A D$ and let $M$ be the midpoint of the segment $A B$. Let $H$ be the point on side $A B$ such that $\widehat{A D H}=15^{\circ}$. The lines $C H$ and $D M$ intersect at $K$. Compare the lengths of the segments $D H$ and $D K$.
  3. Solve the system of equations $$\begin{cases}x^{3}(2+3 y) &=1 \\ x\left(y^{3}-2\right) &=3\end{cases}$$
  4. Find the least value of the expression $$A=\frac{1}{x^{3}+y^{3}}+\frac{1}{x y}$$ where $x, y$ are positive real numbers satisfying $x+y=1$.
  5. Let be given a convex quadrilateral $A B C D$. $O$ is the midpoint of side $B C$, $E$ is symmetric to $D$ with respect to $O$. A point $M$ moves on the side $A D$. The line $E M$ cuts $O A$ at $I$. The line passing through $I$, parallel to $B C$, cuts $A B$ and $A C$ respectively at $K$ and $H$. Prove that the expression $$\frac{A B}{A K}+\frac{A C}{A H}-\frac{A D}{A M}$$ takes constant value.
  6. Let be given $a>1$. Find all triples $(x, y, z)$ such that $|y| \geq 1$ and $$\log _{a}^{2}(x y)+\log _{a}\left(x^{3} y^{3}+x y z\right)^{2}+\frac{8+\sqrt{4 z-y^{2}}}{2}=0$$
  7. Find the greatest value of the expression $a c+b d+c d$ where $a, b, c, d$ are real numbers satisfying the conditions $a^{2}+b^{2}=4$ and $c+d=4$.
  8. The circles $C_{1}$, $C_{2}$, $C_{3}$ internally touch the circle $C$ respectively at $A_{1}$, $A_{2}$, $A_{3}$ and they externally touch each other. Let $B_{1}$, $B_{2}$, $B_{3}$ be respectively the touching point of $C_{2}$ and $C_{3}$, of $K_{3}$ and $C_{1}$, of $C_{1}$ and $C_{2}$. Prove that the lines $A_{1} B_{1}$, $A_{2} B_{2}$, $A_{3} B_{3}$ are concurrent.

Issue 326

  1. Factorize $2003^{2004}$ in the product of two natural numbers $a$ and $b$. Is the sum $a+b$ divisible by $2004$?
  2. The positive integers $a, b, c, d$ satisfy the conditions $a^{2}+c^{2}=1$ and $\dfrac{a^{4}}{b}+\dfrac{c^{4}}{d}=\dfrac{1}{b+d}$. Prove that $$\frac{a^{2004}}{b^{1002}}+\frac{c^{2004}}{d^{1002}}=\frac{2}{(b+d)^{1002}}.$$
  3. Find the least prime number $p$ such that $p$ can be written in ten sums of the forms $$p=x_{1}^{2}+y_{1}^{2}=x_{2}^{2}+2 y_{2}^{2}=x_{3}^{2}+3 y_{3}^{2}=\ldots=x_{10}^{2}+10 y_{10}^{2},$$ where $x_{i}, y_{i}$ $(i=1,2, \ldots, 10)$ are positive integers.
  4. Solve the equation $$\sqrt[3]{3 x+1}+\sqrt[3]{5-x}+\sqrt[3]{2 x-9}-\sqrt[3]{4 x-3}=0$$
  5. Prove that $$\frac{1}{a(b+1)}+\frac{1}{b(c+1)}+\frac{1}{c(a+1)} \geq \frac{3}{a b c+1}$$ for arbitrary positive numbers $a, b, c$.
  6. Prove that for every polygon, there exist at least two sides such that the measures $a$, $b$ of which satisfy the conditions $a \leq b \leq 2 a$.
  7. From a point $P$ at the outside of a circle with center $O$, draw two tangents $P A$, $P B$ to the circle. Let $M$ and $N$ be respectively the midpoints of $A P$ and $O P$. The line $B M$ cuts again the circle at $K$. Prove that $K N \perp A K$.
  8. Find integer-solutions of the equation of two unknowns $$x^{y^{x}}=y^{x^{y}}.$$
  9. Prove that $$x y+\max \{x, y\} \leq \frac{3 \sqrt{3}}{4}$$ for arbitrary real nonnegative numbers $x, y$ satisfying the condition $x^{2}+y^{2}=1$.
  10. Find all functions $f: \mathbb R^{+} \rightarrow \mathbb R^{+}$ satisfying the condition $$x f(x f(y))=f(f(y)),\,\forall x, y \in \mathbb R^{+}.$$
  11. Let $R$ and $r$ bc respectively the circumradius and the inradius of a triangle $A B C$. and let $I$ be its incenter. Prove that $$\frac{1}{I A . I B}+\frac{1}{I B \cdot I C}+\frac{1}{I C . I A} \leq \frac{5 R+2 r}{8 R r^{2}}$$
  12. Let $A B C D$ be a regular tetrahedron with side $a$. Let $H$ and $K$ be the midpoints of $A B$ and $C D$ respectively. An arbitrary plane containing the line $H K$ cuts the sides $B C$ and $A D$ at $E$ and $F$ respectively. Prove that $E F \perp$ $H K$. Find the least value of the area of the quadrilateral $H E K F$.

Issue 327

  1. Can my friend write $7$ distinct $7$-digit numbers so that a) for writing each number, he uses $7$ distinct digits $1,2,3,4,5,6,7$. b) the sum of the $7^{\text {th }}$ powers of some (distinct) numbers among them is equal to the sum of the $7^{\text {h }}$ powers of the others?
  2. Prove that $$\frac{1}{65}<\frac{1}{5^{3}}+\frac{1}{6^{3}}+\ldots+\frac{1}{n^{3}}+\ldots+\frac{1}{2004^{3}}<\frac{1}{40}$$ (the sum consists of $2000$ terms).
  3. Find all integers $x$ such that $x^{3}-2 x^{2}+7 x-7$ is divisible by $x^{2}+3$.
  4. Solve the equation $$4 x^{2}-4 x-10=\sqrt{8 x^{2}-6 x-10}.$$
  5. Prove that $$\left(1+\frac{1}{a^{3}}\right)\left(1+\frac{1}{b^{3}}\right)\left(1+\frac{1}{c^{3}}\right) \geq \frac{729}{512}$$ where $a, b, c$ are positive real numbers satisfying $a+b+c=6$.
