Mathematics and Youth Magazine Problems 2014


Issue 439

  1. Find all possible ways of inserting three distinct digits into the positions represented by a star in $\overline{155*710*4*16}$ so that the resulting number is divisible by 396.
  2. The triangles $XBC$, $YCA$ and $ZAB$ are constructed externally on the sides of a triangle $ABC$ such that triangle $XBC$ is isosceles with angle $BXC$ equals $120^{0}$ and $YCA$, $ZAB$ are both equilateral. Prove that $XA$ is perpendicular to $YZ$.
  3. Find all positive integer solutions $x,y$ of the equation \[(x^{2}-9y^{2})^{2}=33y+16.\]
  4. Solve the following system of equations \[\begin{cases}6(1-x)^{2} & =\frac{1}{y}\\ 6(1-y)^{2} & =\frac{1}{x} \end{cases}.\]
  5. Point $C$ lies on a half-circle $(O)$ with diameter $AB=2R$, $CH$ is the altitude from $C$ to $AB$ ($H$ differs from $O$). The points $E,F$ move on the half-circle such that $\widehat{CHE}=\widehat{CHF}$. Prove that the line $EF$ always passes through a fixed point.
  6. Solve for $x$ \[\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+x}}}}=\sqrt[3]{6+\sqrt[3]{6+\sqrt[3]{6+\sqrt[3]{6+}x}}}.\]
  7. Solve the following system of equations \[\begin{cases} 4x^{2} & =(\sqrt{x^{2}+1}+1)(x^{2}-y^{3}+3y-2)\\ (x^{2}+y^{2})^{2}+1 & =x^{2}+2y \end{cases}.\]
  8. Let $BC=a$, $CA=b$, $AB=c$ be the side lengths of a triangle $ABC$; $R$ and $r$ denote its circumradius and inradius respectively. If $S$ is the area of triangle $ABC$, prove that \[\frac{R}{r}\geq\max\left\{ \frac{1}{2};\sqrt{\frac{ab^{3}+bc^{3}+ca^{3}}{3S^{2}}};\sqrt{\frac{ab^{3}+bc^{3}+ca^{3}}{3S^{2}}}\right\} .\]
  9. Find all odd positive integers $n$ such that $15^{n}+1$ is divisible by $n$.
  10. Determine all possible pairs of functions $f:\mathbb{R}\to\mathbb{R}$; $g:\mathbb{R}\to\mathbb{R}$ such that for any $x,y\in\mathbb{R}$, the following identity holds \[f(x+g(y))=xf(y)-yg(y)+g(x).\]
  11. $n$ students ($n\geq2$) are standing in a straigh line. Each time the teacher blow a whistle, exactly two students exchange their positions.  Can it be possible that after an odd number of such whistles, all students returned to their original positions?.
  12. Let $AH$ ($H\in BC$) be the altitude of an acute triangle $ABC$. Point $P$ moves on the segment $AH$. Let $E,F$ denote the feet of the perpendicular from $P$ to $AB,AC$ respectively.
    a) Prove that the points $B,R,F,C$ are concyclic.
    b) Let $O'$ denote the center of the circle containing $B,E,F,C$. Prove that $PO'$ always passes through a fix point, independent of the position of point $P$ chosen on $AH$.

Issue 440

  1. Which number is greater? $P$ or $Q$, given that $$\begin{align*} P & =\frac{20}{30}+\frac{20}{70}+\frac{20}{126}+\ldots+\frac{20}{798};\\ Q & =\left(\frac{31}{2}\cdot\frac{32}{2}\cdot\frac{33}{2}\ldots\frac{60}{2}\right):(1.3.5\ldots59). \end{align*}$$
  2. Given $2014$ points $A_{1},A_{2},\ldots,A_{2014}$ and a circle with radius $1$ on the plane, prove that there always exists a point $M$ on the circle such that \[MA_{1}+MA_{2}+\ldots+MA_{2014}\geq2014.\]
  3. Prove that for any natural number $n$, \[n^{4}-5n^{3}-2n^{2}-10n+4\] is not divisible by $49$.
  4. Let $R$ denote the radius of the circumcircle of a given triangle $ABC$. The internal and external angle bisector of angle $\widehat{ACB}$ meet $AB$ at $E$ and $F$ respectively. Prove that if $CE=CF$, then $AC^{2}+BC^{2}=4R^{2}$.
  5. Solve the following system of equations \[\begin{cases} 2x\left(1+\frac{1}{x^{2}-y^{2}}\right) & =5\\ 2(x^{2}+y^{2})\left(1+\frac{1}{(x^{2}-y^{2})^{2}}\right) & =\frac{17}{2}\end{cases}.\]
  6. Determine the funtion \[f(x)=ax^{2}+bx+c \] where $a,b,c$ are integers such that $f(0)=2014$, $f(2014)=0$ and $f(2^{n})$ is a multiple of $3$ for any natural number $n$.
  7. The positive real numbers $x,y,z$ satisfy the equation $xy=1+z(x+y)$. Find the greatest value of \[P=\frac{2xy(xy+1)}{(1+x^{2})(1+y^{2})}+\frac{z}{1+z^{2}}.\]
  8. In an acute triangle $ABC$, the three altitudes $AA_{1},BB_{1},CC_{1}$ meet at $H$. Prove that $ABC$ is an equilateral triangle if and only if \[ HA^{2}+HB^{2}+HC^{2}=4(HA_{1}^{2}+HB_{1}^{2}+HC_{1}^{2}).\]

