$hide=mobile$type=ticker$c=12$cols=3$l=0$sr=random$b=0

Mathematics and Youth Magazine Problems 2019

This article has
views, Facebook comments and 0 Blogger comments. Leave a comment.

Issue 499

  1. Find positive integers $x, y$ such that $x^{y}+y^{x}=100$
  2. Given an acute triangle $A B C$. Outside the triangle, we construct two isosceles right triangles with the right angles $A A B D$ and $A C E .$ Let $J$ and $K$ respectively be the perpendicular projections of $D$ and $E$ on $B C$. Prove that $A J K$ is an isosceles right triangle. 
  3. Solve the equation $$\frac{1}{\sqrt{3 x^{2}+x^{3}}}+2 \sqrt{\frac{x}{3 x+1}}=\frac{3}{2}.$$
  4. Given a right triangle $A B C$ with the right angle $A$ and $A C=2 A B$. Let $A H$ be an altitude of $A B C$. On the opposite ray of $A H$ choose the point $K$ such that $A H=2 A K$. Find the sum $\widehat{A K B}+\widehat{H A B}$.
  5. Given real numbers $x, y$ satisfying $y-2 x+4<0$. Find the minimum value of the expression $$P=x^{2}-4 y+\frac{4\left(x^{2}-4 y\right)}{(y-2 x+4)^{2}}.$$
  6. Find all positive numbers $x, y, z$ satisfying $$\begin{cases}x^{2}+y^{2}+z^{2}+x y z &=4 \\ \left(\dfrac{1}{x^{9}}+\dfrac{1}{y^{9}}+\dfrac{1}{z^{9}}\right)(1+2 x y z) &=9\end{cases}.$$
  7. Given positive numbers $a, b, c$ such that $a^{3}+b^{3}+c^{3}=3$. Find the minimum value of the expression $$M=\frac{a^{2}}{b}+\frac{b^{2}}{c}+\frac{c^{2}}{a}.$$
  8. Let $A B C$ be inscribed in a circle $(O)$ and assume that $I$ is the incenter of $A B C$. Assume that $M$ is the midpoint of $A I$. Choose $K$ on $B C$ such that $I K \perp I O$. Choose $Q$ on $(O)$ such that $A Q \parallel I K$. Suppose that $Q M$ intersects $B C$ at $H$. Choose $G$ on $A K$ such that $H G \parallel Q I$. $Q K$ intersects $(O)$ at $L$ other than $Q$. Show that $\widehat{G I K}=\widehat{I A L}$.
  9. For each natural number $n$, let $$A_{n}=\left[\frac{n+3}{4}\right]+\left[\frac{n+5}{4}\right]+\left[\frac{n}{2}\right]$$ (the notation $[x]$ denotes the maximal integer which does not exceed $x$). Find all natural numbers $n$ such that $\dfrac{n^{6}-1}{A_{n}}$ is a perfect square.
  10. We call the trace of a triangle the ratio between the length of its shortest side and the length of its longest side. Given a square with the side equals 2019 length units. Does there exist a positive integer $n$ and a decomposition of this square into $n$ triangles satisfying both following conditions
    • Any side of any of these triangles is less than and equal the side of the square,
    • The sum of all the traces of these $n$ triangles does not exceed $\dfrac{n^{2}+6 n-9}{n^{2}}$.
  11. The sequence $\left\{u_{n}\right\}_{n \in \mathbb{N}^{*}}$ is determined as follows $$u_{1}=1,\quad u_{n+1}=\sqrt{n(n+1)}\frac{u_{n}}{u_{n}^{2}+n},\, \forall n=1,2 \ldots.$$ a) Find $\displaystyle \lim _{n \rightarrow+\infty} u_{n}$.
    b) Find $\left[\dfrac{\sqrt{2018}}{u_{2018}}\right]$ where $[x]$ denotes the maximal integer which does not exceed $x$. 
  12. Given an acute triangle $A B C$. The points $M$, $N$ are on the line segment $B C$ and the points $P$, $Q$ respectively are on the line segments $CA$, $A B$ such that $MNPQ$ is a square. The incircles of $A P Q$, $B Q M$, $C P N$ are respectively tangent to $P Q$, $Q M$, $P N$ at $X$, $Y$, $Z$. Prove that $A X \perp Y Z$.