  6. The circle $\left(O_{1}\right)$ with center $O_{1}$, radius $R_{1}$ cuts the circle $\left(O_{2}\right)$ with center $O_{2}$, radius $R_{2}$ at the points $A$ and $B$. The tangent to $\left(O_{1}\right)$ at $A$ cuts $\left(O_{2}\right)$ at $C$. The tangent to $\left(O_{2}\right)$ at $A$ cuts $\left(O_{1}\right)$ at $D .$ Let $M$ be the point of intersection of $A B$ and $C D$, let $N$ be the midpoint of $C D$. Prove that $\widehat{C A M}=\widehat{D A N}$ and $\dfrac{M C}{M D}=\dfrac{R_{2}^{2}}{R_{1}^{2}}$.
  7. The quadrilateral $A B C D$ is inscribed in a circle with radius $R$ and circumscribes about a circle with radius $r$. Prove that $R \geq r \sqrt{2}$.
  8. The sequences $\left(x_{n}\right)$ and $\left(y_{n}\right)$ $(n=1,$, $2,3, \ldots)$ are defined by $x_{1}=-1$, $y_{1}=1$ and $$x_{n+1}=-3 x_{n}^{2}-2 x_{n} y_{n}+8 y_{n}^{2},\, y_{n+1}=2 x_{n}^{2}+3 x_{n} y_{n}-2 y_{n}^{2},\,\forall n=1,2,3 \ldots$$ Find all prime numbers $p$ such that $x_{p}+y_{p}$ is not divisible by $p$.
  9. The positive real numbers $a, b, c, d$ satisfy the conditions $a \leq b \leq c \leq d$ and $b c \leq a d$. Prove that $$a^{b} b^{c} c^{d} d^{a} \geq a^{d} b^{a} c^{b} d^{c}.$$
  10. For each positive integer $n$, consider the function $$f_{n}(x)=e^{-x}\sum_{m=0}^{n} \frac{x^{m}}{m !},$$ defined on the set of positive real numbers. a) Prove that for every positive real numbers $k$ with $0<k<1$ and for every positive integer $n$, the equation $f_{n}(x)=k$ has a unique root. b) Let $\alpha_{n}$ be the above mentioned root. Find $\displaystyle\lim_{n \rightarrow+\infty} \frac{1}{\alpha_{n}}$.
  11. Let be given a triangle $A B C$ with $B C=a$, $C A=b$, $A B=c$ and with circumradius $R$. Let $l_{a}$, $l_{b}$, $l_{c}$ be respectively the measure of the angled bisector of the angle $A$, $B$, $C$ and let $r_{a}$, $r_{b}$, $r_{c}$ be respectively the radius of the escribed circle in the angle $A$, $B$, $C$. Prove that $$\frac{l_{a}^{2} \cdot l_{b}^{2} \cdot l_{c}^{2}}{a^{2} b^{2} c^{2}} \leq\left(\frac{r_{a}+r_{b}+r_{c}}{6 R}\right)^{3}$$
  12. Let $A_{1} A_{2} A_{3} A_{4}$ be a tetrahedron, circumscribing about a sphere with center $O$. Let $B_{i}$ be the touching point of the sphere with the face opposite to the vertex $A_{i}$ $(i=1,2,3,4)$. Prove that among the angles formed by a pair of distinct rays $O B_{1}$, $O B_{2}$, $O B_{3}$, $O B_{4}$ there exists an angle $\alpha$ with $$\sin \alpha \leq \frac{2 \sqrt{2}}{3}.$$

Issue 328

  1. Compare the numbers $2^{3^{2^{3}}}$ and $3^{2^{3^{2}}}$.
  2. Calculate the following sum of 2004 numbers $$f\left(\frac{1}{2005}\right)+f\left(\frac{2}{2005}\right)+\ldots+f\left(\frac{2004}{2005}\right)$$ where $f(x)=\dfrac{100^{x}}{100^{x}+10}$.
  3. Find positive integer solutions of the equation $$(n+1)(2 n+1)=10 m^{2}$$
  4. Find all positive integers $n$ such that the polynomial with $n+1$ terms $$P(x)=x^{4 n}+x^{4(n-1)}+\ldots+x^{8}+x^{4}+1$$ is divisible by the polynomial with $n+1$ terms $$Q(x)=x^{2 n}+x^{2(n-1)}+\ldots+x^{4}+x^{2}+1.$$
  5. Find the greatest value of the expression $$T=\frac{a^{2}+1}{b^{2}+1}+\frac{b^{2}+1}{c^{2}+1}+\frac{c^{2}+1}{a^{2}+1}$$ where $a, b, c$ are non negative real numbers satisfying $a+b+c=1$.
  6. Let $A B C$ be a triangle with acute angle $A$ and $A C=2 A B$. The angle bisector $A D$ cuts the altitude $B H$ at $K$ ($D$ lies on $B C$, $H$ on $A C)$. The line $C K$ cuts $A B$ at $E$. Prove that $\triangle A B C$ is right at $B$ when and only when the areas of the triangles $B D E$ and $H D E$ are equal.
  7. On the side $A B$ of an equilateral triangle $A B C$ take a point $N$, on the side $A C$ take a point $M$ so that $A N>N B$ and $A M>M C$. The line $B M$ cuts $C N$ at $H$. Let $P$ and $Q$ be respectively the orthocenters of $\triangle A B M$ and $\triangle A C N$. Prove that $B N=C M$ when and only when $H P=H Q$.
  8. Find the least prime number $p$ such that $\left[(3+\sqrt{p})^{2 n}\right]+1$ is divisible by $2^{n+1}$ for every natural number $n$, where $[x]$ denotes the greatest integer not exceeding $x$.
  9. Prove that $$\left(\frac{a}{b+c}\right)^{k}+\left(\frac{b}{c+a}\right)^{k}+\left(\frac{c}{a+b}\right)^{k} \geq \frac{3}{2^{k}}$$ where $a, b, c, k$ are positive real numbers and $k \geq \dfrac{2}{3}$.
  10. Find all positive real numbers $a$ such that there exist a positive real number $k$ and a function $f: \mathbb R \rightarrow \mathbb R$ satisfying the condition $$\frac{f(x)+f(y)}{2} \geq f\left(\frac{x+y}{2}\right)+k \cdot|x-y|^{a}$$ for all real numbers $x, y$.