Issue 441

  1. How many triples of positive integers $(a,b,c)$ are there such that $$\text{lcm}(a,b)=1000,\quad \text{lcm}(b,c)=2000,\quad \text{lcm}(a,c)=2000?.$$
  2. Let $ABC$ be an isosceles triangle $A$ with $\widehat{BAC}=100^{0}$, point $D$ on segment $BC$ such that $\widehat{CAD}=20^{0}$, point $E$ on the ray $AD$ such that triangle $ACE$ is isosceles at vertex $C$. Determine the measure of all angles of triangle $BDE$. 
  3. The sum of $m$ distinct even positive integers and $n$ distinct odd positive integers equal $2014$. Find the greatest possible value of $3m+4n$.
  4. Triangle $ABC$ is inscribed in circle center at $O$. Parallel lines are drawn through vertices $A,B,C$ such that they are not parallel to any of the sides of triangle $ABC$. These parallel lines intersect $(O)$ at $A_{1},B_{1},C_{1}$ respectively. Prove that the orthocenters of triangles $A_{1}BC$, $B_{1}CA$, $C_{1}AB$ are collinear. 
  5. Solve the system of equations \[ \begin{cases} (1+x)(1+x^{2})(1+x^{4}) & =1+y^{7}\\ (1+y)(1+y^{2})(1+y^{4}) & =1+x^{7} \end{cases}.\]
  6. Find all polynomials with real coefficients $P(x)$ such that the following conditions are satisfied \[\begin{cases} P(x)-10 & =\sqrt{P(x^{2}+3)}-13\quad(x\geq0)\\ P(2014) & =2024 \end{cases}.\]
  7. Let $h_{a},h_{b},h_{c}$ and $l_{a},l_{b},l_{c}$ denote the altitudes and inner angle-bisectors of a triangle $ABC$. Prove that \[\frac{1}{h_{a}h_{b}}+\frac{1}{h_{b}h_{c}}+\frac{1}{h_{c}h_{a}}\geq\frac{1}{l_{a}^{2}}+\frac{1}{l_{b}^{2}}+\frac{1}{l_{c}^{2}}.\]
  8. Given that $0<x<\frac{\pi}{2}$. Prove that at least one of the two numbers $\left(\frac{1}{\sin x}\right)^{\frac{1}{\cos^{2}x}}$, $\left(\frac{1}{\cos x}\right)^{\frac{1}{\sin^{2}x}}$ is greater than $\sqrt{3}$.

Issue 442

  1. Find two whole numbers of the form $\overline{ab}$ and $\overline{ba}$ ($a\ne b$) such that \[\frac{\overline{ab}}{\overline{ba}}=\frac{\underset{2014\text{ digits}}{\overline{a\underbrace{3\ldots3}b}}}{\underset{2014\text{ digits}}{\overline{b\underbrace{3\ldots3}a}}}.\]
  2. The sum $A$ below consists of 2014 summands \[A=\frac{1}{19^{1}}+\frac{2}{19^{2}}+\frac{3}{19^{3}}+\ldots+\frac{2014}{19^{2014}}.\] Compare the number $A^{2013}$ with $A^{2014}$.
  3. Let $ABCD$ be a quadriteral whose diagonals $AC$ and $BD$ are perpendicular. $M$ and $N$ are the midpoints of line segments $AB,AD$ respectively. Points $E,F$ are the feet of perpendicular lines from $M$ and $N$ onto $CD,BC$ respectively. Prove that $MNEF$ is a cyclic quadrilateral.
  4. Solve for $x$ \[4x^{3}+4x^{2}-5x+9=4\sqrt[4]{16x+8}.\]
  5. The real numbers $x,y,z$ satisfy $x+y+z=1$. Prove the inequality \[44(xy+yz+zx)\leq(3x+4y+5z)^{2}.\] 
  6. Prove that the following equation has no real solutions \[9x^{4}+x(12x^{2}+6x-1)+(x+1)(9x^{2}+12x+5)+1=0.\]
  7. Triangle $ABC$ inscribed in a circle centerd at $O$ and radius $R$, where $CA\ne CB$, $\widehat{ACB}=90^{0}$. The circumcircle centered at $S$ of triangle $AOB$ meets $CA,CB$ at points $M,N$ respectively. Let $K$ be the reflection of $S$ in the line $MN$. Prove that $SK=R$. 
  8. The real numbers $x,y,z$ satisfy $x^{2}+y^{2}+z^{2}=8$. Determine the largest and smallest values of the following expression \[P=(x-y)^{5}+(y-z)^{5}+(z-x)^{5}.\]

Issue 443

  1. $21$ distinct integers are chosen so that the sum of any subset of $11$ numbers among them is always greater than the sum of the remaining $10$. If one of them is $101$, and the largest number is $2014$, find the other $19$ numbers.
  2. In a triangle $ABC$ where $\widehat{BAC}=40^{0}$ and $\widehat{ABC}=60^{0}$, point $D$ and $E$ are chosen on the sides $AC$ and $AB$ respectively such that $\widehat{CBD}=40^{0}$ and $\widehat{BCE}=70^{0}$. $BD$ and $CE$ intersect at point $F$. Prove that $AF$ is perpendicular to $BC$.
  3. Solve the following system of equations \[\begin{cases} 2\sqrt{2x}-\sqrt{y} & =1\\ \sqrt[3]{8x^{3}+y^{3}} & =\sqrt[3]{2}(\sqrt{x}+\sqrt{y}-1) \end{cases}.\]
  4. In a triangle $ABC$, points $E,D$ on the sides $AB$ and $AC$ respectively such that $\widehat{ABD}=\widehat{ACE}$. The circumcircle of triangle $ADB$ meets $CE$ at $M$ and $N$. The circumcircle of triangle $AEC$ meets $BD$ at $I$ and $K$. Prove that the points $M,I,N,K$ lie on a circle.
  5. Prove that for all positive real numbers $a,b,c$ the following inequality holds \[\frac{a^{2}}{a+b}+\frac{b^{2}}{b+c}+\frac{c^{2}}{c+a}\geq\frac{\sqrt{2}}{4}(\sqrt{a^{2}+b^{2}}+\sqrt{b^{2}+c^{2}}+\sqrt{c^{2}+a^{2}}).\]
  6. Determine all real solutions of the equation \[(x^{5}+x-1)^{5}+x^{5}=2.\]
  7. Let $M$ be a point inside a given triangle $ABC$ and let $x,y,z$ denote the distance from $M$ onto $BC,CA,AB$ respectively. Prove that $\widehat{BAM}=\widehat{CBM}=\widehat{ACM}$ if and only if \[\frac{bx}{c}=\frac{cy}{a}=\frac{az}{b}\] where $BC=a$, $CA=b$, $AB=c$.
  8. Let $x,y,z$ be theree arbitrary numbers from the interval $[0,1]$. Determine the maximum value of $P$, where \[P=\frac{x}{y+z+1}+\frac{y}{z+x+1}+\frac{z}{z+y+1}+(1-x)(1-y)(1-z).\]

