$hide=mobile$type=ticker$c=12$cols=3$l=0$sr=random$b=0

Mathematics and Youth Magazine Problems 2020

This article has
views, Facebook comments and 0 Blogger comments. Leave a comment.

Issue 511

  1. Find all $6$-digit natural numbers which are both a perfect square and a cube.
  2. Given a triangle $A B C$ with $\widehat{A}=30^{\circ}$, $\widehat{B}=20^{\circ}$. On the side $A B$ choose the point $D$ such that $A D=B C$. Find the value of the angle $\widehat{B C D}$.
  3. Assume that $a, b \in \mathbb{R}$ and $a^{2}+b^{2}+16=8 a+6 b$. Show that
    a) $10 \leq 4 a+3 b \leq 40$.
    b) $7 b \leq 24 a$.
  4. Given a half circle with the center $O,$ the diameter $B C .$ Choose a point $G$ inside the half circle so that $\widehat{B G O}=135^{\circ}$. The line which is perpendicular to $G B$ at $G$ intersects the half circle at $A$. The incircle $I$ of $A B C$ is tangent to $B C$, $C A$ respectively at $D$ and $E .$ Show that $G$ lies on $E D$.
  5. Suppose that $x, y, z$ are positive numbers satisfying $x+y \leq 2 z$. Find the minimum value of the expression $$P=\frac{x}{y+z}+\frac{y}{x+z}-\frac{x+y}{2 z}.$$
  6. Show the inequality $$\left(\frac{x+y}{x-y}\right)^{2020}+\left(\frac{y+z}{y-z}\right)^{2020}+\left(\frac{z+x}{z-x}\right)^{2020}>\frac{2^{1010}}{3^{1009}}$$ where $x, y, z$ are different numbers.
  7. Solve the system of equations $$\begin{cases}x_{2} &=x_{1}^{3}-3 x_{1} \\ x_{3} &=x_{2}^{3}-3 x_{2} \\ \ldots  & \ldots \\ x_{2020} &=x_{2019}^{3}-3 x_{2019} \\ x_{1} &=x_{2020}^{3}-3 x_{2020}\end{cases}$$
  8. Given a right triangle $A B C$ with the right angle $A$ and the altitude $A H$. On the line segment $A H$ choose a point $I$, the line $C I$ intersects $A B$ at $E .$ On the side $A C$ choose the point $F$ such that $E F$ is parallel to $B C$. The line which passes through $F$ and is perpendicular to $C E$ at $N$ intersects $B I$ at $M$. Let $D$ be the intersection between $A N$ and $B C$. Prove that four points $M$, $N$, $D$, $C$ both lies on a circle.
  9. Let $x$, $y$ be real numbers. Find the minimum value of the expression $$P=\sin ^{4} x\left(\sin ^{4} y+\cos ^{4} y+\frac{9}{8} \cos ^{2} x \cdot \sin ^{2} 2 y\right)+\cos ^{4} x.$$
  10. Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying $$f(2 f(x)+2 y)=x+f(2 f(y)+x),\, \forall x, y \in \mathbb{R}.$$
  11. There are $n$ $(n \geq 2)$ soccer teams attending a tournament. Each team will play with all other teams once. The winning team get 3 points, the losing team gets 0 point; and if the match ties, both teams get 1 point. After the tournament, we recognize that all teams got different total points. What is the possible minimal value for the difference between the team with the most points and the team with the least points?
  12. Given a triangle $A B C$ with $I$ is the center of the excircle relative to the vertex $A$. This circle is tangent to $B C$, $C A$, $A B$ respectively at $M, N, P$. Let $E$ be the intersection between $M N$ and $B I$, and $F$ be the intersection between $M P$ and $CI$. The line $B C$ intersects $A E$, $A F$ respectively at $G$, $D$. Show that $A I$ is parallel to the line passing through $M$ and the center of the Euler circle of $A G D$.

Issue 512

  1. Find all natural numbers $N$ so that the sum of its factors is equal to $2 N$ and the product of its factors is equal to $N^{2}$.
  2. Given natural numbers $a, b, c$ such that $\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{7}$. Prove that $$\frac{2019 b-2020 a}{2019 c-2020 b}>1.$$
  3. Solve the system of equations $$\begin{cases} x^{2} &=2 z-1 \\ y^{2} &=x z \\ z^{2} &=2 y-1\end{cases}.$$
  4. Given an acute triangle $A B C$. Draw the altitudes $C H$, $B K$ ($H$, $K$ is respectively on $A B$ and $A C$). Choose two points $P$ and $Q$ on the ray $C H$ and the ray $B K$ respectively such that $\widehat{P A Q}=90^{\circ}$. Draw $A M$ perpendicular to $P Q$ ($M$ is on $P Q$). Show that $M B$ is perpendicular to $M C$.
  5. Let $a, b, c$ be positive numbers satisfying $a b+b c+c a=8$. Find the minimum value of the expression $$P=3\left(a^{2}+b^{2}+c^{2}\right)+\frac{27(a+b)(b+c)(c+a)}{(a+b+c)^{3}}.$$
  6. Let $x, y, z$ be positive numbers so that $x \geq z$. Find the minimum value of the expression $$P=\frac{x z}{y^{2}+y z}+\frac{y^{2}}{x z+y z}+\frac{x+2 z}{x+z}.$$
  7. Find the integral solutions of the equation $$\tan \frac{3 \pi}{x}+4 \sin \frac{2 \pi}{x}=\sqrt{x}.$$
  8. Given a triangle $A B C$ inscribed in a circle $(O)$ and $(I)$ is the incircle of the triangle. Let $M$ be the midpoint of $B C$ and $X$ the midpoint of the arc $\widehat{B A C}$ of $(O)$. Let $P$, $Q$ respectively be the perpendicular projections of $M$ on $C I$, $B I$. Show that $X I \perp P Q$.
  9. Given a triangle $A B C$ with area $S$ and $B C=a$, $C A=b$, $A B=c$. Solve the system of equations (variables $x, y, z$) $$\begin{cases}a^{2} x+b^{2} y+c^{2} z &=4 S \\ x y+y z+z x &=1\end{cases}.$$
  10. For any positive integer $n$ show that $n$ and $2^{2^{n}}+1$ are coprime.
  11. The sequences $\left(x_{n}\right)$, $\left(y_{n}\right)$ are determined as follows $$x_{1}=3,\, x_{2}=17,\quad x_{n+2}=6 x_{n+1}-x_{n},\,\forall n \in \mathbb{N}^*,$$ $$y_{1}=4,\, y_{2}=24,\quad y_{n+2}=6 y_{n+1}-y_{n},\,\forall n \in \mathbb{N}^*.$$ Show that no term in these sequences $\left(x_{n}\right)$, $\left(y_{n}\right)$ is a cube number.
  12. Given a right triangle $A B C$, with the right angle $A$, inscribed in a circle $(O)$. The point $A^{\prime}$ is the reflection point of $A$ over $0$. The point $P$ is the perpendicular projection of $A^{\prime}$ on the perpendicular bisector of $B C$. Let $H_{a}$, $H_{b}$, $H_{c}$ respectively be the orthocenter of $A P A^{\prime}$, $B P A^{\prime}$, $C P A^{\prime}$. Show that the circle $(H_aH_bH_c)$ is tangent to the circle $(O)$.