  11. The altitudes $A D$, $B E$, $C F$ of an acute triangle $A B C$ intersect at $H$ so that $A H>H D$, $B H>H E$, $C H>H F$. Prove that $$\tan^{2} A+\tan^{2} B+\tan^{2} C>6$$
  12. Let be given $n$ dinstinct points $A_{1}$, $A_{2}, \ldots, A_{n}$. Prove that $$\sum_{i=1}^{n} \widehat{A_{i}A_{i+1}A_{i+2}} \geq \pi \quad \text{and} \quad \sum_{i=1}^{n} \widehat{A_{i} Q A_{i+1}} \leq(n-1) \pi$$ where $A_{n+1}$ is considered as $A_{1}, A_{n+2}$ is considered as $A_{2}$ and $Q$ is an arbitrary point distinct from $A_{1}, A_{2}, \ldots, A_{n}$.

Issue 329

  1. Let $p$ and $q$ be two primes satisfying $p>q>3$ and $p-q=2$. Prove that $p+q$ is divisible by $12$.
  2. Find the greatest value of the expression $$P=(a-b)^{4}+(b-c)^{4}+(c-a)^{4}$$ where $a, b, c$ are real numbers not less than $1$ and not greater than $2$.
  3. Prove that the following sum (of $1999$ terms) $$s=1^{100}-2^{100}+3^{100}-4^{100}+\ldots+n^{100}-(n+1)^{100}+\ldots-1998^{100}+1999^{100}$$ is divisible by $201899$.
  4. Solve the equation $$x=(2004+\sqrt{x})(1-\sqrt{1-\sqrt{x}})^{2}.$$
  5. Prove that $$\frac{a}{a+\sqrt{(a+b)(a+c)}}+\frac{b}{b+\sqrt{(b+c)(b+a)}}+\frac{c}{c+\sqrt{(c+a)(c+b)}} \leq 1$$ where $a, b, c$ are positive real numbers.
  6. Let $M N P Q$ be a quadrilateral inscribed in a circle and let $E$ be the point of intersection of $M P$ and $N Q$. Let $K$ be a point on the segment $M E$ ($K$ distinct from $M$, $E$). The tangent at $E$ to the circumcircle of triangle $N E K$ cuts the lines $Q M$ and $Q P$ respectively at $F$ and $G$. Prove that $$\dfrac{E G}{E F}=\dfrac{K P}{K M}$$
  7. Consider the triangles $A B C$ with given perimeter $a+b+c=k$ (const), $a=B C$, $b=C A$, $c=A B$. Find the greatest value of the expression $$T=\frac{a b}{a+b+2 c}+\frac{b c}{2 a+b+c}+\frac{a c}{a+2 b+c}$$
  8. Let $a$, $b$ be two real numbers distinct from $0$. Consider the sequence of numbers $\left(u_{n}\right)(n=0,1,2, \ldots)$ defined by $$u_{0}=0,\, u_{1}=1,\quad u_{n+2}=a u_{n+1}-b u_{n},\,\forall n=2,3, \ldots$$ Prove that if there exist four consecutive terms of the sequence that are integers then all terms of the sequence are intergers.
  9. Find all values of the parameter $p$ so that the roots $x_{1}, x_{2}, x_{3}$ of the equation $$x^{3}-3 x^{2}-p x-1=0$$ satisfy the conditions $$\frac{1}{2005}<\frac{1}{\left(x_{1}-1\right)^{3}}+\frac{1}{\left(x_{2}-1\right)^{3}}+\frac{1}{\left(x_{3}-1\right)^{3}}<\frac{1}{2004}$$
  10. Given positive numbers $a_{i}$, $b_{i}$ $(i=1,2, \ldots, n)$. Prove that $$\frac{a_{1}^{r}}{b_{1}^{s}}+\frac{a_{2}^{r}}{b_{2}^{s}}+\ldots+\frac{a_{n}^{r}}{b_{n}^{s}} \geq \frac{\left(a_{1}+a_{2}+\ldots+a_{n}\right)^{r}}{n^{r-s-1}\left(b_{1}+b_{2}+\ldots+b_{n i}\right)^{s}}$$ where $r, s$ are positive rational numbers and $r \geq s+1$.
  11. Suppose that the quadrilateral $A B C D$ is inscribed in a circle with center $O$ with radius $R$ and the opposite rays of the rays $B A$, $D A$, $C B$, $C D$ touch a circle with center $I$ and radius $r$. Prove that by putting $d=O I$, we have $$\frac{1}{(d+R)^{2}}+\frac{1}{(d-R)^{2}}=\frac{1}{r^{2}}$$
  12. For a tetrahedron $A B C D$ with $A B=C D$, $A C=B D$, $A D=B C$, let $\varphi_{1}$, $\varphi_{2}$, $\varphi_{3}$ be respectively the measures of the dihedral angles with sides $B C$, $C A$, $A B$. Prove that $$\cos \frac{\varphi_{1}}{2} \cdot \cos \frac{\varphi_{2}}{2} \cdot \cos \frac{\varphi_{3}}{2}=\frac{\sqrt{\cos A \cdot \cos B \cdot \cos C}}{\sin A \cdot \sin B \cdot \sin C}$$ where $A$, $B$, $C$ denote the angles of triangle $A B C$.

Issue 330

  1. Find the integers $x$, $y$, $z$ satisfying the equalities $$\frac{x}{y}+\frac{y}{z}+\frac{z}{x}=\frac{y}{x}+\frac{z}{y}+\frac{x}{z}=x+y+z=3$$
  2. Let $A B C$ be a triangle with $\widehat{A C B}=50^{\circ}, \widehat{B A C}=100^{\circ}$, let $M$ be the point on the side $A B$ such that $A M=A C$. Compare $C M$ with $A B$.
  3. Find all integer roots of the equation $$x^{y}+y^{z}+z^{x}=2(x+y+z).$$
  4. Solve the equation $$\sqrt{\sqrt{3}-x}=x \sqrt{\sqrt{3}+x}$$
  5. Prove the inequality $$\frac{a^{3}+b^{3}+c^{3}}{2 a b c}+\frac{a^{2}+b^{2}}{c^{2}+a b}+\frac{b^{2}+c^{2}}{a^{2}+b c}+\frac{c^{2}+a^{2}}{b^{2}+a c} \geq \frac{9}{2}$$ where $a, b, c$ are positive real numbers.