Issue 444

  1. Find the maximum calue of positive integer $n$ such that $2013$ can be written as the sum of $n$ compound numbers. How does the answer change if $2013$ is replaced by $2014$.
  2. Let $ABC$ be a right triangle, right angle at $A$, $\widehat{B}=60^{0}$. Point $E$ on side $AC$ such that $\widehat{ABE}=20^{0}$. Point $K$ on the half line $BE$ such that $EK=BC$. Find the measure of the angle $\widehat{BCK}$.
  3. Solve the inequality \[\frac{x^{2}+8}{x+1}+\frac{x^{3}+8}{x^{2}+1}+\frac{x^{4}+8}{x^{3}+8}+\ldots+\frac{x^{101}+8}{x^{100}+1}\geq800.\]
  4. The quadrilateral $ABCD$ is inscribed in circle $(O)$ where angle $\widehat{BAD}$ is obtuse. The rays through $A$ and perpendicular to $AD,AB$ meet $CB,CD$ at $P$ and $Q$ respectively. $PQ$ intersects $BD$ at $M$. Prove that $\widehat{MAC}=90^{0}$.
  5. Solve the system of equations \[\begin{cases} \sqrt{2x-3}-\sqrt{y} & =2x-6\\ x^{3}+y^{3}+7(x+y)xy & =8xy\sqrt{2(x^{2}+y^{2})} \end{cases}.\]
  6. The positive real numbers $a,b,c$ satisfy the equation $abc=1$. Prove the inequality \[a^{3}+b^{3}+c^{3}+\frac{ab}{a^{2}+b^{2}}+\frac{bc}{b^{2}+c^{2}}+\frac{ca}{c^{2}+a^{2}}\geq\frac{9}{2}.\]
  7. Let $ABC$ be a triangle. $D$ is the midpoint of side $BC$ and $M$ is an arbitrary point on segment $BD$. $MEAF$ is a parallellogram where vertex $E$ lies on $AB$, $F$ lies on $AC$, $MF$ and $AD$ intersect at $H$. The line through $B$ and parallel to $EH$ intersects $MF$ at $K$; $AK$ meets $BC$ at $I$. Find the ratio $\dfrac{IB}{ID}$.
  8. The sequence $\{v_{n}\}_{n}$ satisfies \[v_{1}=5,\quad v_{n+1}=v_{n}^{4}-4v_{n}^{2}+2.\] Find a closed formular for $v_{n}$.

Issue 445

  1. Prove that \[\overline{\underset{2014\text{ digits}}{\underbrace{111\ldots111}}\underset{2014\text{ digits}}{\underbrace{222\ldots222}}}-\overline{\underset{2014\text{ digits}}{\underbrace{333\ldots333}}}\] is a perfect square.
  2. Given a triangle $ABC$ with $\widehat{BAC}>90^{0}$ and the lengths of its sides are three consecutive even numbers. Find these lengths. 
  3. Let $a,b$ be two positive real numbers such that $a+b$, $ab$ are positive integers and $[a^{2}+ab]+[b^{2}+ab]$ is a perfect square, where $[x]$ is the greatest integer not exceeding $x$. Prove that $a,b$ are positive integers.
  4. Let $ABC$ be an acute triangle with altitudes $AD$, $BE$, $CF$. On the opposite rays of the rays $DA$, $EB$, $FC$ choose three points $M,N,P$ respectively such that $\widehat{BMC}=\widehat{CNA}=\widehat{APB}=90^{0}$. Prove that the lines containing the sides of the hexagon $APBMCN$ are both tangent to a circle.
  5. Find all integers $m$ such that the equation \[x^{3}+(m+1)x^{2}-(2m-1)x-(2m^{2}+m+4)=0\] has an integer solution.
  6. Given any triple of real numbers $a,b,c>1$. Prove the following inequality \[(\log_{b}a+\log_{c}a-1)(\log_{c}b+\log_{a}b-1)(\log_{a}c+\log_{b}c-1)\leq1.\]
  7. Let $ABC$ ($AB<AC$) be an acute triangle inscribed in a circle $(O)$. The altitudes $AD$, $BE$, $CF$ intersect at $H$. Let $K$ be the midpoint of $BC$. The tangent lines to the circle $(O)$ at $B$ and $C$ meets at $J$. Prove that $HK$, $JD$, $EF$ are concurrent.
  8. Find all functions $f:\mathbb{R}\to\mathbb{R}$ such that $f$ is bounded on a certain interval containing $0$ and $f$ satisfies \[2f(2x)=x+f(x)\] for every $x\in\mathbb{R}$.
  9. Let \[f(x)=x^{3}-3x^{2}+9x+1964\] be a polynomial. Prove that there exists an integer $a$ such that $f(a)$ is divisible by $3^{2014}$. 
  10. Does there exist a continuous funtion $f:\mathbb{R}\to\mathbb{R}$ satisfying the following property: for any $x\in\mathbb{R}$, among $f(x)$, $f(x+1)$, $f(x+2)$ there are exactly two rational numbers and one irrational number?.
  11. Given a sequence $\{a_{n}\}_{1}^{\infty}$ where \[a_{1}=1,\,a_{2}=2014,\quad a_{n+1}=\frac{2013a_{n}}{n}+\left(1+\frac{2013}{n-1}\right)a_{n-1}.\] Find \[\lim_{n\to\infty}\left(\frac{1}{a_{1}}+\frac{1}{a_{2}}+\ldots+\frac{1}{a_{n}}\right). \]
  12. Let $ABCD$ be a quadrilateral circumscribing a circle $(I)$. The sides $AB$ and $BC$ are tangent to $(I)$ at $M$ and $N$ respectively. Let $E$ be the intersection of $AC$ and $MN$, and $F$ be the intersection of $BC$ and $DE$. $DM$ intersects $(I)$ at another point, say $T$. Prove that $FT$ is tangent to $(I)$.