Issue 513

  1. Find prime numbers $p$, $q$, $r$ satisfying $$p+q^{2}+r^{3}=200.$$
  2. Consider the number $$P=\frac{2^{2}+1}{2^{2}+3.2+4}+\frac{3^{2}+1}{3^{2}+3.3+4}+\ldots+\frac{98^{2}+1}{98^{2}+3.98+4}$$ (including 97 terms). Show that $$\frac{6}{10^{6}}<P<\frac{1}{83325}.$$
  3. Find all positive integers $a$, $b$, $c$, $d$ satisfying $$\begin{cases}a+b+c+d-3 &=a b \\ a+b+c+d-3 &=c d\end{cases}.$$
  4. Given a quadrilateral $A B C D$ with $A B=A D$, $C B=C D$ and $\widehat{A B C}=90^{\circ}$. Let $R$ and $r$ be the circumradius and inradius of $A B C D$ respectively. Prove that $R \geq r \sqrt{2}$.
  5. Given positive numbers $x$, $y$, $z$ satisfying $$\sqrt{x^{2}+y^{2}}+\sqrt{y^{2}+z^{2}}+\sqrt{z^{2}+x^{2}}=2020.$$ Find the minimum value of the expression $$T=\frac{x^{2}}{y+z}+\frac{y^{2}}{z+x}+\frac{z^{2}}{x+y}.$$
  6. Suppose that $a$, $b$, $c$ are positive numbers and $a b c=1$. Show that $$\sqrt{\frac{a b}{b c^{2}+1}}+\sqrt{\frac{b c}{c a^{2}+1}}+\sqrt{\frac{c a}{a b^{2}+1}} \leq \frac{a+b+c}{\sqrt{2}}.$$
  7. Find the real solutions of the system of equations $$\begin{cases} x &\notin(-\pi ; \pi) \\ \sin y-\sin x &=\dfrac{2 x y(\pi+x)}{\pi^{2}+x^{2}} \\ y^{3}+\pi^{3} & =x^{3}-3 \pi x y \end{cases}.$$
  8. Given a circle $(O)$ and a point $P$ inside the circle and is different from $O$. A moving line $\Delta$ passing through $P$ but not $O$ intersects $(O)$ at $E$ and $F .$ The tangents at $E$, $F$ to the circle $(O)$ meet at $T$. Let $S$ be the intersection between the line segment $T P$ and $(O)$. Let $\omega$ be the circle which passes through $S$, $T$ and is tangent to $(O)$. Show that the circle $\omega$ always passing through a fixed point when $\Delta$ varies.
  9. Given real numbers $x$, $y$, $z$ satisfying $x+y+z=0$. Find the minimum value of the expression $$S=\frac{1}{4 e^{2 x}-2 e^{x}+1}+\frac{1}{4 e^{2 y}-2 e^{y}+1}+\frac{1}{4 e^{2 z}-2 e^{z}+1}.$$
  10. Three sequences $\left(a_{n}\right)$, $\left(b_{n}\right)$, $\left(c_{n}\right)$ are determined as follows $a_{0}=2$, $b_{0}=9$, $c_{0}=2020$ and $$\begin{cases}a_{n} & =-\dfrac{1}{4} a_{n-1}+\dfrac{1}{2} b_{n-1}+\dfrac{1}{2} c_{n-1} \\ b_{n} &=\dfrac{1}{2} a_{n-1}-\dfrac{1}{4} b_{n-1}+\dfrac{1}{2} c_{n-1} \\ c_{n} &=\dfrac{1}{2} a_{n-1}+\dfrac{1}{2} b_{n-1}-\dfrac{1}{4} c_{n-1}\end{cases}$$ for all $n=1,2, \ldots$. Find the limits $\displaystyle \lim_{n\to\infty} a_{n}$, $\displaystyle \lim_{n\to\infty}b_{n}$, $\displaystyle \lim_{n\to\infty}c_{n}$. Can you generalize this problem?
  11. Let $h$ be a positive integer so that $p:=2^{h}+1$ is a prime number. Find the smallest positive integer $k$ so that $2^{k}-1$ is divisible by $p$.
  12. Suppose that $(D)$ and $(O)$ are two circles which tangent to each other at $X$. In the case of internally tangent then $(D)$ is inside $(O)$. Let $A$ be a point on $(D)$ which is different from $X$ so that the tangent to $(D)$ at $A$ intersects $(O)$. Let $B$ be any point of that intersection. Show that the radical line of $(O)$ and the circle $(B, B A)$ is a tangent line to $(D)$.

Issue 514

  1. Draw on a board $2019$ plus signs $(+)$ and $2020$ minus signs $(-)$. We perform a procedure as follows. We delete two arbitrary signs. If they are both plus or both minus, we will add back a plus sign. If not, we add back a minus sign. We do it for $4038$ times. What is the remain sign on the board?
  2. Given a triangle $A B C$ with $\hat{A}=60^{\circ}$ and $A B+A C=2 B C$. Show that the median $A M,$ the altitude $B H$ and the angle bisector $C I$ of the triangle are concurrent.
  3. Suppose that $a$, $b$, $c$ are positive numbers and $a+b+c=a b c$. Prove that $$\frac{a}{a^{2}+1}+\frac{b}{b^{2}+1} \leq \frac{c}{\sqrt{c^{2}+1}}.$$
  4. Given an acute triangle $A B C$ inscribed in a circle $O$. Draw the altitude $A D$. Let goi $E$ and $F$ respectively be the perpendicular projections of $D$ on the sides $A B$ and $A C$. Suppose that two line segments $O A$ and $E F$ meet at $I$. Show that $$A B \cdot A C \cdot A I=A D^{3}.$$
  5. Consider the polynomial $f(x)=(x+a)(x+b)$ where $a$ and $b$ are integers. Show that there always exists at least an integer $m$ so that $f(m)=f(2020) \cdot f(2021)$.
  6. Let $a$, $b$, $c$, $d$ be non-negative numbers whose sum is equal to $1$. Find the maximum and minimum values of the expression $$P=\frac{a}{b+1}+\frac{b}{c+1}+\frac{c}{d+1}+\frac{d}{a+1}.$$
  7. Given the system of equation $$\begin{cases}a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n} &=0 \\ a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n} &=0 \\ \ldots & \ldots \\ a_{n 1} x_{1}+a_{n 2} x_{2}+\ldots+a_{n n} x_{n} &=0\end{cases}$$ with the coefficients satisfying
    • $a_{i i}>0, \forall i=\overline{1, n}$
    • $a_{i j}<0, \forall i \neq j, \forall i, j=\overline{1, n}$
    • $\displaystyle \sum_{k=1}^{n} a_{i k}>0, \forall i=\overline{1, n}$.
      Prove the system of equation has unique solution $x_{1}=x_{2}=\ldots=x_{n}=0$.
    1. Given a circle $O$ and a point $M$ outside the circle. Draw a secant $M A B$ ($A$ is in between $M$ and $B$). The tangents at $A$ and $B$ intersect at $C$. Draw $C D$ perpendicular to $M O$ $D E$ perpendicular to $C A$ and $D F$ perpendicular to CB. Show that the line $E F$ always passes through a fixed point when the secant $M A B$ varies. 
    2. Given positive numbers $x$, $y$ satisfying $x<\sqrt{2} y$, $x \sqrt{y^{2}-\dfrac{x^{2}}{2}}=2 \sqrt{y^{2}-\dfrac{x^{2}}{4}}+x$. Find the minimum value of the expression $$P=x^{2} \sqrt{y^{2}-\frac{x^{2}}{2}}.$$
    3. Let $S=1 ! 2 ! \ldots 100 !$. Show that there exists an interger $k$, $1 \leq k \leq 100$, so that $\dfrac{S}{k !}$ is a perfect square. Is such $k$ unique? (Notice that $n !=1.2 .3 \ldots n$ with $n \in \mathbb{N}$ and $0 !:=1$.)
    4. Given a non-constant function $f(x)$ which is determined on $\mathbb{R}$. Show that there always exist a real number $a$, a non-empty proper subset $A$ and two functions $g(x), h(x)$ satisfying $g(x) \geq a$, $\forall x \in A$ and $h(x)<a$, $\forall x \in \bar{A}$ $(\bar{A}=\mathbb{R} \backslash A)$ so that $f(x)=g(x)+h(x)$, $\forall x \in \mathbb{R}$.
    5. Given an acute triangle $A B C$. Two points $M$, $N$ are inside the side $B C$ such that $B M=C N$. The line which passes through $M$ and is perpendicular to $\mathrm{CA}$ intersects $A B$ at $F .$ The line which passes through $N$ and is perpendicular to $A B$ intersects $A C$ at $E$. Two lines $M F$ and $N E$ intersect at $P$. On the circumcircle of $P E F$ choose $Q$ so that $P Q \parallel B C$. Let $R$ be the reflection point of $Q$ in the midpoint of $B C .$ Show that $A R \perp B C$.

    Issue 515

    1. Two stations $A$ and $B$ are $999km$ away. The milestones along the railway from $A$ to $B$ show the distances from that point to $A$ and $B$ as follows $$0 / 999 ; 1 / 998 ; 2 / 997 ; \ldots ; 999 / 0.$$ Among these milestones, how many of them contains only two different digits?
    2. Given a triangle $A B C$ with the side $B C$ is fixed and the vertex $A$ can vary. Draw the perpendicular bisector $A D .$ Through $C$ draw a perpendicular line to $A D$ at $N$. Let $M$ be the midpoint of $A C$. Show that when $A$ is moving, $M N$ always passes through a fixed point.
    3. Suppose that $a$ and $b$ are positive integers so that $(a, 6)=1$ and $3 \mid a+b$. Assume that $p, q$ are prime numbers so that both $p q+a$ and $b p+q$ are also prime numbers. Prove that $a+6$ is a prime number.
    4. Given a circle $(O, R)$. From a point $A$ outside the circle we draw two tangents $A B$, $A C$ ($B$, $C$ are touch points) and a secant $A D E$ $(D$ is in between $A$ and $E)$. The line $B C$ intersects $OA$ at $H$. From $H$ draw the line parallel to $B E$. That line intersects $A B$ at $K$. Show that $B D$ passes through the midpoint of $H K$.
    5. Solve the system of equations $$\begin{cases}x^{3}+x(y+z)^{2} &=26 \\ y^{3}+y(z+x)^{2} &=40 \\ z^{3}+z(x+y)^{2} &=54\end{cases}.$$
    6. Solve the equation $$\sqrt{x^{3}+x+2}=x^{4}-x^{3}-7 x^{2}-x+10.$$
    7. Suppose that $x$, $y$ are positive numbers so that $x+y \leq 6$. Find the minimum value of the expression $$P=x^{2}(6-x)+y^{2}(6-y)+(x+y)\left(\frac{1}{x y}-x y\right).$$
    8. Given a triangle $A B C$. Let $O$ and $I$ be the circumcenter and the incenter of the triangle respectively. Let $D$ be the second intersection between $(O)$ and $AI$. Let $P$ be the intersection between $B C$ and the line which passes though $I$ and perpendicular to $AI$. Let $Q$ be the reflection point of $I$ in $O$. Show that $$\widehat{P A Q}=\widehat{P D Q}=90^{\circ}.$$
    9. Find the limit $$\lim_{n \rightarrow+\infty} \frac{\mid \sqrt[3]{1}]+[\sqrt[3]{2}]+\ldots+\left[\sqrt[3]{n^{3}+3 n^{2}+3 n}\right]}{n^{4}}$$ where $n$ is a positive integer and the notion $[x]$ denote the integer which does not exceed $x$.
    10. Given a positive integer $n$ so that both $6 n+1$ and $20 n+1$ are perfect squares. Show that $58 n+11$ is a composite number.
    11. Suppose that $g:[a, b] \rightarrow R$ is $a$ continuous functions with $g(a) \leq g(b)$ and $f:[a, b] \rightarrow[g(a), g(b)]$ is an increasing function. Show that the equation $f(x)=g(x)$ has at least one solution.
    12. Given a triangle $A B C$. Let $O$ and $H$ be the circumcenter and the orthocenter of the triangle respectively. Let $S$ be the circumcenter of the triangle $O B C$. Denote $K$ and $L$ the reflection points of $S$ in $A B$ and $A C$ respectively. Show that $K L$ passes through the the midpoint of $O H$.