  6. Let be given a triangle $A B C$ with $A B=A C$. From every point $M$ on the side $B C$, draw $M P \perp A B$ and $M Q \perp A C$ ($P$, $Q$ lie respectively on the lines $A B$, $A C)$. Prove that the perpendicular bisector of $P Q$ passes through a fixed point when $M$ moves on the side $B C$.
  7. Let $A B C$ be a triangle with the altitude $A H$ ($H$ distinct from $B$, $C$). Draw $H E \| A C$, $H M \perp A B$ ($E$ and $M$ lie on the line $A B$), draw $H F \| A B$, $H N \perp A C$ ($F$ and $N$ lie on the line $A C$). Prove that the lines $E F$, $M N$ and $B C$ are concurrent.
  8. Find the greatest and the least values of the expression $P=x^{y^{z}}$ where $x, y, z$ are integers greater than $2$ and satisfy $x+y+z=20$.
  9. Let $M$ and $m$ be respectively the greatest value and the least value of the function $$f(x)=\cos (2002 x)+k \cos (x+\alpha)$$ where $k$, $\alpha$ are real parameters. Prove that $$M^{2}+m^{2} \geq 2.$$
  10. Let be given a postive integer $n$. Consider a continuous function $f(x):[0 ; n] \rightarrow \mathbb R$ satisfying $f(0)=f(n)$. Prove that there exist $n$ couples of numbers $a_{i}, b_{i}$ $(i=1,2, \ldots, n)$ belonging to $[0 ; n]$ such that $b_{i}-a_{i}$ are positive integers and $f\left(a_{i}\right)=f\left(b_{i}\right)$ for all $i=1,2, \ldots, n$
  11. In plane let be given a line $x y$, a segment $A B$ perpendicular to $x y$ at $A$, a point $C$ on the ray $A x$, a point $D$ on the ray $A y$ ($C$, $D$ distinct from $A$). Draw $A E \perp B C$ ($E$ lies on $B C$), $A F \perp B D$ ($F$ lies on $B D$). A line passing through the midpoint $Q$ of $A B$ cuts the lines $x y$, $B C$, $B D$ respectively at $P$, $M$, $N$. Prove that $P$, $E$, $F$ are collinear when and only when $Q$ is the midpoint of $M N$.
  12. Given a regular tetrahedron $A_{1} A_{2} A_{3} A_{4}$. Let $d_{i}(i=1,2,3,4)$ be the distance from a point $M$ in space to the face opposite to vertex $A_{i}$ of the tetrahedron $A_{1} A_{2} A_{3} A_{4}$. Prove that $$x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2} \leq 9\left(d_{1}^{2}+d_{2}^{2}+d_{3}^{2}+d_{4}^{2}\right)$$ where $x_{i}=M A_{i}$ $(i=1,2,3,4)$.

$hide=mobile$type=ticker$c=36$cols=2$l=0$sr=random$b=0

Name

Abel,5,Albania,2,AMM,2,Amsterdam,4,An Giang,46,Andrew Wiles,1,Anh,2,APMO,21,Austria (Áo),1,Ba Lan,1,Bà Rịa Vũng Tàu,77,Bắc Bộ,2,Bắc Giang,62,Bắc Kạn,4,Bạc Liêu,18,Bắc Ninh,54,Bắc Trung Bộ,3,Bài Toán Hay,5,Balkan,41,Baltic Way,32,BAMO,1,Bất Đẳng Thức,69,Bến Tre,72,Benelux,16,Bình Định,65,Bình Dương,38,Bình Phước,52,Bình Thuận,42,Birch,1,BMO,41,Booklet,12,Bosnia Herzegovina,3,BoxMath,3,Brazil,2,British,16,Bùi Đắc Hiên,1,Bùi Thị Thiện Mỹ,1,Bùi Văn Tuyên,1,Bùi Xuân Diệu,1,Bulgaria,6,Buôn Ma Thuột,2,BxMO,15,Cà Mau,22,Cần Thơ,28,Canada,40,Cao Bằng,12,Cao Quang Minh,1,Câu Chuyện Toán Học,43,Caucasus,3,CGMO,11,China - Trung Quốc,25,Chọn Đội Tuyển,528,Chu Tuấn Anh,1,Chuyên Đề,125,Chuyên SPHCM,7,Chuyên SPHN,30,Chuyên Trần Hưng Đạo,3,Collection,8,College Mathematic,1,Concours,1,Cono Sur,1,Contest,675,Correspondence,1,Cosmin Poahata,1,Crux,2,Czech-Polish-Slovak,28,Đà Nẵng,50,Đa Thức,2,Đại Số,20,Đắk Lắk,76,Đắk Nông,15,Danube,7,Đào Thái Hiệp,1,ĐBSCL,2,Đề Thi,1,Đề Thi HSG,2262,Đề Thi JMO,1,DHBB,30,Điện Biên,15,Định Lý,1,Định Lý Beaty,1,Đỗ Hữu Đức Thịnh,1,Do Thái,3,Doãn Quang Tiến,5,Đoàn Quỳnh,1,Đoàn Văn Trung,1,Đồng Nai,64,Đồng Tháp,64,Du Hiền Vinh,1,Đức,1,Dương Quỳnh Châu,1,Dương Tú,1,Duyên Hải Bắc Bộ,30,E-Book,31,EGMO,30,ELMO,19,EMC,11,Epsilon,1,Estonian,5,Euler,1,Evan