Issue 446

  1. Find all prome numbers $p,q,r$ satisfying \[(p+1)(q+2)(r+3)=4pqr.\]
  2. Given a triangle $ABC$ with $\widehat{A}=75^{0}$, $\widehat{B}=45^{0}$. On the side $AB$, choose a point $D$ such that $\widehat{ACD}=45^{0}$. Prove that $DA=2DB$.
  3. Solve the following system of equations \[\begin{cases} \sqrt{x+y+2}+x+y & =2(x^{2}+y^{2})\\ \frac{1}{x}+\frac{1}{y} & =\frac{1}{x^{2}}+\frac{1}{y^{2}} \end{cases}.\]
  4. Given a triangle $ABC$. Let $(I)$ be the inscribed circle and $(J)$ the escribed circle corresponding to the angle $A$. Suppose that $(J)$ is tangent to the lines $BC$, $CA$ and $AB$ at $D,E$ and $F$ respectively. The line $JD$ meets the line $EF$ at $N$. The line which contains $I$ and is perpendicular to the line $BC$ intersects the line $AN$ at $P$. Let $M$ be the midpoint of $BC$. Prove that $MN=MP$.
  5. Find all the integer solutions of the following equation \[x^{3}=4y^{3}+x^{2}y+y+13.\]
  6. Let $$f(x)=\frac{4^{x+2}}{4^{x}+2}.$$ Find \[f(0)+f\left(\frac{1}{2014}\right)+f\left(\frac{2}{2014}\right)+\ldots+f\left(\frac{2013}{2014}\right)+f(1).\]
  7. Given a tetrahedron $ABCD$. Let $d_{1},d_{2},d_{3}$ be the distances between the pairs of opposite sides $AB$ and $CD$, $AC$ and $BD$, $AD$ and $BC$. Prove that \[V_{ABCD}\geq\frac{1}{3}d_{1}d_{2}d_{3}.\]
  8. Given an integer $n$ which is greater than $1$. Let $a_{1},a_{2},\ldots,a_{n}$ be arbitrary positive real numbers satisfying \[\frac{1}{a_{1}}+\frac{1}{a_{2}}+\ldots+\frac{1}{a_{n}}=1.\] Prove that \[a_{1}^{a_{2}}+a_{2}^{a_{3}}+\ldots+a_{n-1}^{a_{n}}+a_{1}+a_{2}+\ldots+a_{n}>n^{3}+n.\]
  9. Let $T$ be a set of $n$ elements. What is the maximal number of subsets of $T$ which can be picked so that each subset has exactly 3 elements and any two subsets has nonempty intersection?.
  10. Let $p$ be a prime number. Find all the polynomials $f(x)$ with integer coefficients such that for every positive integer $n$, $f(n)$ is a divisor of $p^{n}-1$.
  11. Let $x,y$ be the positive real numbers satisfying $[x]\cdot[y]=30^{4}$, where $[a]$ is the greatest integer not wxceeding $a$. Find the minimum and maximum values of \[P=[x[x]]+[y[y]].\]
  12. Given a triangle $ABC$. Let $E,F$ be points on $CA$, $AB$ respectively such that $EF\parallel BC$. The perpendicular bisector of $BC$ intersects $AC$ at $M$ and the perpendicular bisector of $EF$ intersects $AB$ at $N$. The circle circumscribing the triangle $BCM$ meets $CF$ at $P$ which is different from $C$. The circle circumscribing the triangle $EFN$ meets $CF$ at $Q$ which is different from $F$. Prove that the perpecdicular bisector of $PQ$ contains the midpoint of $MN$.

Issue 447

  1. Find all the integer solutions of the following equation \[1+x+x^{2}+x^{3}=y^{2}.\]
  2. Let $x,y,z$ be three coprime positive integers satisfying \[(x-z)(y-z)=z^{2}.\] Prove that $xyz$ is a perfect square. 
  3. Solve the following equation \[\frac{1}{\sqrt{3x}}+\frac{1}{\sqrt{9x-3}}=\frac{1}{\sqrt{5x-1}}+\frac{1}{\sqrt{7x-2}}.\]
  4. Given a circle $(O,R)$ and a chord $AB$ with the distance from $O$ is $d$ ($0<d<R$). Two circles $(I)$, $(K)$ are externally tangent at $C$, are both tangent to $AB$ and are internally tangent with $(O)$ ($I$ and $K$ are in the same half-plane determined by the line through $AB$). Find the locus of the points $C$ which vary when $(I)$ and $(K)$ vary.
  5. Find all positive integers $a$ and $b$ so that both equations $x^{2}-2ax-3b=0$ and $x^{2}-2bx-3a=0$ have positive integer solution.
  6. Find all positive real numbers $x,y,z$ satisfying system of equations \[\begin{cases} \dfrac{1}{x+1}+\dfrac{1}{y+1}+\dfrac{1}{z+1} & =1\\ xyz(x+y+z)(x+1)(y+1)(z+1 & =1296 \end{cases}.\]
  7. Given a tetrahedron $ABCD$ and the lengths of its sides $AB=BD=DC=x$, $BC=CA=AD=y$. Prove that \[ \frac{3}{5}<\frac{x}{y}<\frac{5}{3}.\]
  8. Find the maximum value of the expression \[P=|(a^{2}-b^{2})(b^{2}-c^{2})(c^{2}-a^{2})|,\] in which $a,b,c$ are nonnegative numbers satisfying $a+b+c=\sqrt{5}$.
  9. Solve equation \[x^{4}+ax^{3}+bx^{2}+2ax+4\] given $9(a^{2}+b^{2})=16$.
  10. Find all pairs of positive integers $(a,b)$ satisfying the following properties: $4a+1$ and $4b-1$ are coprime and $a+b$ is a divisor of $16ab+1$.
  11. Given two sequences \[a_{1}=0,\,a_{2}=16,\,a_{3}=18,\,a_{n+2}=8a_{n}+6a_{n-1}\] and \[b_{1}=3,\,b_{2}=19,\,b_{3}=69,\,b_{n+2}=3b_{n+1}+5b_{n}-b_{n-1}\] for $n\geq2$. Prove that \begin{align*} b_{n} & =C_{n}^{0}a_{n}+C_{n}^{1}a_{n-1}+\ldots+C_{n}^{n-1}a_{1}+3C_{n}^{n},\\ a_{n} & =C_{n}^{0}b_{n}-C_{n}^{1}b_{n-1}+C_{n}^{2}b_{n-2}-\ldots+(-1)^{n-1}C_{n}^{n-1}b_{1}+(-1)^{n}3C_{n}^{n}. \end{align*}
  12. Given a triangle $ABC$ and its circumscribed circle $(O)$. The points $A_{1},B_{1}$and $C_{1}$ are on the sides $BC,CA$ and $AB$ respectively. The circumscribed circles $(AB_{1}C_{1})$, $(BC_{1}A_{1})$, and $(CA_{1}B_{1})$ intersect $(O)$ at $A_{2},B_{2}$ and $C_{2}$ respectively. Find the positions of $A_{1},B_{1}$ and $C_{1}$ so that $\dfrac{S_{A_{1}B_{1}C_{1}}}{S_{A_{2}B_{2}C_{2}}}$ is minimal.