    Issue 516

    1. Let $$A=\frac{1}{1 ! 3}+\frac{1}{2 ! 3}+\frac{1}{3 ! 5}+\ldots+\frac{1}{(n-2) ! n}$$ for $n \in \mathbb{N}, n \geq 3,$ where $n !=1.2 .3 . . n .$ Show that $A<\dfrac{1}{2}$.
    2. For any natural number $n$ which is divisible by $4,$ show that the number $a=27.7^{n}+2021$ cannot be a product of $m$ consecutive natural numbers $(m \in \mathbb{N}, m \geq 2)$
    3. Given positive numbers $a, b, c, d$ satisfying $\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{d}=4$. Show that $$2(a+b+c+d)-4 \geq \sqrt[3]{\frac{a^{3}+b^{3}}{2}}+\sqrt[3]{\frac{b^{3}+c^{3}}{2}}+\sqrt[3]{\frac{c^{3}+d^{3}}{2}}+\sqrt[3]{\frac{d^{3}+a^{3}}{2}}$$
    4. Given an acute triangle $\triangle A B C$. Outside the triangle, draw the equilateral triangle $\Delta A C E$ and the isosceles triangle $\Delta A B D$ with $\widehat{A B D}=120^{\circ}$. Let $I$ be the midpoint of $D E$ and $F(F \neq E)$ the other intersection between $D E$ and the circumcircle of $\Delta A C E .$ Show that $B$, $C$, $I$, $F$ lie on a same circle.
    5. Let $f(x)=x^{2}+b x+c .$ Show that if the equation $f(x)=x$ has two distinct roots and $b^{2}-2 b-3 \geq 4 c$ then the equation $f[f(x)]=x$ has four distinct roots.
    6. Let $f(x)=3 x^{2}+8 x+4 .$ Find the coefficient of $x^{4}$ in the polynomial $g(x)=f(f(f(x))))$
    7. Given positive numbers $a, b, c .$ Prove that $$ \frac{5 a+c}{b+c}+\frac{6 b}{c+a}+\frac{5 c+a}{a+b} \geq 9.$$
    8. A triangle $ABC$ inscribed in a circle O. Let $G$ be the centroid of the triangle. The medians $A A_{1}, B B_{1}, C C_{1}$ of the triangle respectively intersect (O) at $A_{2}, B_{2}, C_{2}$. Show that $$\frac{A_{1} A_{2}}{G A_{1}}+\frac{B_{1} B_{2}}{G B_{1}}+\frac{C_{1} C_{2}}{G C_{1}} \geq 3.$$
    9. Solve the system of equations $$\begin{cases}\sqrt{x^{2}+x+1}-\sqrt{y^{2}-y+1} &=\sqrt{x^{2}+y^{2}-\dfrac{1}{2}} \\ 2 x^{3} y-x^{2} &=\sqrt{x^{4}+x^{2}}-2 x^{3} y \sqrt{4 y^{2}+1}\end{cases}.$$
    10. Find all the prime numbers $p$ and $q$ so that $p^{2}+1 \mid 3^{4}+1$ and $q^{2}+1 \mid 3^{\prime}+1$
    11. Find all continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying $$f(4 x y)=f\left(2 x^{2}+2 y^{2}\right)+4(x-y)^{2},\, \forall x, y \in \mathbb R$$
    12. Suppose that $A B C D$ is a parallelogram with the angle $\widehat{B A D}$ is acute. $A$ moving line $d$, which always passes through $B$, intersects $C D$ at $M .$ The line $A M$ intersects $B C$ at $N$. Two lines $B M, D N$ respectively intersect the circumcircle of the triangle $C M N$ at $K$, $L$ (besides $M$, $N$). Choose $P$ and $Q$ so that $P N=P K$,  $P N \perp A D$, $Q M=Q L$ and $Q M \perp A B$. Show that $P Q$ always passes through a fixed point when $d$ varies.

    Issue 517

    1. Find all the prime numbers $p$ so that $2^{p}+p^{2}$ is a prime.
    2. Given an isosceles right triangle $A B C$ with the vertex angle $A$. The point $D$ inside $A B C$ such that $\widehat{A B D}=\widehat{B C D}=30^{\circ} .$ Compute the vertex angle $\widehat{C A D}$.
    3. Given positive numbers $a, b, c$ such that $a+b+c=1 .$ Find the maximum value of the expression $$P=\frac{1}{a+3}+\frac{1}{b+3}+\frac{1}{c+3}-\frac{1}{3(a b+b c+c a)}.$$
    4. Suppose that $A B C D$ is a thombus with $\widehat{B A C}=60^{\circ}$. Let $M$ be a point on the line segment $B C$ ($M$ is different from $B$ and $C$). The line $A M$ meets the line $C D$ at $N$ and then let $E$ be the intersection between the lines $D M$ and $B N .$ Show that the line $B C$ is tangent to the circumcircle of the triangle $CEN$.
    5. Solve the cquation $$8 x^{2}-11 x+1=(1-x) \sqrt{4 x^{2}-6 x+5}.$$
    6. Given real numbers $x, y, z, t$ satisfying $x^{2}+y^{2}+z^{2}+t^{2} \leq 2 .$ Find the maximum value of the expression $$P(x, y, z, t)=(x+3 y)^{2}+(z+3 t)^{2} + (x+y+z)^{2}+(x+z+t)^{2}.$$
    7. Find all the real roots of the equation $$\left\{\frac{2 x^{2}-5 x+2}{x^{2}-x+1}\right\}=\frac{1}{2}$$ where $\{a\}$ denotes the fractional part of the number $a$. 
    8. Given a convex quadrilateral $A B C D .$ Two diagonals $A C$ and $B D$ intersect at $O .$ Let $M$, $N$, $P$, $Q$ respectively be the perpendicular projections of $O$ on the lines $A B$, $B C$, $C D$, $D A$. Show that $A C$ and $B D$ are perpendicular if and only if $$\frac{1}{O M^{2}}+\frac{1}{O P^{2}}=\frac{1}{O N^{2}}+\frac{1}{O Q^{2}}$$
    9. Given positive numbers $a$, $b$, $c$ such that $a+b+c=3$. Find the minimum value of the expression $$P=\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+\frac{6 a b c}{a b+b c+c a}.$$
    10. Find all the pairs $(p, k)$, where $p$ is a prime number and $k$ is a positive integer. such that $$k !=\left(p^{3}-1\right)\left(p^{3}-p\right)\left(p^{3}-p^{2}\right).$$
    11. Find all the functions $f: \mathbb{Z} \rightarrow \mathbb{Z}$ satisfying $$f(2 f(a)+f(b))=2 a+b-4,\, \forall a, b \in \mathbb{Z}.$$
    12. Given a triangle $A B C$ inscribed in a circle $(O)$ where $B$ and $C$ are fixed and $A$ can vary. There altitudes $A D$, $B E$, $C F$ meet at $H$. Let $\left(C_{1}\right)$, $\left(C_{2}\right)$, $\left(C_{3}\right)$ be the circles with diameters $A B$, $B C$, $CA$ respectively. The line $A H$ intersects $\left(C_{2}\right)$ at $M$. ($M$ belongs to the line scgment $A H$, $B H$ intersects $\left(C_{3}\right)$ at $N$ belongs to the line segment $B H$), $CH$ intersects $\left(C_{1}\right)$ at $P$ ($P$ belongs to the line segment $C H$), $A N$ intersects $\left(C_{1}\right)$ at $S$ which is different from $A$, $A P$ intersects $\left(C_{3}\right)$ at $T$ which is different from $A .$ The lines $N P$ intersects $\left(C_{1}\right)$ at $X$ which is different from $P$, intersects $\left(C_{3}\right)$ at $Y$ which is different from $N$. $X S$ meets $Y T$ at $Z$. The line passing through $A$ and perpendicular to $N P$ intersects $\left(C_{1}\right)$ at $J$ and intersect $\left(C_{3}\right)$ at $L$.
      a) The circle with center $A$ and radius $A N$ meets $\left(C_{1}\right)$ at $V,$ meets $\left(C_{3}\right)$ at $U$. Show that $V$, $N$, $I$ are collinear and $U$, $P$, $L$ collinear.
      b) Show that the incenter of the triangle $X Y Z$ is a fixed point.