Chen,1,Fermat,3,Finland,4,Forum Of Geometry,2,Furstenberg,1,G. Polya,3,Gặp Gỡ Toán Học,30,Gauss,1,GDTX,3,Geometry,14,GGTH,30,Gia Lai,40,Gia Viễn,2,Giải Tích Hàm,1,Giới hạn,2,Goldbach,1,Hà Giang,5,Hà Lan,1,Hà Nam,45,Hà Nội,255,Hà Tĩnh,92,Hà Trung Kiên,1,Hải Dương,71,Hải Phòng,57,Hậu Giang,14,Hélènne Esnault,1,Hilbert,2,Hình Học,33,HKUST,7,Hòa Bình,33,Hoài Nhơn,1,Hoàng Bá Minh,1,Hoàng Minh Quân,1,Hodge,1,Hojoo Lee,2,HOMC,5,HongKong,8,HSG 10,126,HSG 10 2010-2011,4,HSG 10 2011-2012,7,HSG 10 2012-2013,8,HSG 10 2013-2014,7,HSG 10 2014-2015,6,HSG 10 2015-2016,2,HSG 10 2016-2017,8,HSG 10 2017-2018,4,HSG 10 2018-2019,4,HSG 10 2019-2020,7,HSG 10 2020-2021,3,HSG 10 2021-2022,4,HSG 10 2022-2023,11,HSG 10 2023-2024,1,HSG 10 Bà Rịa Vũng Tàu,2,HSG 10 Bắc Giang,1,HSG 10 Bạc Liêu,2,HSG 10 Bình Định,1,HSG 10 Bình Dương,1,HSG 10 Bình Thuận,4,HSG 10 Chuyên SPHN,5,HSG 10 Đắk Lắk,2,HSG 10 Đồng Nai,4,HSG 10 Gia Lai,2,HSG 10 Hà Nam,4,HSG 10 Hà Tĩnh,15,HSG 10 Hải Dương,10,HSG 10 KHTN,9,HSG 10 Nghệ An,1,HSG 10 Ninh Thuận,1,HSG 10 Phú Yên,2,HSG 10 PTNK,10,HSG 10 Quảng Nam,1,HSG 10 Quảng Trị,2,HSG 10 Thái Nguyên,9,HSG 10 Vĩnh Phúc,14,HSG 1015-2016,3,HSG 11,135,HSG 11 2009-2010,1,HSG 11 2010-2011,6,HSG 11 2011-2012,10,HSG 11 2012-2013,9,HSG 11 2013-2014,7,HSG 11 2014-2015,10,HSG 11 2015-2016,6,HSG 11 2016-2017,8,HSG 11 2017-2018,7,HSG 11 2018-2019,8,HSG 11 2019-2020,5,HSG 11 2020-2021,8,HSG 11 2021-2022,4,HSG 11 2022-2023,7,HSG 11 2023-2024,1,HSG 11 An Giang,2,HSG 11 Bà Rịa Vũng Tàu,1,HSG 11 Bắc Giang,4,HSG 11 Bạc Liêu,3,HSG 11 Bắc Ninh,2,HSG 11 Bình Định,12,HSG 11 Bình Dương,3,HSG 11 Bình Thuận,1,HSG 11 Cà Mau,1,HSG 11 Đà Nẵng,9,HSG 11 Đồng Nai,1,HSG 11 Hà Nam,2,HSG 11 Hà Tĩnh,12,HSG 11 Hải Phòng,1,HSG 11 Kiên Giang,4,HSG 11 Lạng Sơn,11,HSG 11 Nghệ An,6,HSG 11 Ninh Bình,2,HSG 11 Quảng Bình,12,HSG 11 Quảng Nam,1,HSG 11 Quảng Ngãi,9,HSG 11 Quảng Trị,3,HSG 11 Sóc Trăng,1,HSG 11 Thái Nguyên,8,HSG 11 Thanh Hóa,3,HSG 11 Trà Vinh,1,HSG 11 Tuyên Quang,1,HSG 11 Vĩnh Long,3,HSG 11 Vĩnh Phúc,11,HSG 12,668,HSG 12 2009-2010,2,HSG 12 2010-2011,39,HSG 12 2011-2012,44,HSG 12 2012-2013,58,HSG 12 2013-2014,53,HSG 12 2014-2015,44,HSG 12 2015-2016,37,HSG 12 2016-2017,46,HSG 12 2017-2018,55,HSG 12 2018-2019,43,HSG 12 2019-2020,43,HSG 12 2020-2021,52,HSG 12 2021-2022,35,HSG 12 2022-2023,42,HSG 12 2023-2024,23,HSG 12 2023-2041,1,HSG 12 An Giang,8,HSG 12 Bà Rịa Vũng Tàu,13,HSG 12 Bắc Giang,18,HSG 12 Bạc Liêu,3,HSG 12 Bắc Ninh,13,HSG 12 Bến Tre,19,HSG 12 Bình Định,17,HSG 12 Bình Dương,8,HSG 12 Bình Phước,9,HSG 12 Bình Thuận,8,HSG 12 Cà Mau,7,HSG 12 Cần Thơ,7,HSG 12 Cao Bằng,5,HSG 12 Chuyên SPHN,11,HSG 12 Đà Nẵng,3,HSG 12 Đắk Lắk,21,HSG 12 Đắk Nông,1,HSG 12 Điện Biên,3,HSG 12 Đồng Nai,20,HSG 12 Đồng Tháp,18,HSG 12 Gia Lai,14,HSG 12 Hà Nam,5,HSG 12 Hà Nội,17,HSG 12 Hà Tĩnh,16,HSG 12 Hải Dương,16,HSG 12 Hải Phòng,20,HSG 12 Hậu Giang,4,HSG 12 Hòa Bình,10,HSG 12 Hưng Yên,10,HSG 12 Khánh Hòa,4,HSG 12 KHTN,26,HSG 12 Kiên Giang,12,HSG 12 Kon Tum,3,HSG 12 Lai Châu,4,HSG 12 Lâm Đồng,11,HSG 12 Lạng Sơn,8,HSG 12 Lào Cai,17,HSG 12 Long An,18,HSG 12 Nam Định,7,HSG 12 Nghệ An,13,HSG 12 Ninh Bình,12,HSG 12 Ninh Thuận,7,HSG 12 Phú Thọ,18,HSG 12 Phú Yên,13,HSG 12 Quảng Bình,14,HSG 12 Quảng Nam,11,HSG 12 Quảng Ngãi,6,HSG 12 Quảng Ninh,20,HSG 12 Quảng Trị,10,HSG 12 Sóc Trăng,4,HSG 12 Sơn La,5,HSG 12 Tây Ninh,6,HSG 12 Thái Bình,11,HSG 12 Thái Nguyên,13,HSG 12 Thanh Hóa,17,HSG 12 Thừa Thiên Huế,19,HSG 12 Tiền Giang,3,HSG 12 TPHCM,13,HSG 12 Tuyên Quang,3,HSG 