Issue 448

  1. Let $m,n$ be two positive integers such that $3^{m}+5^{n}$ is divisible by $8$. Prove that $3^{n}+5^{m}$ is also divisible by $8$.
  2. Given a triangle $ABC$ with $A$ is an obtuse angle. Let $M$ be the midpoint of $BC$. Inside $\widehat{BAC}$, draw two rays $Ax$ and $Ay$ such that $\widehat{BAx}=\widehat{CAy}=22^{0}$. Let $H$ be the projection of $B$ on $Ax$, and $I$ the projection of $C$ on $Ay$. Find the angle $HMI$.
  3. Solve the following equation \[\sqrt[3]{x^{2}+3x+3}+\sqrt[3]{2x^{2}+3x+2}=6x^{2}+12x+8.\]
  4. Let $ABC$ be a right triangle with the right angle $A$ and let $AB=a$, $AC=b$. Two internal angle bisectors $BB_{1}$ and $CC_{1}$ intersect at $R$, $AR$ intersects $B_{1}C_{1}$ at $M$. Compute the distance from $M$ to $BC$ in terms of $a$ and $b$.
  5. Let $a,b,c$ be positive real numbers satisfying $a^{3}+b^{3}+c^{3}=1$. Prove that \[\frac{a^{2}+b^{2}}{ab(a+b)^{3}}+\frac{b^{2}+c^{2}}{bc(b+c)^{3}}+\frac{c^{2}+a^{2}}{ca(c+a)^{3}}\geq\frac{9}{4}.\]
  6. Express 2015 as a sum of integers $a_{1},a_{2},\ldots,a_{n}$ which are greater than $1$ such that ${\displaystyle \sum_{i=1}^{n}\sqrt[a_{i}]{a_{i}}}$ is maximal.
  7. Given a quadrilateral $ABCD$ and $a,b,c,d$ respectively are external angle bisectors of $\widehat{DAB}$, $\widehat{ABC}$, $\widehat{BCD}$, $\widehat{CDA}$. Denote $K=a\cap b$, $L=b\cap c$, $M=c\cap d$, $N=d\cap a$. Prove that the quadrilateral $KLMN$ inscribes a circle whose radius is \[\frac{KM\cdot LN}{AB+BC+CD+DA}.\]
  8. Suppose that the polynomial \[f(x)=x^{3}+ax^{2}+bx+c\] has three non-negative solutions. Find the maximal real number $\alpha$ such that \[f(x)\geq\alpha(x-a)^{2},\quad\forall x\geq0.\]
  9. Let $[x]$ be the greatest integer not exceeding $x$ and let $\{x\}=x-[x]$. Find $$\left\{ \frac{p^{2012}+q^{2016}}{120}\right\}$$ where $p,q$ are primes numbers which are greater than 5.
  10. Let $x,y,z$ be positive real numbers satisfying $x^{3}+y^{2}+z=2\sqrt{3}+1$. Find the minimum value of the expression \[P=\frac{1}{x}+\frac{1}{y^{2}}+\frac{1}{z^{3}}.\]
  11. Given a sequence $\{a_{n}\}$ whose terms are greater than 1 and satisfy \[\lim_{n\to\infty}\frac{\ln(\ln a_{n})}{n}=\frac{1}{2014}. \] Let $b_{n}=\sqrt{a_{1}+\sqrt{a_{2}+\ldots+\sqrt{a_{n}}}}$ ($n\in\mathbb{N}^{*}$). Prove that $\lim_{n\to\infty}b_{n}$ is a finite number.
  12. Given a triangle $ABC$ and $O$ is any point inside the triangle. Let $P,Q$ and $R$ respectively be the projections of $O$ on $BC$, $CA$ and $AB$ respectively. Let $A_{1},B_{1}$ and $C_{1}$ be arbitrary points other than $A,B,C$ on the lines $BC,CA$ and $AB$ respectively. Let $A_{2},B_{2}$and $C_{2}$ are the reflections of $A_{1},B_{1}$ and $C_{1}$ through the points $P,Q$ and $R$. Let \begin{align*} Z_{1} & \equiv(AB_{1}C_{1})\cap(BC_{1}A_{1})\cap(CA_{1}B_{1}),\\ Z_{2} & \equiv(AB_{2}C_{2})\cap(BC_{2}A_{2})\cap(CA_{2}B_{2}). \end{align*} Prove that $O$ is equidistant from $Z_{1}$ and $Z_{2}$.