    Issue 518

    1. Find prime numbers $x$, $y$, $z$ which satisfy the equality $$x^{5}+y^{3}-(x+y)^{2}=3 z^{3}$$
    2. Given a triangle $A B C$. Let $M$ be the point on the side $A B$ so that $M B=\dfrac{1}{4} A B,$ and $I$ the point on the side $B C$ so that $I C=\dfrac{3}{8} B C$. The point $N$ is the reflection of $A$ in the point $I$. Show that $M N \parallel A C$.
    3. Solve the equation $$\sqrt[3]{x+2020}+\sqrt[3]{x+2021}+\sqrt[3]{x+2022}=0$$
    4. Given an acute triangle $A B C$ $(A B>B C)$ inscribed in a circle $(O)$. Let $A D$ and $C E$ be two altitudes of the triangle $A B C$. Let $I$ be the midpoint of $D E$. The ray $A I$ intersects $(O)$ at $K$ $(K \neq A)$. Show that the circumcenter of the triangle $I D K$ lies on $B D$.
    5. Find the minimum value of the expression $$\frac{a^{3}}{1-a^{2}}+\frac{b^{3}}{1-b^{2}}+\frac{c^{3}}{1-c^{2}}$$ where $a, b, c$ are positive numbers satisfying $a+b+c=1$.
    6. Solve the system of equations $$\begin{cases}\dfrac{1}{\sqrt{4 x^{2}+8 x+5}}+\dfrac{1}{\sqrt{4 y^{2}-8 y+5}} &= \dfrac{2}{\sqrt{(x+y)^{2}+1}} \\ \dfrac{1}{\sqrt{x-1}} +\dfrac{1}{\sqrt{y-3}} &= \dfrac{2 \sqrt{5}}{5}\end{cases}.$$
    7. Given real numbers $a$, $b$, $c$ satisfying $a+b+c=1$. Show that $$8 a b c-8 \leq(a b+b c+c a+1)^{2}$$
    8. Given a triangle $ABC$ inscribed in a circle $(O)$. Let $H$ be the orthocenter of the triangle. Let $X$, $Y$, $Z$ respectively be the second intersection between the circles $(A O H)$, $(B O H)$, $(C O H)$ with $(O)$. Show that $H$ is the incenter of the triangle $X Y Z$. (The notation $(U V W)$ denotes the circumcircle of the triangle $U V W$).
    9. Find all real numbers $x$, $y$, $z$ such that $$2^{x^{2}-3 y+z}+2^{y^{2}-3 z+x}+2^{z^{2}-3 x+y}=\frac{3}{2}$$
    10. The integers from $51$ to $150$ are aranged in a chess board of the size $10 \times 10$. Does there exist an arrangment so that for any pair of numbers $(a ; b)$ which are adjacent in a row or in a column at least one of the following equations $$x^{2}-a x+b=0 \quad \text{and} \quad x^{2}-b x+a=0$$ has an integral solution?
    11. A sequence $\left(a_{n}\right)$ $\left(n \in \mathbb{N}^{*}\right)$ is determined as follows $$a_{1}=1,\, a_{2}=2,\quad a_{n+2}=2 a_{n+1}-p a_{n},\, n \in \mathbb{N}^{*}$$ where $p$ is some prime number. Find all possible values for $p$ so that there exists a positive integer $m$ satisfying $a_{m}=-3$.
    12. Given a non-isosceles triangle $A B C$ and let $I$, $J$ respectively be the center of the incircle of $A B C$ and the excircle corresponding to the angle $A$. Let $D$ be the second intersection between the circle with the diameter $A I$ and the circumcircle of $A B C$. Assume that $E$ is the intersection between $A I$ and $B C$ and $P$ is the midpoint of the arc $B A C$. Show that the intersect between $P J$ and $D E$ lies on the circumcircle of $A B C$.

    Issue 519

    1. Find positive integers $x$, $y$ such that $$x^{y}+y^{x}=23-x y$$
    2. Given a triangle $A B C$ with right angle at $A .$ Let $A H$ be the altitude. If $\dfrac{A H}{B C}=\dfrac{12}{25},$ find $\dfrac{A B}{A C}$.
    3. Suppose that $a$, $b$ are positive and $9 a^{2}+9 b^{2}+82 a b+10 a+10 b \geq 1 .$ Show that $$41 a^{2}+41 b^{2}+18 a b \geq 3-2 \sqrt{2}.$$
    4. Given a rhombus $A B C D$ with $\widehat{A B C}=60^{\circ} .$ The diagonals $A C$ and $B D$ intersect at $O$. A line $d$ through $D$ intersects the opposite rays of the rays $A B$, $C B$ respectively at $E$, $F$ $(E \neq A, F \neq C) .$ Let $M$ be the intersection between $C E$ and $A F,$ and then $H$ the intersection between $O M$ and $E F .$ Show that $A$, $C$, $D$, $H$ lie on some circle.
    5. Solve the equation $$\frac{2020 x^{4}+x^{4} \sqrt{x^{2}+2020}+x^{2}}{2019}=2020.$$
    6. Solve the system of equations $$\begin{cases}\sqrt{x^{2}+1}+x-8 y^{2}+8 \sqrt{2 y}-8 & = \dfrac{1}{x-\sqrt{x^{2}+1}}-8 y^{2}+8 \sqrt{2 y}-4 \\ 2 y^{2}-2 \sqrt{2 y}-\sqrt{x^{2}+1}+x+2 &=0\end{cases}$$
    7. Given the function $f(x)=x^{2}-x+1$. Let $$f_{1}(x)=f(x),\quad f_{n}(x)=f\left(f_{n-1}(x)\right),\,n=2,3,4, \ldots$$ Find the coefficient of $x^{2}$ in the polynomial expansion of $f_{2021}(x)$.
    8. Find the point $M$ inside a given tetrahedron $A B C D$ such that the product of the distances from $M$ to the faces of $A B C D$ is maximal.
    9. Does there exist a triangle $A B C$ with $\sin A=\cos B=\tan C ?$
    10. The sequence determined as follows $$a_{0}=\frac{1}{2},\quad a_{n+1}=\frac{4 n+5}{4 n+6} a_{n},\, \forall n \geq 0.$$ Let $\displaystyle b_{n}=\sum_{i=0}^{n} a_{i}$, $n \in \mathbb{N}$. Find $\displaystyle \lim _{n \rightarrow+\infty} \dfrac{b_{n}}{n}$.
    11. Given real numbers $a, b, c \in[1 ; 5]$ so that $a+b+c=9 .$ Find the minimum and maximum values of the expressions
      a) $P=a b c$.
      b) $F=a b+b c+c a$.
      c) $S_{\lambda}=a^{\lambda}+b^{\lambda}+c^{\lambda}$, where $\lambda$ is a constant $\lambda \in\{0\} \cup[1 ;+\infty)$.
    12. Given a triangle $A B C$ which is not equilateral and $G$ is its centroid. The lines $A G$, $B G$, $C G$ respectively intersect the circumcircles of $G B C$, $G C A$, $G A B$ at $D$, $E$, $F$. Show that the Euler lines of the triangles $D B C$, $E C A$, $F A B$ are concurrent.

    Issue 520

    1. Find all prime numbers $p$ so that $2^{p}+p^{2}$ is a prime.
    2. Given an acute triangle $A B C$. Let $D$ be the point which is equidistant to $3$ vertices of the triangle. Suppose that $E$, $F$ respectively are the midpoints of $B C$, $A C$. Let $G$ be the perpendicular projection of $E$ on $A B,$ then call $J$ the midpoint of $D E .$ Show that the triangle $B G J$ is isosceles.
    3. Solve the following system of equations $$\begin{cases}x^{3}+y &=2 \\ y^{3}+z &=2 \\ z^{3}+t&=2 \\ t^{3}+x&=2\end{cases}.$$
    4. Given a quadrilateral $A B C D$ with $\widehat{A B D}=\widehat{A C D}=90^{\circ} .$ Draw $B H \perp A D$ at $H$. On the diangonal $A C$ we choose the point $I$ so that $A I=A B .$ Let $O$ be the midpoint of $A D .$ The line perpendicular to $O I$ at $I$ intersects $B H$ and $C D$ at $E$ and $F$ respectively. Show that $I F=2 I E$.
    5. Solve the equation $$x+\frac{2 x \sqrt{6}}{\sqrt{x^{2}+1}}=1$$
    6. Solve the following system of equations $$\begin{cases}\sqrt{x}+\sqrt{y}+\sqrt{z}+1&=4 \sqrt{x y z} \\ \dfrac{1}{2 \sqrt{x}+1}+\dfrac{1}{2 \sqrt{y}+1}+\dfrac{1}{2 \sqrt{z}+1}&=\dfrac{3 \sqrt{x y z}}{x+y+z}\end{cases}.$$
    7. Given non-zero numbers $a, b, c$ $d$ whose sum is 4 and each of them is greater or equal to $-2 .$ Show that $$\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}+\frac{1}{d^{2}} \geq \frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}$$
    8. Given a triangle $A B C$ with $B C=a$, $C A=b$, $A B=c .$ Prove that $$\frac{b}{a^{2} c^{2}}\left[a^{2}(b+c)+b^{2}(c+a)+c^{2}(a+b)\right] \geq \frac{6 \sin ^{3} B}{\cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2}}.$$ When does the equality happen?
    9. Solve the equation $$\sum_{r=1}^{\infty}(-1)^{-1} \frac{x(x-1) \ldots(x-r+1)}{(x+1) \ldots(x+r)}=\frac{1}{2}$$ where $n$ is a given positive integer.
    10. The sequence $\left(u_{e}\right)$ is determined as follows $$ u_1=3,\quad u_n = 4u_{n-1}+3 n^{2}-12 n^{3}+12 n-4 ,\,\forall n=2,3, \ldots$$ Show that for any odd prime number $p$, $\displaystyle 2019 \sum_{i=1}^{n-1} u_{i}$ is always divisble by $p$.
    11. Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying $$f(f(x)-2 y)=6 x+f(f(y)+x),\, \forall x, y \in \mathbb{R}$$
    12. Given a triangle $A B C$ and let $(O)$ be it circumcircle. Let $A_{0}$, $B_{0}$, $C_{0}$ respectively be the midpoints of $B C$, $C A$, $A B$. Assume that $A_{1}$, $B_{1}$, $C_{1}$ respectively are the perpendicular projections of $A$, $B$, $C$. Let $(O_a)$ be the circle passing through $B_0$, $C_{0}$ and is internally tangent to $(O)$ at $A_{2}$ which is different from $A$; $\left(O_{b}\right)$ the circle passing through $C_{0}$, $A_{0}$ and is internally tangent to $(O)$ at $B,$ which is different from $B$; and $\left(O_{c}\right)$ the circle passing through $A_{0}$, $B_{0}$ and is internally tangent to $(O)$ at $C_{2}$ which is different from $C$. Let $A_{3}$ be the intersection between $B_{1} C_{1}$ and $B_{2} C_{2}$, and similarly we get the points $B_{3}$, $C_{3}$. Show that $A_{3}, B_{3}$, $C_{3}$ belong to a line which is perpendicular to the Euler line of the triangle $A B C$.