12 Vĩnh Long,7,HSG 12 Vĩnh Phúc,20,HSG 12 Yên Bái,6,HSG 9,573,HSG 9 2009-2010,1,HSG 9 2010-2011,21,HSG 9 2011-2012,42,HSG 9 2012-2013,41,HSG 9 2013-2014,35,HSG 9 2014-2015,41,HSG 9 2015-2016,38,HSG 9 2016-2017,42,HSG 9 2017-2018,45,HSG 9 2018-2019,41,HSG 9 2019-2020,18,HSG 9 2020-2021,50,HSG 9 2021-2022,53,HSG 9 2022-2023,55,HSG 9 2023-2024,15,HSG 9 An Giang,9,HSG 9 Bà Rịa Vũng Tàu,8,HSG 9 Bắc Giang,14,HSG 9 Bắc Kạn,1,HSG 9 Bạc Liêu,1,HSG 9 Bắc Ninh,12,HSG 9 Bến Tre,9,HSG 9 Bình Định,11,HSG 9 Bình Dương,7,HSG 9 Bình Phước,13,HSG 9 Bình Thuận,5,HSG 9 Cà Mau,2,HSG 9 Cần Thơ,4,HSG 9 Cao Bằng,2,HSG 9 Đà Nẵng,11,HSG 9 Đắk Lắk,12,HSG 9 Đắk Nông,3,HSG 9 Điện Biên,5,HSG 9 Đồng Nai,8,HSG 9 Đồng Tháp,10,HSG 9 Gia Lai,9,HSG 9 Hà Giang,4,HSG 9 Hà Nam,10,HSG 9 Hà Nội,15,HSG 9 Hà Tĩnh,13,HSG 9 Hải Dương,16,HSG 9 Hải Phòng,8,HSG 9 Hậu Giang,6,HSG 9 Hòa Bình,4,HSG 9 Hưng Yên,11,HSG 9 Khánh Hòa,6,HSG 9 Kiên Giang,16,HSG 9 Kon Tum,9,HSG 9 Lai Châu,2,HSG 9 Lâm Đồng,14,HSG 9 Lạng Sơn,10,HSG 9 Lào Cai,4,HSG 9 Long An,10,HSG 9 Nam Định,9,HSG 9 Nghệ An,21,HSG 9 Ninh Bình,14,HSG 9 Ninh Thuận,4,HSG 9 Phú Thọ,13,HSG 9 Phú Yên,9,HSG 9 Quảng Bình,14,HSG 9 Quảng Nam,12,HSG 9 Quảng Ngãi,13,HSG 9 Quảng Ninh,17,HSG 9 Quảng Trị,10,HSG 9 Sóc Trăng,9,HSG 9 Sơn La,5,HSG 9 Tây Ninh,16,HSG 9 Thái Bình,11,HSG 9 Thái Nguyên,5,HSG 9 Thanh Hóa,12,HSG 9 Thừa Thiên Huế,9,HSG 9 Tiền Giang,7,HSG 9 TPHCM,11,HSG 9 Trà Vinh,2,HSG 9 Tuyên Quang,6,HSG 9 Vĩnh Long,12,HSG 9 Vĩnh Phúc,12,HSG 9 Yên Bái,5,HSG Cấp Trường,80,HSG Quốc Gia,113,HSG Quốc Tế,16,Hứa Lâm Phong,1,Hứa Thuần Phỏng,1,Hùng Vương,2,Hưng Yên,44,Huỳnh Kim Linh,1,Hy Lạp,1,IMC,26,IMO,58,IMT,2,IMU,2,India - Ấn Độ,47,Inequality,13,InMC,1,International,349,Iran,13,Jakob,1,JBMO,41,Jewish,1,Journal,30,Junior,38,K2pi,1,Kazakhstan,1,Khánh Hòa,30,KHTN,64,Kiên Giang,74,Kon Tum,24,Korea - Hàn Quốc,5,Kvant,2,Kỷ Yếu,46,Lai Châu,12,Lâm Đồng,48,Lăng Hồng Nguyệt Anh,1,Lạng Sơn,37,Langlands,1,Lào Cai,35,Lê Hải Châu,1,Lê Hải Khôi,1,Lê Hoành Phò,4,Lê Hồng Phong,5,Lê Khánh Sỹ,3,Lê Minh Cường,1,Lê Phúc Lữ,1,Lê Phương,1,Lê Viết Hải,1,Lê Việt Hưng,2,Leibniz,1,Long An,52,Lớp 10 Chuyên,709,Lớp 10 Không Chuyên,355,Lớp 11,1,Lục Ngạn,1,Lượng giác,1,Lưu Giang Nam,2,Lưu Lý Tưởng,1,Macedonian,1,Malaysia,1,Margulis,2,Mark Levi,1,Mathematical Excalibur,1,Mathematical Reflections,1,Mathematics Magazine,1,Mathematics Today,1,Mathley,1,MathLinks,1,MathProblems Journal,1,Mathscope,8,MathsVN,5,MathVN,1,MEMO,13,Menelaus,1,Metropolises,4,Mexico,1,MIC,1,Michael Atiyah,1,Michael Guillen,1,Mochizuki,1,Moldova,1,Moscow,1,MYM,25,MYTS,4,Nam Định,46,Nam Phi,1,National,276,Nesbitt,1,Newton,4,Nghệ An,73,Ngô Bảo Châu,2,Ngô Việt Hải,1,Ngọc Huyền,2,Nguyễn Anh Tuyến,1,Nguyễn Bá Đang,1,Nguyễn Đình Thi,1,Nguyễn Đức Tấn,1,Nguyễn Đức Thắng,1,Nguyễn Duy Khương,1,Nguyễn Duy Tùng,1,Nguyễn Hữu Điển,3,Nguyễn Minh Hà,1,Nguyễn Minh Tuấn,9,Nguyễn Nhất Huy,1,Nguyễn Phan Tài Vương,1,Nguyễn Phú Khánh,1,Nguyễn Phúc Tăng,2,Nguyễn Quản Bá Hồng,1,Nguyễn Quang Sơn,1,Nguyễn Song Thiên Long,1,Nguyễn Tài Chung,5,Nguyễn Tăng Vũ,1,Nguyễn Tất Thu,1,Nguyễn Thúc Vũ Hoàng,1,Nguyễn Trung Tuấn,8,Nguyễn Tuấn Anh,2,Nguyễn Văn Huyện,3,Nguyễn Văn Mậu,25,Nguyễn Văn Nho,1,Nguyễn Văn Quý,2,Nguyễn Văn Thông,1,Nguyễn Việt Anh,1,Nguyễn Vũ Lương,2,Nhật Bản,4,Nhóm $\LaTeX$,4,Nhóm Toán,1,Ninh Bình,61,Ninh Thuận,26,Nội Suy Lagrange,2,Nội Suy Newton,1,Nordic,21,Olympiad Corner,1,Olympiad Preliminary,2,Olympic 10,134,Olympic 10/3,6,Olympic 10/3 Đắk Lắk,6,Olympic 11,122,Olympic 