Issue 449

  1. Find the minimum value of the products of $5$ different integers among which the sum of any $3$ arbitrary numbers is always greater than the sum of the remains.
  2. Let $ABC$ be a triangle with $AB>AC$ and $AB>BC$. On the side $AB$ choose $D$ and $E$ such that $BC=BD$ and $AC=AE$. Choose $K$ on $CA$ and $I$ on $CB$ such that $DK$ is parallel to $BC$ and $EI$ is parallel to $CA$. Prove that $CK=CI$.
  3. Solve the follwowing equation \[\frac{1}{\sqrt{x+3}}+\frac{1}{\sqrt{3x+1}}=\frac{2}{1+\sqrt{x}}.\]
  4. Given an acute triangle $ABC$ with the orthocenter $H$. Let $M$ be a point inside the triangle such that $\widehat{MAB}=\widehat{MCA}$. Let $E$ and $F$ respectively be the orthogonal projections of $M$ on $AB$ and $AC$. Let $I$ and $J$ respectively be the midpoints of $BC$ and $MA$. Prove that 3 lines $MH$, $EF$ and $IJ$ are concurrent.
  5. Find all pairs of integers $(x,y)$ satisfying \[x^{4}+y^{3}=xy^{3}+1.\]
  6. Solve the following equation \[ 8^{x}-9|x|=2-3^{x}.\]
  7. Given a triangle $ABC$ with the sides $AB=c$, $CA=b$, $BC=a$. Assume that the radius of the circumscribed circle is $R$ and the radius of the inscribed circle is $r$. Show that \[ \frac{r}{R}\leq\frac{3(ab+bc+ca)}{2(a+b+c)^{2}}.\]
  8. Let $x,y,z$ be 3 positive real numbers with $x\geq z$. Find the minimum value of the expression \[P=\frac{xz}{y^{2}+yz}+\frac{y^{2}}{xz+yz}+\frac{x+2z}{x+z}.\]
  9. Find the integer part of the expression \[B=\frac{1}{3}+\frac{5}{7}+\frac{9}{13}+\ldots+\frac{2013}{2015}.\]
  10. Find all polynomials $f(x)$ with integer coefficients such that $f(n)$ is a divisor of $3^{n}-1$ for every positive integer $n$. 
  11. Let $\{x_{n}\}$ be a sequence satisfying \[x_{0}=4,\,x_{1}=34,\,x_{n+2}\cdot x_{n}=x_{n+1}^{2}+18\cdot10^{n+1},\,\forall n\in\mathbb{N}.\] Let ${\displaystyle S_{n}=\sum_{k=0}^{26}x_{n+k}}$, $n\in\mathbb{N}^{*}$. Prove that, for every odd natural number $n$, $66|S_{n}$.
  12. Given a triangle $ABC$. The point $E$ and $F$ respectively vary on the sides $CA$ and $AB$ such that $BF=CE$. Let $D$ be the intersection of $BE$ and $CF$. Let $H$ and $K$ respectively be the orthocenters of $DEF$ and $DBC$. Prove that, when $E$ and $F$ change, the line $HK$ always passes through a fixed point.

Issue 450

  1. Find all positive integers $a$ and $b$ such that $b|a+2$ and $a|b+3$.
  2. Given a right triangle $ABC$ with the right angle $A$. Choose $E$ on the side $BC$ such that $EC=2EB$. Prove that $AC^{2}=3(EC^{2}-EA^{2})$.
  3. Solve the following equation \[\frac{1}{x+\sqrt{x^{2}-1}}=\frac{1}{4x}+\frac{3x}{2x^{2}+2}.\]
  4. Let $BC$ be a chord of a circle with center $O$ and radius $R$. Assume that $BC=R$. Let $A$ be apoint on the major arc $BC$ ($A\ne B$, $A\ne C$), and $M,N$ points on the chord $AC$ such that $AC=2AN=\frac{3}{2}AM$. Choose $P$ on $AB$ such that $MP$ is perpendicular to $AB$. Prove that three points $P,O$ and $N$ are collinear.
  5. Assume that equation \[ax^{3}-x^{2}+bx-1=0,\quad(a\ne0)\] has three positive real solutions. Find the minimum value of the expression \[M=(1-2ab)\frac{b}{a^{2}}.\]
  6. Let $x$ and $y$ be two positive real numbers satisfying $32x^{6}+4y^{3}=1$. Find the maximum value of the expression \[P=\frac{(2x^{2}+y+3)^{3}}{3(x^{2}+y^{2})-3(x+y)+2}.\]
  7. Given an acute triangle $ABC$ ($AB>AC$). The heights $BB'$ and $CC'$ intersect at $H$. Let $M,N$ respectively be the midpoints of the sides $AB,AC$ and $O$ the circumcenter. $AH$ intersects $B'C'$ at $E$, and $AO$ intersects $MN$ at $F$. Prove that $EF\parallel OH$.
  8. Given three positive numbers $a,b,c$. Find the maximum value of $k$ so that the following inequality holds \[\frac{a}{b}+\frac{b}{c}+\frac{c}{a}-3\geq3\left(\frac{a^{2}+b^{2}+c^{2}}{ab+bc+ca}-1\right).\]
  9. Find all positive integers $x,y,z$ which form an airthmetic progression and satisfy the following equation \[\frac{x^{2}(x+y)(x+z)}{(x-y)(x-z)}+\frac{y^{2}(y+z)(y+x)}{(y-z)(y-x)}+\frac{z^{2}(z+x)(z+y)}{(z-x)(z-y)}=2016+(x+y-z)^{2}.\]
  10. Given a $999\times999$ table of squares. Each square is colored by white or red. Consider a set of triples of squares $(C_{1},C_{2},C_{3})$ which satisfy the following properties: the first two squares $C_{1},C_{2}$ are in the same row, the last two squares $C_{2},C_{3}$ are in the same column, $C_{1},C_{3}$ are white, and $C_{2}$ is red. Find the maximum number of elements in such a set.
  11. Find all positive integers $n>1$ and all primes $p$ such that the polynomial $f(x)=x^{n}-px+p^{2}$ ca be factorized as a product of two non-constant polynomials with integer coefficients. 
  12. Assume that $ABC$ is an equilateral triangle and $M$ is a point which is not on the lines through $BC$, $CA$ and $AB$. Prove that the Euler lines of the triangles $MBC$, $MCA$, and $MAB$ are either concurrent or parallel.
MOlympiad.NET là dự án thu thập và phát hành các đề thi tuyển sinh và học sinh giỏi toán. Quý bạn đọc muốn giúp chúng tôi chỉnh sửa đề thi này, xin hãy để lại bình luận facebook (có thể đính kèm hình ảnh) hoặc google (có thể sử dụng $\LaTeX$) bên dưới. BBT rất mong bạn đọc ủng hộ UPLOAD đề thi và đáp án mới hoặc liên hệ
Chúng tôi nhận tất cả các định dạng của tài liệu: $\TeX$, PDF, WORD, IMG,...