    Issue 521

    1. Find the smallest positive integer $n$ so that for cach set of $n$ numbers chosen from $1 ; 2 ; 3 ; \ldots ; 100,$ there always exist two numbers $a, b$ so that $a+b$ is a prime number.
    2. Given an odd prime number $p$. Find all pairs of positive integers $(x ; y)$ so that both $x+y$ and $x y+1$ are powers of $p$
    3. Find all integers $x, y$ satisfying $$x^{3}(3 y+1)+y^{2}(3 x+1)+(x+y)\left(x^{2}-x y+y^{2}+1\right)+2 x y=343$$
    4. Two circles $(O)$ and $\left(O^{\prime}\right)$ intersect at $A$ and $B$. An exterior common tangent touchs $(O)$ and $\left(O^{'}\right)$ at $C$ and $D .$ Show that $$\frac{A C}{A D}+\frac{B D}{B C} \geq 2$$
    5. Solve the system of equations $$\begin{cases} 3 x^{2} y-x y-y&=1 \\-x y^{2}-y+y^{2} &=3\end{cases}.$$
    6. Given real numbers $x, y \in(0 ; 1)$. Find the maximum value of the expression $$P=\sqrt{x}+\sqrt{y}+\sqrt[4]{12} \sqrt{x \sqrt{1-y^{2}}+y \sqrt{1-x^{2}}}$$
    7. Find the real roots of the equation $$(x+1)\left(x^{2}+1\right)\left(x^{3}+1\right)=30 x^{3}$$
    8. Given a triangle $A B C$ with the centroid $G$, the nine-point center $E$ and the circumradius $R$. Sbow that
      a) $E A+E B+E C \leq 3 R ;$
      b) $E A^{2}+E B^{2}+E C^{4} \geq G A^{2}+G B^{2}+G C^{2}$.
    9. Solve the following trigonometric equation $$\sqrt{4^{n} \cos ^{4 n} x+3}+\sqrt{4^{n} \sin ^{4n} x+3}=4$$ where $n$ is an arbitrary natural number.
    10. Let $a, b, c$ be positive integers. Show that there exists an natural number $k$ so that the three integers $a^{t}+b c$, $b^{4}+c a$, $c^{2}+a b$ have at least one common prime divisor.
    11. Find all functions $f: Z \rightarrow Z$ satisfying $$f\left(f(x)+y f\left(x^{2}\right)\right)=x+x^{2} f(y)$$ for all $x, y \in \mathbb{Z}$
    12. Given a triangle $A B C$ and $M$ is an arbitrary point on the side $B C$. The incircle $(I)$ of the triangle $A B M$ is tangent to the sides $B M$, $M A$, $A B$ respectively at $D$, $E$, $F,$ The incircle $(J)$ of the triangle $A C M$ is tangent to the sides $C M$, $M A$, $A C$ respectively at $X$, $Y$, $Z$ Let $H$ be the intersection between $D F$ and $X Z$. Show that the lines $A H$, $D E$, $X Y$ are concurrent.

    Issue 522

    1. Show that for every $n \in \mathbb{N}$, $4^{2^{n}}+2^{2^{n}}+1$ is divisible by $7$.
    2. Given an acute triangle $A B C$ with $A B < A C$. Let $A D$ be the altitude from $A$ of the triangle. Let $M$ and $N$ so that $A B$ is the perpendicular bisector of $M D$ and $A C$ is the perpendicular bisector of $N D$. The line $M N$ intersects $A B$ at $E$ and intersects $A C$ at $F .$ The lines $B F$ and $C E$ meet at $H$. Let $I$, $K$, $O$ respectively be the midpoints of $B H$, $C H$ and $B C$. Prove that $$\widehat{E I F}=\widehat{E K F}=\widehat{E D F}=\widehat{E O F}.$$
    3. Consider the following sets $$\begin{array}{l}A=\{x \in \mathbb{N}: x=3 k+2 \text {with } k \in \mathbb{N} \text { and } k \leq 668\} \\ B=\{x \in \mathbb{N}: x=5 k+1 \text { with } k \in \mathbb{N} \text { and } k \leq 668\} \\ C=\{x \in \mathbb{N}: x \in A \text { and } x \in B\}\end{array}.$$ How many elements are there in the set $C$?
    4. Given a right triangle $A B C$ with the right angle $A$ and $\hat{B}=60^{\circ}$. Let $A H$ be the altitude from $A$ of the triangle. Let $I$ be the midpoint of $A B$. On the ray $I H$ choose $K$ so that $B K=B A$. Find the value of the angle $\widehat{B K C}$.
    5. Given real numbers $a, b, c$ satisfying $a b \neq 0$, $2 a\left(a^{2}+b^{2}\right)=b c$, and $b\left(a^{2}+15 b^{2}\right)=6 a c$. Compute the value of the expression $$P=\frac{a^{4}+6 a^{2} b^{2}+15 b^{4}}{15 a^{4}+b^{4}}.$$
    6. Solve the system of equations $$\begin{cases}x^{2}+y^{2} &=9 \\ \sqrt{5-x}+\sqrt{23+x-6 y} &=2 \sqrt{5}\end{cases}$$
    7. Given non-negative numbers $a,b,c$ satisfying $25 a+45 b+52 c \leq 95$. Find the maximum value of the expression $$\frac{a+b}{a+b+1}+\frac{b+c}{b+c+1}+\frac{c+a}{c+a+1}.$$
    8. Given a triangle $A B C$. Its incircle $(I)$ is tangent to $B C$, $C A$, $A B$ respectively at $D$, $E$, $F$ Let $M$ be the reflection of $F$ over $B$ and $N$ the reflection of $E$ over $C$. The altitude $D H$ of $D E F$ intersects $M N$ at $G$. Show that $D H=D G$.
    9. Given non-negative numbers $x$, $y$, $z$ satisfying $x+y+z=3$. Prove that $$\left(x^{3}+y^{3}+z^{3}\right)\left(x^{3} y^{3}+y^{3} z^{3}+z^{3} x^{3}\right) \leq 36(x y+y z+z x).$$
    10. The sequence $\left(u_{n}\right)$ is determined as follows $$u_{1}=16,\, u_{2}=288,\quad u_{n+2}=18 u_{n+1}-17 u_{n},\, \forall n \geq 1.$$ Find the smallest possible value for $n$ so that $u_{n}$ is divisible by $2^{2020}$.
    11. Find all functions $f: \mathbb{Z}^{+} \rightarrow \mathbb{Z}^{+}$ satisfying $$f\left(\frac{f(n)}{n^{2020}}\right)=n^{2021},\,\forall n \in \mathbb{Z}.$$
    12. Given a triangle $A B C$. Let $A^{\prime}$ be the reflection of $A$ over the midpoint $M$ of $B C$. The line $A A^{\prime}$ intersects $\left(A^{\prime} B C\right)$ at the second point $K$. Let $I$, $J$ respectively be the centers of $(K A B)$ and $(K A C)$. $I J$ intersects $B C$ at $S$. Show that $S A$ is a tangent line of the circumcircle $(O)$ of $A B C$.