12,52,Olympic 23/3,2,Olympic 24/3,10,Olympic 24/3 Quảng Nam,10,Olympic 27/4,24,Olympic 30/4,61,Olympic KHTN,8,Olympic Sinh Viên,78,Olympic Tháng 4,12,Olympic Toán,344,Olympic Toán Sơ Cấp,3,Ôn Thi 10,2,PAMO,1,Phạm Đình Đồng,1,Phạm Đức Tài,1,Phạm Huy Hoàng,1,Pham Kim Hung,3,Phạm Quốc Sang,2,Phan Huy Khải,1,Phan Quang Đạt,1,Phan Thành Nam,1,Pháp,2,Philippines,8,Phú Thọ,32,Phú Yên,42,Phùng Hồ Hải,1,Phương Trình Hàm,11,Phương Trình Pythagoras,1,Pi,1,Polish,32,Problems,1,PT-HPT,14,PTNK,65,Putnam,27,Quảng Bình,65,Quảng Nam,57,Quảng Ngãi,49,Quảng Ninh,60,Quảng Trị,42,Quỹ Tích,1,Riemann,1,RMM,14,RMO,24,Romania,38,Romanian Mathematical,1,Russia,1,Sách Thường Thức Toán,7,Sách Toán,70,Sách Toán Cao Học,1,Sách Toán THCS,7,Saudi Arabia - Ả Rập Xê Út,9,Scholze,1,Serbia,17,Sharygin,28,Shortlists,56,Simon Singh,1,Singapore,1,Số Học - Tổ Hợp,28,Sóc Trăng,37,Sơn La,22,Spain,8,Star Education,1,Stars of Mathematics,11,Swinnerton-Dyer,1,Talent Search,1,Tăng Hải Tuân,2,Tạp Chí,17,Tập San,3,Tây Ban Nha,1,Tây Ninh,37,Thái Bình,45,Thái Nguyên,61,Thái Vân,2,Thanh Hóa,69,THCS,2,Thổ Nhĩ Kỳ,5,Thomas J. Mildorf,1,Thông Tin Toán Học,43,THPT Chuyên Lê Quý Đôn,1,THPT Chuyên Nguyễn Du,9,THPTQG,16,THTT,31,Thừa Thiên Huế,56,Tiền Giang,30,Tin Tức Toán Học,1,Titu Andreescu,2,Toán 12,7,Toán Cao Cấp,3,Toán Rời Rạc,5,Toán Tuổi Thơ,3,Tôn Ngọc Minh Quân,2,TOT,1,TPHCM,160,Trà Vinh,10,Trắc Nghiệm,1,Trắc Nghiệm Toán,2,Trại Hè,39,Trại Hè Hùng Vương,30,Trại Hè Phương Nam,7,Trần Đăng Phúc,1,Trần Minh Hiền,2,Trần Nam Dũng,12,Trần Phương,1,Trần Quang Hùng,1,Trần Quốc Anh,2,Trần Quốc Luật,1,Trần Quốc Nghĩa,1,Trần Tiến Tự,1,Trịnh Đào Chiến,2,Trường Đông,23,Trường Hè,10,Trường Thu,1,Trường Xuân,3,TST,557,TST 2008-2009,1,TST 2010-2011,22,TST 2011-2012,23,TST 2012-2013,32,TST 2013-2014,29,TST 2014-2015,27,TST 2015-2016,26,TST 2016-2017,41,TST 2017-2018,42,TST 2018-2019,30,TST 2019-2020,34,TST 2020-2021,30,TST 2021-2022,38,TST 2022-2023,42,TST 2023-2024,23,TST 2024-2025,13,TST An Giang,9,TST Bà Rịa Vũng Tàu,11,TST Bắc Giang,5,TST Bắc Ninh,12,TST Bến Tre,10,TST Bình Định,5,TST Bình Dương,7,TST Bình Phước,9,TST Bình Thuận,9,TST Cà Mau,7,TST Cần Thơ,7,TST Cao Bằng,2,TST Đà Nẵng,8,TST Đắk Lắk,12,TST Đắk Nông,2,TST Điện Biên,2,TST Đồng Nai,13,TST Đồng Tháp,13,TST Gia Lai,4,TST Hà Nam,8,TST Hà Nội,12,TST Hà Tĩnh,16,TST Hải Dương,12,TST Hải Phòng,13,TST Hậu Giang,1,TST Hòa Bình,4,TST Hưng Yên,11,TST Khánh Hòa,8,TST Kiên Giang,11,TST Kon Tum,6,TST Lâm Đồng,13,TST Lạng Sơn,3,TST Lào Cai,4,TST Long An,6,TST Nam Định,9,TST Nghệ An,7,TST Ninh Bình,11,TST Ninh Thuận,4,TST Phú Thọ,13,TST Phú Yên,5,TST PTNK,16,TST Quảng Bình,13,TST Quảng Nam,7,TST Quảng Ngãi,8,TST Quảng Ninh,9,TST Quảng Trị,10,TST Sóc Trăng,6,TST Sơn La,7,TST Thái Bình,6,TST Thái Nguyên,8,TST Thanh Hóa,9,TST Thừa Thiên Huế,4,TST Tiền Giang,6,TST TPHCM,15,TST Trà Vinh,1,TST Tuyên Quang,1,TST Vĩnh Long,7,TST Vĩnh Phúc,7,TST Yên Bái,8,Tuyên Quang,14,Tuyển Sinh,4,Tuyển Sinh 10,1064,Tuyển Sinh 10 An Giang,18,Tuyển Sinh 10 Bà Rịa Vũng Tàu,22,Tuyển Sinh 10 Bắc Giang,19,Tuyển Sinh 10 Bắc Kạn,3,Tuyển Sinh 10 Bạc Liêu,9,Tuyển Sinh 10 Bắc Ninh,15,Tuyển Sinh 10 Bến Tre,34,Tuyển Sinh 10 Bình Định,19,Tuyển Sinh 10 Bình Dương,12,Tuyển Sinh 10 Bình Phước,21,Tuyển Sinh 10 Bình Thuận,15,Tuyển Sinh 10 Cà Mau,5,Tuyển Sinh 10 Cần Thơ,10,Tuyển Sinh 10 Cao Bằng,2,Tuyển Sinh 10 Chuyên SPHN,19,Tuyển Sinh 10 Đà Nẵng,18,Tuyển Sinh 10 Đại Học Vinh,13,Tuyển Sinh 10 Đắk Lắk,21,Tuyển Sinh 10 Đắk Nông,7,Tuyển Sinh 10 Điện Biên,5,Tuyển