Name

Abel Albania AMM Amsterdam An Giang Andrew Wiles Anh APMO Austria (Áo) Ba Đình Ba Lan Bà Rịa Vũng Tàu Bắc Bộ Bắc Giang Bắc Kạn Bạc Liêu Bắc Ninh Bắc Trung Bộ Bài Toán Hay Balkan Baltic Way BAMO Bất Đẳng Thức Bến Tre Benelux Bình Định Bình Dương Bình Phước Bình Thuận Birch BMO Booklet Bosnia Herzegovina BoxMath Brazil British Bùi Đắc Hiên Bùi Thị Thiện Mỹ Bùi Văn Tuyên Bùi Xuân Diệu Bulgaria Buôn Ma Thuột BxMO Cà Mau Cần Thơ Canada Cao Bằng Cao Quang Minh Câu Chuyện Toán Học Caucasus CGMO China - Trung Quốc Chọn Đội Tuyển Chu Tuấn Anh Chuyên Đề Chuyên Sư Phạm Chuyên Trần Hưng Đạo Collection College Mathematic Concours Cono Sur Contest Correspondence Cosmin Poahata Crux Czech-Polish-Slovak Đà Nẵng Đa Thức Đại Số Đắk Lắk Đắk Nông Đan Phượng Danube Đào Thái Hiệp ĐBSCL Đề Thi Đề Thi HSG Đề Thi JMO Điện Biên Định Lý Định Lý Beaty Đỗ Hữu Đức Thịnh Do Thái Doãn Quang Tiến Đoàn Quỳnh Đoàn Văn Trung Đống Đa Đồng Nai Đồng Tháp Du Hiền Vinh Đức Duyên Hải Bắc Bộ E-Book EGMO ELMO EMC Epsilon Estonian Euler Evan Chen Fermat Finland Forum Of Geometry Furstenberg G. Polya Gặp Gỡ Toán Học Gauss GDTX Geometry Gia Lai Gia Viễn Giải Tích Hàm Giảng Võ Giới hạn Goldbach Hà Giang Hà Lan Hà Nam Hà Nội Hà Tĩnh Hà Trung Kiên Hải Dương Hải Phòng Hậu Giang Hậu Lộc Hilbert Hình Học HKUST Hòa Bình Hoài Nhơn Hoàng Bá Minh Hoàng Minh Quân Hodge Hojoo Lee HOMC HongKong HSG 10 HSG 10 Bắc Giang HSG 10 Thái Nguyên HSG 10 Vĩnh Phúc HSG 11 HSG 11 Bắc Giang HSG 11 Lạng Sơn HSG 11 Thái Nguyên HSG 11 Vĩnh Phúc HSG 12 HSG 12 2010-2011 HSG 12 2011-2012 HSG 12 2012-2013 HSG 12 2013-2014 HSG 12 2014-2015 HSG 12 2015-2016 HSG 12 2016-2017 HSG 12 2017-2018 HSG 12 2018-2019 HSG 12 2019-2020 HSG 12 2020-2021 HSG 12 2021-2022 HSG 12 Bắc Giang HSG 12 Bình Phước HSG 12 Đồng Tháp HSG 12 Lạng Sơn HSG 12 Long An HSG 12 Quảng Nam HSG 12 Quảng Ninh HSG 12 Thái Nguyên HSG 12 Vĩnh Phúc HSG 9 HSG 9 2010-2011 HSG 9 2011-2012 HSG 9 2012-2013 HSG 9 2013-2014 HSG 9 2014-2015 HSG 9 2015-2016 HSG 9 2016-2017 HSG 9 2017-2018 HSG 9 2018-2019 HSG 9 2019-2020 HSG 9 2020-2021 HSG 9 2021-202 HSG 9 2021-2022 HSG 9 Bắc Giang HSG 9 Bình Phước HSG 9 Đồng Tháp HSG 9 Lạng Sơn HSG 9 Long An HSG 9 Quảng Nam HSG 9 Quảng Ninh HSG 9 Vĩnh Phúc HSG Cấp Trường HSG Quốc Gia HSG Quốc Tế Hứa Lâm Phong Hứa Thuần Phỏng Hùng Vương Hưng Yên Hương Sơn Huỳnh Kim Linh Hy Lạp IMC IMO IMT India - Ấn Độ Inequality InMC International Iran Jakob JBMO Jewish Journal Junior K2pi Kazakhstan Khánh Hòa KHTN Kiên Giang Kim Liên Kon Tum Korea - Hàn Quốc Kvant Kỷ Yếu Lai Châu Lâm Đồng Lạng Sơn Langlands Lào Cai Lê Hải Châu Lê Hải Khôi Lê Hoành Phò Lê Khánh Sỹ Lê Minh Cường Lê Phúc Lữ Lê Phương Lê Quý Đôn Lê Viết Hải Lê Việt Hưng Leibniz Long An Lớp 10 Lớp 10 Chuyên Lớp 10 Không Chuyên Lớp 11 Lục Ngạn Lượng giác Lương Tài Lưu Giang Nam Lý Thánh Tông Macedonian Malaysia Margulis Mark Levi Mathematical Excalibur Mathematical Reflections Mathematics Magazine Mathematics Today Mathley MathLinks MathProblems Journal Mathscope MathsVN MathVN MEMO Metropolises Mexico MIC Michael Guillen Mochizuki Moldova Moscow MYM MYTS Nam Định Nam Phi National Nesbitt Newton Nghệ An Ngô Bảo Châu Ngô Việt Hải Ngọc Huyền Nguyễn Anh Tuyến Nguyễn Bá Đang Nguyễn Đình Thi Nguyễn Đức Tấn Nguyễn Đức Thắng Nguyễn Duy Khương Nguyễn Duy Tùng Nguyễn Hữu Điển Nguyễn Mình Hà Nguyễn Minh Tuấn Nguyễn Phan Tài Vương Nguyễn Phú Khánh Nguyễn Phúc Tăng Nguyễn Quản Bá Hồng Nguyễn Quang Sơn Nguyễn Tài Chung Nguyễn Tăng Vũ Nguyễn Tất Thu Nguyễn Thúc Vũ Hoàng Nguyễn Trung Tuấn Nguyễn Tuấn Anh Nguyễn Văn Huyện Nguyễn Văn Mậu Nguyễn Văn Nho Nguyễn Văn Quý Nguyễn Văn Thông Nguyễn Việt Anh Nguyễn Vũ Lương Nhật Bản Nhóm $\LaTeX$ Nhóm Toán Ninh Bình Ninh Thuận Nội Suy Lagrange Nội Suy Newton Nordic Olympiad Corner Olympiad Preliminary Olympic 10 Olympic 10/3 Olympic 11 Olympic 12 Olympic 24/3 Olympic 24/3 Quảng Nam Olympic 27/4 Olympic 30/4 Olympic KHTN Olympic Sinh Viên Olympic