    $hide=mobile$type=ticker$c=36$cols=2$l=0$sr=random$b=0

    Name

    Abel,5,Albania,2,AMM,2,Amsterdam,4,An Giang,47,Andrew Wiles,1,Anh,2,APMO,21,Austria (Áo),1,Ba Lan,1,Bà Rịa Vũng Tàu,77,Bắc Bộ,2,Bắc Giang,62,Bắc Kạn,4,Bạc Liêu,19,Bắc Ninh,54,Bắc Trung Bộ,3,Bài Toán Hay,5,Balkan,41,Baltic Way,32,BAMO,1,Bất Đẳng Thức,69,Bến Tre,73,Benelux,16,Bình Định,65,Bình Dương,39,Bình Phước,52,Bình Thuận,42,Birch,1,BMO,41,Booklet,12,Bosnia Herzegovina,3,BoxMath,3,Brazil,2,British,16,Bùi Đắc Hiên,1,Bùi Thị Thiện Mỹ,1,Bùi Văn Tuyên,1,Bùi Xuân Diệu,1,Bulgaria,6,Buôn Ma Thuột,2,BxMO,15,Cà Mau,22,Cần Thơ,28,Canada,40,Cao Bằng,12,Cao Quang Minh,1,Câu Chuyện Toán Học,43,Caucasus,3,CGMO,11,China - Trung Quốc,25,Chọn Đội Tuyển,532,Chu Tuấn Anh,1,Chuyên Đề,125,Chuyên SPHCM,7,Chuyên SPHN,30,Chuyên Trần Hưng Đạo,3,Collection,8,College Mathematic,1,Concours,1,Cono Sur,1,Contest,675,Correspondence,1,Cosmin Poahata,1,Crux,2,Czech-Polish-Slovak,28,Đà Nẵng,50,Đa Thức,2,Đại Số,20,Đắk Lắk,76,Đắk Nông,15,Danube,7,Đào Thái Hiệp,1,ĐBSCL,2,Đề Thi,1,Đề Thi HSG,2272,Đề Thi JMO,1,DHBB,32,Điện Biên,15,Định Lý,1,Định Lý Beaty,1,Đỗ Hữu Đức Thịnh,1,Do Thái,3,Doãn Quang Tiến,5,Đoàn Quỳnh,1,Đoàn Văn Trung,1,Đồng Nai,65,Đồng Tháp,64,Du Hiền Vinh,1,Đức,1,Dương Quỳnh Châu,1,Dương Tú,1,Duyên Hải Bắc Bộ,32,E-Book,31,EGMO,30,ELMO,19,EMC,11,Epsilon,1,Estonian,5,Euler,1,Evan Chen,1,Fermat,3,Finland,4,Forum Of Geometry,2,Furstenberg,1,G. Polya,3,Gặp Gỡ Toán Học,30,Gauss,1,GDTX,3,Geometry,14,GGTH,30,Gia Lai,40,Gia Viễn,2,Giải Tích Hàm,1,Giới hạn,2,Goldbach,1,Hà Giang,5,Hà Lan,1,Hà Nam,45,Hà Nội,256,Hà Tĩnh,92,Hà Trung Kiên,1,Hải Dương,71,Hải Phòng,57,Hậu Giang,14,Hélènne Esnault,1,Hilbert,2,Hình Học,33,HKUST,7,Hòa Bình,33,Hoài Nhơn,1,Hoàng Bá Minh,1,Hoàng Minh Quân,1,Hodge,1,Hojoo Lee,2,HOMC,5,HongKong,8,HSG 10,126,HSG 10 2010-2011,4,HSG 10 2011-2012,7,HSG 10 2012-2013,8,HSG 10 2013-2014,7,HSG 10 2014-2015,6,HSG 10 2015-2016,2,HSG 10 2016-2017,8,HSG 10 2017-2018,4,HSG 10 2018-2019,4,HSG 10 2019-2020,7,HSG 10 2020-2021,3,HSG 10 2021-2022,4,HSG 10 2022-2023,11,HSG 10 2023-2024,1,HSG 10 Bà Rịa Vũng Tàu,2,HSG 10 Bắc Giang,1,HSG 10 Bạc Liêu,2,HSG 10 Bình Định,1,HSG 10 Bình Dương,1,HSG 10 Bình Thuận,4,HSG 10 Chuyên SPHN,5,HSG 10 Đắk Lắk,2,HSG 10 Đồng Nai,4,HSG 10 Gia Lai,2,HSG 10 Hà Nam,4,HSG 10 Hà Tĩnh,15,HSG 10 Hải Dương,10,HSG 10 KHTN,9,HSG 10 Nghệ An,1,HSG 10 Ninh Thuận,1,HSG 10 Phú Yên,2,HSG 10 PTNK,10,HSG 10 Quảng Nam,1,HSG 10 Quảng Trị,2,HSG 10 Thái Nguyên,9,HSG 10 Vĩnh Phúc,14,HSG 1015-2016,3,HSG 11,135,HSG 11 2009-2010,1,HSG 11 2010-2011,6,HSG 11 2011-2012,10,HSG 11 2012-2013,9,HSG 11 2013-2014,7,HSG 11 2014-2015,10,HSG 11 2015-2016,6,HSG 11 2016-2017,8,HSG 11 2017-2018,7,HSG 11 2018-2019,8,HSG 11 2019-2020,5,HSG 11 2020-2021,8,HSG 11 2021-2022,4,HSG 11 2022-2023,7,HSG 11 2023-2024,1,HSG 11 An Giang,2,HSG 11 Bà Rịa Vũng Tàu,1,HSG 11 Bắc Giang,4,HSG 11 Bạc Liêu,3,HSG 11 Bắc Ninh,2,HSG 11 Bình Định,12,HSG 11 Bình Dương,3,HSG 11 Bình Thuận,1,HSG 11 Cà Mau,1,HSG 11 Đà Nẵng,9,HSG 11 Đồng Nai,1,HSG 11 Hà Nam,2,HSG 11 Hà Tĩnh,12,HSG 11 Hải Phòng,1,HSG 11 Kiên Giang,4,HSG 11 Lạng Sơn,11,HSG 11 Nghệ An,6,HSG 11 Ninh Bình,2,HSG 11 Quảng Bình,12,HSG 11 Quảng Nam,1,HSG 11 Quảng Ngãi,9,HSG 11 Quảng Trị,3,HSG 11 Sóc Trăng,1,HSG 11 Thái Nguyên,8,HSG 11 Thanh Hóa,3,HSG 11 Trà Vinh,1,HSG 11 Tuyên Quang,1,HSG 11 Vĩnh Long,3,HSG 11 Vĩnh Phúc,11,HSG 12,674,HSG 12 2009-2010,2,HSG 12 2010-2011,39,HSG 12 2011-2012,44,HSG 12 2012-2013,58,HSG 12 2013-2014,53,HSG 12 2014-2015,44,HSG 12 2015-2016,37,HSG 12 2016-2017,46,HSG 12 2017-2018,55,HSG 12 2018-2019,43,HSG 12 2019-2020,43,HSG 12 2020-2021,52,HSG 12 2021-2022,35,HSG 12 2022-2023,42,HSG 12 2023-2024,28,HSG 12 2023-2041,1,HSG 12 2024-2025,1,HSG 12 An Giang,9,HSG 12 Bà Rịa Vũng Tàu,13,HSG 12 Bắc Giang,18,HSG 12 Bạc Liêu,4,HSG 12 Bắc Ninh,13,HSG 12 Bến Tre,20,HSG 12 Bình Định,17,HSG 12 Bình Dương,8,HSG 12 Bình Phước,9,HSG 12 Bình Thuận,8,HSG 12 Cà Mau,7,HSG 12 Cần Thơ,7,HSG 12 Cao Bằng,5,HSG 12 Chuyên SPHN,11,HSG 12 Đà Nẵng,3,HSG 12 Đắk Lắk,21,HSG 12 Đắk Nông,1,HSG 12 Điện Biên,3,HSG 12 Đồng Nai,21,HSG 12 Đồng Tháp,18,HSG 12 Gia Lai,14,HSG 12 Hà Nam,5,HSG 12 Hà Nội,17,HSG 12 Hà Tĩnh,16,HSG 12 Hải Dương,16,HSG 12 Hải Phòng,20,HSG 12 Hậu Giang,4,HSG 12 Hòa Bình,10,HSG 12 Hưng Yên,10,HSG 12 Khánh Hòa,4,HSG 12 KHTN,26,HSG 12 Kiên Giang,12,HSG 12 Kon Tum,3,HSG 12 Lai Châu,4,HSG 12 Lâm Đồng,11,HSG 12 Lạng Sơn,8,HSG 12 Lào Cai,17,HSG 12 Long An,18,HSG 12 Nam Định,7,HSG 12 Nghệ An,13,HSG 12 Ninh Bình,12,HSG 12 Ninh Thuận,7,HSG 12 Phú Thọ,18,HSG 12 Phú Yên,13,HSG 12 Quảng Bình,14,HSG 12 Quảng Nam,12,HSG 12 Quảng Ngãi,7,HSG 12 Quảng Ninh,20,HSG 12 Quảng Trị,10,HSG 12 Sóc Trăng,4,HSG 12 Sơn La,5,HSG 12 Tây Ninh,6,HSG 12 Thái Bình,11,HSG 12 Thái Nguyên,13,HSG 12 Thanh Hóa,17,HSG 12 Thừa Thiên Huế,19,HSG 12 Tiền Giang,3,HSG 12 TPHCM,13,HSG 12 Tuyên Quang,3,HSG 12 Vĩnh Long,7,HSG 12 Vĩnh Phúc,20,HSG 12 Yên Bái,6,HSG 9,573,HSG 9 2009-2010,1,HSG 9 2010-2011,21,HSG 9 2011-2012,42,HSG 9 2012-2013,41,HSG 9 2013-2014,35,HSG 9 2014-2015,41,HSG 9 2015-2016,38,HSG 9 2016-2017,42,HSG 9 2017-2018,45,HSG 9 2018-2019,41,HSG 9 2019-2020,18,HSG 9 2020-2021,50,HSG 