Sinh 10 Đồng Nai,18,Tuyển Sinh 10 Đồng Tháp,23,Tuyển Sinh 10 Gia Lai,10,Tuyển Sinh 10 Hà Giang,1,Tuyển Sinh 10 Hà Nam,16,Tuyển Sinh 10 Hà Nội,80,Tuyển Sinh 10 Hà Tĩnh,19,Tuyển Sinh 10 Hải Dương,17,Tuyển Sinh 10 Hải Phòng,15,Tuyển Sinh 10 Hậu Giang,3,Tuyển Sinh 10 Hòa Bình,15,Tuyển Sinh 10 Hưng Yên,12,Tuyển Sinh 10 Khánh Hòa,12,Tuyển Sinh 10 KHTN,21,Tuyển Sinh 10 Kiên Giang,31,Tuyển Sinh 10 Kon Tum,6,Tuyển Sinh 10 Lai Châu,6,Tuyển Sinh 10 Lâm Đồng,10,Tuyển Sinh 10 Lạng Sơn,6,Tuyển Sinh 10 Lào Cai,10,Tuyển Sinh 10 Long An,18,Tuyển Sinh 10 Nam Định,21,Tuyển Sinh 10 Nghệ An,23,Tuyển Sinh 10 Ninh Bình,20,Tuyển Sinh 10 Ninh Thuận,10,Tuyển Sinh 10 Phú Thọ,18,Tuyển Sinh 10 Phú Yên,12,Tuyển Sinh 10 PTNK,37,Tuyển Sinh 10 Quảng Bình,12,Tuyển Sinh 10 Quảng Nam,15,Tuyển Sinh 10 Quảng Ngãi,13,Tuyển Sinh 10 Quảng Ninh,12,Tuyển Sinh 10 Quảng Trị,7,Tuyển Sinh 10 Sóc Trăng,17,Tuyển Sinh 10 Sơn La,5,Tuyển Sinh 10 Tây Ninh,15,Tuyển Sinh 10 Thái Bình,17,Tuyển Sinh 10 Thái Nguyên,18,Tuyển Sinh 10 Thanh Hóa,27,Tuyển Sinh 10 Thừa Thiên Huế,24,Tuyển Sinh 10 Tiền Giang,14,Tuyển Sinh 10 TPHCM,23,Tuyển Sinh 10 Trà Vinh,6,Tuyển Sinh 10 Tuyên Quang,3,Tuyển Sinh 10 Vĩnh Long,12,Tuyển Sinh 10 Vĩnh Phúc,22,Tuyển Sinh 2008-2009,1,Tuyển Sinh 2009-2010,1,Tuyển Sinh 2010-2011,6,Tuyển Sinh 2011-2012,20,Tuyển Sinh 2012-2013,65,Tuyển Sinh 2013-2014,77,Tuyển Sinh 2013-2044,1,Tuyển Sinh 2014-2015,81,Tuyển Sinh 2015-2016,64,Tuyển Sinh 2016-2017,72,Tuyển Sinh 2017-2018,126,Tuyển Sinh 2018-2019,61,Tuyển Sinh 2019-2020,90,Tuyển Sinh 2020-2021,59,Tuyển Sinh 2021-202,1,Tuyển Sinh 2021-2022,69,Tuyển Sinh 2022-2023,113,Tuyển Sinh 2023-2024,49,Tuyển Sinh Chuyên SPHCM,7,Tuyển Sinh Yên Bái,6,Tuyển Tập,45,Tuymaada,6,UK - Anh,16,Undergraduate,69,USA - Mỹ,62,USA TSTST,6,USAJMO,12,USATST,8,USEMO,4,Uzbekistan,1,Vasile Cîrtoaje,4,Vật Lý,1,Viện Toán Học,6,Vietnam,4,Viktor Prasolov,1,VIMF,1,Vinh,32,Vĩnh Long,41,Vĩnh Phúc,86,Virginia Tech,1,VLTT,1,VMEO,4,VMF,12,VMO,58,VNTST,25,Võ Anh Khoa,1,Võ Quốc Bá Cẩn,26,Võ Thành Văn,1,Vojtěch Jarník,6,Vũ Hữu Bình,7,Vương Trung Dũng,1,WFNMC Journal,1,Wiles,1,Xác Suất,1,Yên Bái,25,Yên Thành,1,Zhautykov,14,Zhou Yuan Zhe,1,
ltr
item
MOlympiad.NET: Mathematics and Youth Magazine Problems 2004
Mathematics and Youth Magazine Problems 2004
MOlympiad.NET
https://www.molympiad.net/2022/04/blog-post_636.html
https://www.molympiad.net/
https://www.molympiad.net/
https://www.molympiad.net/2022/04/blog-post_636.html
true
2506595080985176441
UTF-8
Loaded All Posts Not found any posts VIEW ALL Readmore Reply Cancel reply Delete By Home PAGES POSTS View All RECOMMENDED FOR YOU Tag ARCHIVE SEARCH ALL POSTS Not found any post match with your request Back Home Sunday Monday Tuesday Wednesday Thursday Friday Saturday Sun Mon Tue Wed Thu Fri Sat January February March April May June July August September October November December Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec just now 1 minute ago $$1$$ minutes ago 1 hour ago $$1$$ hours ago Yesterday $$1$$ days ago $$1$$ weeks ago more than 5 weeks ago Followers Follow THIS PREMIUM CONTENT IS LOCKED
NỘI DUNG CAO CẤP NÀY ĐÃ BỊ KHÓA
STEP 1: SHARE THIS ARTICLE TO A SOCIAL NETWORK
BƯỚC 1: CHIA SẺ BÀI VIẾT NÀY LÊN MẠNG XÃ HỘI
STEP 2: CLICK THE LINK ON YOUR SOCIAL NETWORK
BƯỚC 2: BẤM VÀO ĐƯỜNG DẪN TRÊN MẠNG XÃ HỘI CỦA BẠN
Copy All Code Select All Code All codes were copied to your clipboard Can not copy the codes / texts, please press [CTRL]+[C] (or CMD+C with Mac) to copy Table of Content