Issue 500

  1. Find all integer $x$ such that $$(x-2018)^{3}+(x-2019)^{2}=2020-x.$$
  2. Let $x_{n}=2^{2^{n}}+1$, $n=1,2, \ldots, 2019$. Show that $$\frac{1}{x_{1}}+\frac{2}{x_{2}}+\frac{2^{2}}{x_{3}}+\ldots+\frac{2^{2018}}{x_{2019}}<\frac{1}{3}.$$
  3. Given $0<x<y \leq z \leq 2$ and $3 x+2 y+z=9$. Find the maximum value of the expression $$A=3 x^{2}+2 y^{2}+z^{2}.$$
  4. Given triangle $A B C$ with $A B<B C$. On the side $B C$ choose $D$ so that $C D=A B$. Through $D$ draw the line which is parallel to $A C$. This line intersects the angle bisector of $\widehat{A B C}$ at $I$. From $I$ draw $IH$ perpendicular to $B C$ ($H$ is on $B C$). From $H$ draw $H E$ perpendicular to $A B$ ($E$ is on $A B$) and draw $H F$ perpendicular to $A D$ ($F$ is on $A D$). Prove that $\widehat{A E I}=\widehat{A F I}$.
  5. Solve the system of equations $$\begin{cases} x y(x+y)-x(y-1)-\dfrac{3}{8}\left(y^{2}+1\right) &=0 \\ x y^{2}+x-y &=0 \end{cases}.$$
  6. Find $x \in[-1 ; 0]$ such that $$\sqrt{x+1}+\sqrt[3]{x^{2}+1}=2.$$
  7. Solve the equation $$(2+\sqrt{3})^{|\sin x|}+\left(\frac{\sqrt{2}+\sqrt{6}}{2}\right)^{|\cos x|}=\frac{2+\sqrt{2}+\sqrt{6}}{2}.$$
  8. Given a triangle $A B C$ with $h_{\alpha}$, $h_{b}$, $h_{c}$ and $a$, $b$, $c$ are the lengths of altitudes and the corresponding sides. Prove that $$\frac{a}{h_{c}}+\frac{b}{h_{b}}+\frac{c}{h_{c}} \geq 2\left(\tan \frac{A}{2}+\tan \frac{B}{2}+\tan \frac{C}{2}\right).$$
  9. Find all positive integers $n$ such that $$3 n=2 S^{3}(n)+7 S^{2}(n)+16$$ where $S(n)$ is the sum of all the digits of $n$
  10. Given $0<\lambda<1$ and $2019$ positive numbers $x_{1}, x_{2}, \ldots, x_{2019}$ such that $\displaystyle \sum_{i=1}^{200} x=2019$. Prove that $$673 \leq \sum_{i=1}^{2019} f\left(\frac{2019-\lambda x_{i}}{2019-\lambda}\right) \leq \sum_{i=1}^{2019} f\left(x_{i}\right)$$ where $f(x)=\dfrac{1}{x^{2}+x+1}$.
  11. Two sequences $\left(x_{n}\right)$, $\left(y_{n}\right)$ are determined by $x_{1} \in\left[\dfrac{1}{2},\dfrac{\sqrt{3}}{2}\right]$, $y_{1} \in\left[\dfrac{1}{2}, \dfrac{\sqrt{3}}{2}\right]$ and $$x_{n+1}=\sqrt{1-y_{2}^{2}},\,y_{m+}=\frac{1}{\sqrt{21}} \sqrt{9-5 x_{n}^{2}},\,\forall n \in \mathbb{N}.$$ Show that the sequences $\left(x_{n}\right)$, $\left(y_{n}\right)$ converse and then find $\displaystyle \lim_{n\to\infty} x_{2}$ and $\displaystyle \lim_{n\to\infty} y_{n}$.
  12. Given a triangular pyramid $S . A B C$ with $\widehat{A S B}=60^{\circ}$, $\widehat{B S C}=90^{\circ}$, $\widehat{C S A}=120^{\circ}$; $S A=2$, $S B=9$, $S C=4$. Let $X$ be the set of all values $d$ such that there exists a point $M$ from which the distances to the planes $(S B C)$, $(S C A)$, $(S A B)$, $(A B C)$ are respectively $\sqrt{3} d$, $\dfrac{d}{2}$, $d$, $d$. Find the cardinality of $X$ and also find the largest possible value for $d$.