9 2021-2022,53,HSG 9 2022-2023,55,HSG 9 2023-2024,15,HSG 9 An Giang,9,HSG 9 Bà Rịa Vũng Tàu,8,HSG 9 Bắc Giang,14,HSG 9 Bắc Kạn,1,HSG 9 Bạc Liêu,1,HSG 9 Bắc Ninh,12,HSG 9 Bến Tre,9,HSG 9 Bình Định,11,HSG 9 Bình Dương,7,HSG 9 Bình Phước,13,HSG 9 Bình Thuận,5,HSG 9 Cà Mau,2,HSG 9 Cần Thơ,4,HSG 9 Cao Bằng,2,HSG 9 Đà Nẵng,11,HSG 9 Đắk Lắk,12,HSG 9 Đắk Nông,3,HSG 9 Điện Biên,5,HSG 9 Đồng Nai,8,HSG 9 Đồng Tháp,10,HSG 9 Gia Lai,9,HSG 9 Hà Giang,4,HSG 9 Hà Nam,10,HSG 9 Hà Nội,15,HSG 9 Hà Tĩnh,13,HSG 9 Hải Dương,16,HSG 9 Hải Phòng,8,HSG 9 Hậu Giang,6,HSG 9 Hòa Bình,4,HSG 9 Hưng Yên,11,HSG 9 Khánh Hòa,6,HSG 9 Kiên Giang,16,HSG 9 Kon Tum,9,HSG 9 Lai Châu,2,HSG 9 Lâm Đồng,14,HSG 9 Lạng Sơn,10,HSG 9 Lào Cai,4,HSG 9 Long An,10,HSG 9 Nam Định,9,HSG 9 Nghệ An,21,HSG 9 Ninh Bình,14,HSG 9 Ninh Thuận,4,HSG 9 Phú Thọ,13,HSG 9 Phú Yên,9,HSG 9 Quảng Bình,14,HSG 9 Quảng Nam,12,HSG 9 Quảng Ngãi,13,HSG 9 Quảng Ninh,17,HSG 9 Quảng Trị,10,HSG 9 Sóc Trăng,9,HSG 9 Sơn La,5,HSG 9 Tây Ninh,16,HSG 9 Thái Bình,11,HSG 9 Thái Nguyên,5,HSG 9 Thanh Hóa,12,HSG 9 Thừa Thiên Huế,9,HSG 9 Tiền Giang,7,HSG 9 TPHCM,11,HSG 9 Trà Vinh,2,HSG 9 Tuyên Quang,6,HSG 9 Vĩnh Long,12,HSG 9 Vĩnh Phúc,12,HSG 9 Yên Bái,5,HSG Cấp Trường,80,HSG Quốc Gia,113,HSG Quốc Tế,16,Hứa Lâm Phong,1,Hứa Thuần Phỏng,1,Hùng Vương,2,Hưng Yên,44,Huỳnh Kim Linh,1,Hy Lạp,1,IMC,26,IMO,58,IMT,2,IMU,2,India - Ấn Độ,47,Inequality,13,InMC,1,International,349,Iran,13,Jakob,1,JBMO,41,Jewish,1,Journal,30,Junior,38,K2pi,1,Kazakhstan,1,Khánh Hòa,30,KHTN,64,Kiên Giang,74,Kon Tum,24,Korea - Hàn Quốc,5,Kvant,2,Kỷ Yếu,46,Lai Châu,12,Lâm Đồng,48,Lăng Hồng Nguyệt Anh,1,Lạng Sơn,37,Langlands,1,Lào Cai,35,Lê Hải Châu,1,Lê Hải Khôi,1,Lê Hoành Phò,4,Lê Hồng Phong,5,Lê Khánh Sỹ,3,Lê Minh Cường,1,Lê Phúc Lữ,1,Lê Phương,1,Lê Viết Hải,1,Lê Việt Hưng,2,Leibniz,1,Long An,52,Lớp 10 Chuyên,709,Lớp 10 Không Chuyên,355,Lớp 11,1,Lục Ngạn,1,Lượng giác,1,Lưu Giang Nam,2,Lưu Lý Tưởng,1,Macedonian,1,Malaysia,1,Margulis,2,Mark Levi,1,Mathematical Excalibur,1,Mathematical Reflections,1,Mathematics Magazine,1,Mathematics Today,1,Mathley,1,MathLinks,1,MathProblems Journal,1,Mathscope,8,MathsVN,5,MathVN,1,MEMO,13,Menelaus,1,Metropolises,4,Mexico,1,MIC,1,Michael Atiyah,1,Michael Guillen,1,Mochizuki,1,Moldova,1,Moscow,1,MYM,25,MYTS,4,Nam Định,46,Nam Phi,1,National,276,Nesbitt,1,Newton,4,Nghệ An,73,Ngô Bảo Châu,2,Ngô Việt Hải,1,Ngọc Huyền,2,Nguyễn Anh Tuyến,1,Nguyễn Bá Đang,1,Nguyễn Đình Thi,1,Nguyễn Đức Tấn,1,Nguyễn Đức Thắng,1,Nguyễn Duy Khương,1,Nguyễn Duy Tùng,1,Nguyễn Hữu Điển,3,Nguyễn Minh Hà,1,Nguyễn Minh Tuấn,9,Nguyễn Nhất Huy,1,Nguyễn Phan Tài Vương,1,Nguyễn Phú Khánh,1,Nguyễn Phúc Tăng,2,Nguyễn Quản Bá Hồng,1,Nguyễn Quang Sơn,1,Nguyễn Song Thiên Long,1,Nguyễn Tài Chung,5,Nguyễn Tăng Vũ,1,Nguyễn Tất Thu,1,Nguyễn Thúc Vũ Hoàng,1,Nguyễn Trung Tuấn,8,Nguyễn Tuấn Anh,2,Nguyễn Văn Huyện,3,Nguyễn Văn Mậu,25,Nguyễn Văn Nho,1,Nguyễn Văn Quý,2,Nguyễn Văn Thông,1,Nguyễn Việt Anh,1,Nguyễn Vũ Lương,2,Nhật Bản,4,Nhóm $\LaTeX$,4,Nhóm Toán,1,Ninh Bình,61,Ninh Thuận,26,Nội Suy Lagrange,2,Nội Suy Newton,1,Nordic,21,Olympiad Corner,1,Olympiad Preliminary,2,Olympic 10,136,Olympic 10/3,6,Olympic 10/3 Đắk Lắk,6,Olympic 11,124,Olympic 12,52,Olympic 23/3,2,Olympic 24/3,10,Olympic 24/3 Quảng Nam,10,Olympic 27/4,24,Olympic 30/4,61,Olympic KHTN,8,Olympic Sinh Viên,78,Olympic Tháng 4,12,Olympic Toán,348,Olympic Toán Sơ Cấp,3,Ôn Thi 10,2,PAMO,1,Phạm Đình Đồng,1,Phạm Đức Tài,1,Phạm Huy Hoàng,1,Pham Kim Hung,3,Phạm Quốc Sang,2,Phan Huy Khải,1,Phan Quang Đạt,1,Phan Thành Nam,1,Pháp,2,Philippines,8,Phú Thọ,32,Phú Yên,43,Phùng Hồ Hải,1,Phương Trình Hàm,11,Phương Trình Pythagoras,1,Pi,1,Polish,32,Problems,1,PT-HPT,14,PTNK,65,Putnam,27,Quảng Bình,65,Quảng Nam,58,Quảng Ngãi,50,Quảng Ninh,61,Quảng Trị,42,Quỹ Tích,1,Riemann,1,RMM,14,RMO,24,Romania,38,Romanian Mathematical,1,Russia,1,Sách Thường Thức Toán,7,Sách Toán,70,Sách Toán Cao Học,1,Sách Toán THCS,7,Saudi Arabia - Ả Rập Xê Út,9,Scholze,1,Serbia,17,Sharygin,28,Shortlists,56,Simon Singh,1,Singapore,1,Số Học - Tổ Hợp,28,Sóc Trăng,37,Sơn La,22,Spain,8,Star Education,1,Stars of Mathematics,11,Swinnerton-Dyer,1,Talent Search,1,Tăng Hải Tuân,2,Tạp Chí,17,Tập San,3,Tây Ban Nha,1,Tây Ninh,37,Thái Bình,45,Thái Nguyên,61,Thái Vân,2,Thanh Hóa,69,THCS,2,Thổ Nhĩ Kỳ,5,Thomas J. Mildorf,1,Thông Tin Toán Học,43,THPT Chuyên Lê Quý Đôn,1,THPT Chuyên Nguyễn Du,9,THPTQG,16,THTT,31,Thừa Thiên Huế,56,Tiền Giang,30,Tin Tức Toán Học,1,Titu Andreescu,2,Toán 12,7,Toán Cao Cấp,3,Toán Rời Rạc,5,Toán Tuổi Thơ,3,Tôn Ngọc Minh Quân,2,TOT,1,TPHCM,160,Trà Vinh,10,Trắc Nghiệm,1,Trắc Nghiệm Toán,2,Trại Hè,41,Trại Hè Hùng Vương,32,Trại Hè Hùng Vương 10,11,Trại Hè Hùng Vương 11,10,Trại Hè Phương Nam,7,Trần Đăng Phúc,1,Trần Minh Hiền,2,Trần Nam Dũng,12,Trần Phương,1,Trần Quang Hùng,1,Trần Quốc Anh,2,Trần Quốc Luật,1,Trần Quốc Nghĩa,1,Trần Tiến Tự,1,Trịnh Đào Chiến,2,Trường Đông,23,Trường Hè,10,Trường Thu,1,Trường Xuân,3,TST,561,TST 2008-2009,1,TST 2010-2011,22,TST 2011-2012,23,TST 2012-2013,32,TST 2013-2014,29,TST 2014-2015,27,TST 2015-2016,26,TST 2016-2017,41,TST 2017-2018,42,TST 2018-2019,30,TST 2019-2020,34,TST 2020-2021,30,TST 