Tháng 4 Olympic Toán Olympic Toán Sơ Cấp PAMO Phạm Đình Đồng Phạm Đức Tài Phạm Huy Hoàng Pham Kim Hung Phạm Quốc Sang Phan Huy Khải Phan Thành Nam Pháp Philippines Phú Thọ Phú Yên Phùng Hồ Hải Phương Trình Hàm Phương Trình Pythagoras Pi Polish Problems PT-HPT PTNK Putnam Quảng Bình Quảng Nam Quảng Ngãi Quảng Ninh Quảng Trị Quỹ Tích Riemann RMM RMO Romania Romanian Mathematical Russia Sách Thường Thức Toán Sách Toán Sách Toán Cao Học Sách Toán THCS Saudi Arabia - Ả Rập Xê Út Scholze Serbia Sharygin Shortlists Simon Singh Singapore Số Học - Tổ Hợp Sóc Trăng Sơn La Spain Star Education Stars of Mathematics Swinnerton-Dyer Talent Search Tăng Hải Tuân Tạp Chí Tập San Tây Ban Nha Tây Ninh Thạch Hà Thái Bình Thái Nguyên Thái Vân Thanh Hóa THCS Thổ Nhĩ Kỳ Thomas J. Mildorf THPT Chuyên Lê Quý Đôn THPTQG THTT Thừa Thiên Huế Tiền Giang Tin Tức Toán Học Titu Andreescu Toán 12 Toán Cao Cấp Toán Chuyên Toán Rời Rạc Toán Tuổi Thơ Tôn Ngọc Minh Quân TOT TPHCM Trà Vinh Trắc Nghiệm Trắc Nghiệm Toán Trại Hè Trại Hè Hùng Vương Trại Hè Phương Nam Trần Đăng Phúc Trần Minh Hiền Trần Nam Dũng Trần Phương Trần Quang Hùng Trần Quốc Anh Trần Quốc Luật Trần Quốc Nghĩa Trần Tiến Tự Trịnh Đào Chiến Trường Đông Trường Hè Trường Thu Trường Xuân TST TST 2010-2011 TST 2011-2012 TST 2012-2013 TST 2013-2014 TST 2014-2015 TST 2015-2016 TST 2016-2017 TST 2017-2018 TST 2018-2019 TST 2019-2020 TST 2020-2021 TST 2021-2022 TST Bắc Giang TST Bình Phước TST Đồng Tháp TST Lạng Sơn TST Long An TST Quảng Nam TST Quảng Ninh TST Thái Nguyên TST Vĩnh Phúc Tuyên Quang Tuyển Sinh Tuyển Sinh 10 Tuyển Sinh 10 Bắc Giang Tuyển Sinh 10 Bình Phước Tuyển Sinh 10 Đồng Tháp Tuyển Sinh 10 Lạng Sơn Tuyển Sinh 10 Long An Tuyển Sinh 10 Quảng Nam Tuyển Sinh 10 Quảng Ninh Tuyển Sinh 10 Thái Nguyên Tuyển Sinh 10 Vĩnh Phúc Tuyển Sinh 2010-2011 Tuyển Sinh 2011-2012 Tuyển Sinh 2011-2022 Tuyển Sinh 2012-2013 Tuyển Sinh 2013-2014 Tuyển Sinh 2014-2015 Tuyển Sinh 2015-2016 Tuyển Sinh 2016-2017 Tuyển Sinh 2017-2018 Tuyển Sinh 2018-2019 Tuyển Sinh 2019-2020 Tuyển Sinh 2020-2021 Tuyển Sinh 2021-202 Tuyển Sinh 2021-2022 Tuyển Tập Tuymaada UK - Anh Undergraduate USA - Mỹ USA TSTST USAJMO USATST USEMO Uzbekistan Vasile Cîrtoaje Vật Lý Viện Toán Học Vietnam Viktor Prasolov VIMF Vinh Vĩnh Long Vĩnh Phúc Virginia Tech VLTT VMEO VMF VMO VNTST Võ Anh Khoa Võ Quốc Bá Cẩn Võ Thành Văn Vojtěch Jarník Vũ Hữu Bình Vương Trung Dũng WFNMC Journal Wiles Yên Bái Yên Định Yên Thành Zhautykov Zhou Yuan Zhe
false
ltr
item
MOlympiad.NET: Mathematics and Youth Magazine Problems 2014
Mathematics and Youth Magazine Problems 2014
MOlympiad.NET
https://www.molympiad.net/2022/03/mym-2014.html
https://www.molympiad.net/
https://www.molympiad.net/
https://www.molympiad.net/2022/03/mym-2014.html
true
2506595080985176441
UTF-8
Not found any posts Not found any related posts VIEW ALL Readmore Reply Cancel reply Delete By Home PAGES POSTS View All RECOMMENDED FOR YOU Tag ARCHIVE SEARCH ALL POSTS Not found any post match with your request Back Home Contents See also related Sunday Monday Tuesday Wednesday Thursday Friday Saturday Sun Mon Tue Wed Thu Fri Sat January February March April May June July August September October November December Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec just now 1 minute ago $$1$$ minutes ago 1 hour ago $$1$$ hours ago Yesterday $$1$$ days ago $$1$$ weeks ago more than 5 weeks ago Followers Follow Copy All Code Select All Code All codes were copied to your clipboard Can not copy the codes / texts, please press [CTRL]+[C] (or CMD+C with Mac) to copy THIS PREMIUM CONTENT IS LOCKED
PLEASE FOLLOW THE INSTRUCTIONS TO VIEW THIS CONTENT
NỘI DUNG CAO CẤP NÀY ĐÃ BỊ KHÓA
XIN HÃY LÀM THEO HƯỚNG DẪN ĐỂ XEM NỘI DUNG NÀY
STEP 1: SHARE THIS ARTICLE TO A SOCIAL NETWORK
BƯỚC 1: CHIA SẺ BÀI VIẾT NÀY LÊN MẠNG XÃ HỘI
STEP 2: CLICK THE LINK ON YOUR SOCIAL NETWORK
BƯỚC 2: BẤM VÀO ĐƯỜNG DẪN TRÊN MẠNG XÃ HỘI CỦA BẠN