2021-2022,38,TST 2022-2023,42,TST 2023-2024,22,TST 2024-2025,18,TST An Giang,9,TST Bà Rịa Vũng Tàu,11,TST Bắc Giang,5,TST Bắc Ninh,12,TST Bến Tre,10,TST Bình Định,5,TST Bình Dương,8,TST Bình Phước,9,TST Bình Thuận,9,TST Cà Mau,7,TST Cần Thơ,7,TST Cao Bằng,2,TST Đà Nẵng,8,TST Đắk Lắk,12,TST Đắk Nông,2,TST Điện Biên,2,TST Đồng Nai,13,TST Đồng Tháp,13,TST Gia Lai,4,TST Hà Nam,8,TST Hà Nội,13,TST Hà Tĩnh,16,TST Hải Dương,12,TST Hải Phòng,13,TST Hậu Giang,1,TST Hòa Bình,4,TST Hưng Yên,11,TST Khánh Hòa,8,TST Kiên Giang,11,TST Kon Tum,6,TST Lâm Đồng,13,TST Lạng Sơn,3,TST Lào Cai,4,TST Long An,6,TST Nam Định,9,TST Nghệ An,7,TST Ninh Bình,11,TST Ninh Thuận,4,TST Phú Thọ,13,TST Phú Yên,6,TST PTNK,16,TST Quảng Bình,13,TST Quảng Nam,7,TST Quảng Ngãi,8,TST Quảng Ninh,10,TST Quảng Trị,10,TST Sóc Trăng,6,TST Sơn La,7,TST Thái Bình,6,TST Thái Nguyên,8,TST Thanh Hóa,9,TST Thừa Thiên Huế,4,TST Tiền Giang,6,TST TPHCM,15,TST Trà Vinh,1,TST Tuyên Quang,1,TST Vĩnh Long,7,TST Vĩnh Phúc,7,TST Yên Bái,8,Tuyên Quang,14,Tuyển Sinh,4,Tuyển Sinh 10,1064,Tuyển Sinh 10 An Giang,18,Tuyển Sinh 10 Bà Rịa Vũng Tàu,22,Tuyển Sinh 10 Bắc Giang,19,Tuyển Sinh 10 Bắc Kạn,3,Tuyển Sinh 10 Bạc Liêu,9,Tuyển Sinh 10 Bắc Ninh,15,Tuyển Sinh 10 Bến Tre,34,Tuyển Sinh 10 Bình Định,19,Tuyển Sinh 10 Bình Dương,12,Tuyển Sinh 10 Bình Phước,21,Tuyển Sinh 10 Bình Thuận,15,Tuyển Sinh 10 Cà Mau,5,Tuyển Sinh 10 Cần Thơ,10,Tuyển Sinh 10 Cao Bằng,2,Tuyển Sinh 10 Chuyên SPHN,19,Tuyển Sinh 10 Đà Nẵng,18,Tuyển Sinh 10 Đại Học Vinh,13,Tuyển Sinh 10 Đắk Lắk,21,Tuyển Sinh 10 Đắk Nông,7,Tuyển Sinh 10 Điện Biên,5,Tuyển Sinh 10 Đồng Nai,18,Tuyển Sinh 10 Đồng Tháp,23,Tuyển Sinh 10 Gia Lai,10,Tuyển Sinh 10 Hà Giang,1,Tuyển Sinh 10 Hà Nam,16,Tuyển Sinh 10 Hà Nội,80,Tuyển Sinh 10 Hà Tĩnh,19,Tuyển Sinh 10 Hải Dương,17,Tuyển Sinh 10 Hải Phòng,15,Tuyển Sinh 10 Hậu Giang,3,Tuyển Sinh 10 Hòa Bình,15,Tuyển Sinh 10 Hưng Yên,12,Tuyển Sinh 10 Khánh Hòa,12,Tuyển Sinh 10 KHTN,21,Tuyển Sinh 10 Kiên Giang,31,Tuyển Sinh 10 Kon Tum,6,Tuyển Sinh 10 Lai Châu,6,Tuyển Sinh 10 Lâm Đồng,10,Tuyển Sinh 10 Lạng Sơn,6,Tuyển Sinh 10 Lào Cai,10,Tuyển Sinh 10 Long An,18,Tuyển Sinh 10 Nam Định,21,Tuyển Sinh 10 Nghệ An,23,Tuyển Sinh 10 Ninh Bình,20,Tuyển Sinh 10 Ninh Thuận,10,Tuyển Sinh 10 Phú Thọ,18,Tuyển Sinh 10 Phú Yên,12,Tuyển Sinh 10 PTNK,37,Tuyển Sinh 10 Quảng Bình,12,Tuyển Sinh 10 Quảng Nam,15,Tuyển Sinh 10 Quảng Ngãi,13,Tuyển Sinh 10 Quảng Ninh,12,Tuyển Sinh 10 Quảng Trị,7,Tuyển Sinh 10 Sóc Trăng,17,Tuyển Sinh 10 Sơn La,5,Tuyển Sinh 10 Tây Ninh,15,Tuyển Sinh 10 Thái Bình,17,Tuyển Sinh 10 Thái Nguyên,18,Tuyển Sinh 10 Thanh Hóa,27,Tuyển Sinh 10 Thừa Thiên Huế,24,Tuyển Sinh 10 Tiền Giang,14,Tuyển Sinh 10 TPHCM,23,Tuyển Sinh 10 Trà Vinh,6,Tuyển Sinh 10 Tuyên Quang,3,Tuyển Sinh 10 Vĩnh Long,12,Tuyển Sinh 10 Vĩnh Phúc,22,Tuyển Sinh 2008-2009,1,Tuyển Sinh 2009-2010,1,Tuyển Sinh 2010-2011,6,Tuyển Sinh 2011-2012,20,Tuyển Sinh 2012-2013,65,Tuyển Sinh 2013-2014,77,Tuyển Sinh 2013-2044,1,Tuyển Sinh 2014-2015,81,Tuyển Sinh 2015-2016,64,Tuyển Sinh 2016-2017,72,Tuyển Sinh 2017-2018,126,Tuyển Sinh 2018-2019,61,Tuyển Sinh 2019-2020,90,Tuyển Sinh 2020-2021,59,Tuyển Sinh 2021-202,1,Tuyển Sinh 2021-2022,69,Tuyển Sinh 2022-2023,113,Tuyển Sinh 2023-2024,49,Tuyển Sinh Chuyên SPHCM,7,Tuyển Sinh Yên Bái,6,Tuyển Tập,45,Tuymaada,6,UK - Anh,16,Undergraduate,69,USA - Mỹ,62,USA TSTST,6,USAJMO,12,USATST,8,USEMO,4,Uzbekistan,1,Vasile Cîrtoaje,4,Vật Lý,1,Viện Toán Học,6,Vietnam,4,Viktor Prasolov,1,VIMF,1,Vinh,32,Vĩnh Long,41,Vĩnh Phúc,86,Virginia Tech,1,VLTT,1,VMEO,4,VMF,12,VMO,58,VNTST,25,Võ Anh Khoa,1,Võ Quốc Bá Cẩn,26,Võ Thành Văn,1,Vojtěch Jarník,6,Vũ Hữu Bình,7,Vương Trung Dũng,1,WFNMC Journal,1,Wiles,1,Xác Suất,1,Yên Bái,25,Yên Thành,1,Zhautykov,14,Zhou Yuan Zhe,1,
    ltr
    item
    MOlympiad.NET: Mathematics and Youth Magazine Problems 2020
    Mathematics and Youth Magazine Problems 2020
    MOlympiad.NET
    https://www.molympiad.net/2022/03/mym-2020.html
    https://www.molympiad.net/
    https://www.molympiad.net/
    https://www.molympiad.net/2022/03/mym-2020.html
    true
    2506595080985176441
    UTF-8
    Loaded All Posts Not found any posts VIEW ALL Readmore Reply Cancel reply Delete By Home PAGES POSTS View All RECOMMENDED FOR YOU Tag ARCHIVE SEARCH ALL POSTS Not found any post match with your request Back Home Sunday Monday Tuesday Wednesday Thursday Friday Saturday Sun Mon Tue Wed Thu Fri Sat January February March April May June July August September October November December Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec just now 1 minute ago $$1$$ minutes ago 1 hour ago $$1$$ hours ago Yesterday $$1$$ days ago $$1$$ weeks ago more than 5 weeks ago Followers Follow THIS PREMIUM CONTENT IS LOCKED
    NỘI DUNG CAO CẤP NÀY ĐÃ BỊ KHÓA
    STEP 1: SHARE THIS ARTICLE TO A SOCIAL NETWORK
    BƯỚC 1: CHIA SẺ BÀI VIẾT NÀY LÊN MẠNG XÃ HỘI
    STEP 2: CLICK THE LINK ON YOUR SOCIAL NETWORK
    BƯỚC 2: BẤM VÀO ĐƯỜNG DẪN TRÊN MẠNG XÃ HỘI CỦA BẠN
    Copy All Code Select All Code All codes were copied to your clipboard Can not copy the codes / texts, please press [CTRL]+[C] (or CMD+C with Mac) to copy Table of Content