Issue 501

  1. Find natural numbers $x$ such that $$\frac{x-1}{2018}+\frac{x-7}{503}=\frac{x-3}{1008}+\frac{x-9}{670}.$$
  2. Find all pairs non-negative numbers $(x, y)$ such that $$1+3^{x+1}+2.3^{3 x}=y^{3}.$$
  3. Given $0 \leq a \leq 2$, $0 \leq b \leq 2$, $0 \leq c \leq 2$ and $a+b+c=3$. Show that $$3 \leq a^{3}+b^{3}+c^{3} \leq 9.$$
  4. From a point $M$ which is outside a circle $(O)$ we draw a tangent $M A$ and a secant $M B C$ to $(O)$ ($B$ is in between $M$ and $C$). Let $D$, $E$, $K$ respectively be the midpoints of $M A$, $M B$, $M E$. Suppose that $H$ is the point of reflection of $D$ through $K$. The line $H E$ intersects $C D$ at $N$. Prove that $C N K H$ is a cyclic quadrilateral.
  5. Solve the system of equations $$\begin{cases} 2 x \sqrt{x}+3 x \sqrt{y}+\sqrt{y} &=138 \\ y \sqrt{y}+6 \sqrt{x}y+8 \sqrt{x} &=213\end{cases}.$$
  6. Solve the equation $$12 \sqrt[3]{x^{2}+4} \cdot \sqrt{2 x-3}=\left(x^{2}+16 x-12\right) \sqrt[3]{x-1}.$$
  7. Find the coefficient of $x^{3}$ in the expansion of $$(1+x)(1+2 x)(1+3 x) \ldots(1+n x).$$
  8. Given a triangle $A B C$. Let $B C=a$, $C A=b$, $B A=c$ and $r_{a}$, $r_{b}$, $r_{c}$ respectively the radii of the excircles relative to $A$, $B$, $C$. Prove that $$\frac{r_{a}}{r_{b}}+\frac{r_{b}}{r_{e}}+\frac{r_{c}}{r_{o}} \geq \frac{a}{b}+\frac{b}{c}+\frac{c}{a}.$$
  9. Given positive numbers $a$, $b$, $c$, $d$ such that $a \geq b \geq c \geq d$ and $a b c d=1$. Find the smallest constant $k$ so that the following inequality holds $$\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}+\frac{k}{d+1} \geq \frac{3+k}{2}.$$
  10. Let $n$ be an integer which is greater or equal to $6 .$ Find the largest positive integer $m$ so that among $n$ arbitrary distinct positive integers which are less than or equal to $m$ there always exist $4$ numbers so that one of them is equal to the sum of the remains.
  11. Find the smallest integer $k$ so that there exist two sequences $\left\{a_{i}\right\},\left\{b_{i}\right\}$ satisfying
    a) $a_{i}, b_{i} \in\left\{1,2018,2018^{2}, 2018^{3}, \ldots\right\}$, $ i=1,2, \ldots, k$
    b) $a_{i} \neq b_{i}, i=1,2, \ldots, k$
    c) $a_{i} \leq a_{i+1}, b_{i} \leq b_{i+1}$
    d) $\displaystyle\sum_{i=1}^{k} a_{i}=\sum_{i=1}^{k} b_{i}$
  12. Given a triangle $A B C$ with $A B+A C=2 B C$. Let $O$ be its circumcenter, and $H$ its orthocenter. Let $M_{a}$ be the midpoint of $B C$. Prove that the circles with diameters $HM_{a}$ and $A O$ are tangent to each other.

Issue 502

  1. Show that $$A=10^{10}+10^{10^1}+10^{10^2}+\ldots+10^{10^{10}}-5$$ is divisible by $7$.
  2. Given integers $a$, $b$ and $c$. Find the natural pumber $d$ so that $$|a-b|+|b-c|+|c-a|=2018^{d}+2019.$$
  3. Given positive numbers $a, b, c$ such that $a^2+b^2+c^{2}=\dfrac{3}{4}$. Find the maximum value of the expression $$P=\left(1-\frac{1}{a}\right)\left(1-\frac{1}{b}\right)\left(1-\frac{1}{c}\right).$$
  4. Given a triangle $A B C$ and $M$ is inside the triangle so that $\widehat{A B M}=\widehat{A C M}$. Let $D$ be the symmetrical point of $M$ about the line $A C$. Draw the parallelogram $B M C E$. The ray $B M$ intersects $A C$ at $l$. The ray $D l$ intersects $B E$ at $F$. Show that the points $A$, $D$, $C$, $E$, $F$ are on the same circle.
  5. Solve the equation $$x^{6}-7 x^{2}+\sqrt{6}=0.$$
  6. Solve the system of equations $$\begin{cases}\log_{\frac{1}{4}} x &=\left(\dfrac{1}{4}\right)^{2}+1 \\ 128 x^{3} \sqrt{4 x^{2}+y^{2}} &=y^{3} \sqrt{64 x^{2}+y^{2}}\end{cases}.$$
  7. Suppose that $$(1+x+x^2+\ldots+x^{2018})^{2019} = a_0 +a_1 x +a_2 x^2 + \ldots +a_{4074342}x^{4074342}.$$ Prove that $$C_{2019}^0 a_{2019}-C_{2019}^1 a_{2018}+C_{2019}^{2} a_{2017}-C_{2019}^{3} a_{2016}+\ldots+C_{2019}^{2018} a_{1}-C_{2019}^{2019} a_{0}=-2019.$$
  8. Given an aculc triangle $A B C$ inscribed in a circle $(O)$. Let $H$ be the orthocenter of the triangle, $P$ the midpoint of the minor are $\widehat{B C}$. Assume that $E$ is the intersection between $B H$ and $A C$. $F$ is the intersection between $\mathrm{CH}$ and $A B$. Let $Q$, $R$ respectively be the second interscctions between $P E$, $P F$ and $(O)$. Let $K$ be the interscetion between $B Q$ and $C R$. Show that $K H \parallel A P$.
  9. Given non-ncgative numbers $a, b, c$ with at most one of them is equal to $0$. Prove that $$\frac{a^{3}}{b^{2}-b c+c^{2}}+\frac{b^{3}}{c^{2}-c a+a^{2}}+\frac{c^{3}}{a^{2}-a b+b^{2}} \geq a+b+c.$$
  10. Let $\displaystyle S_n = \sum_{k=2}^n k\cos\dfrac{\pi}{k}$. Find $\displaystyle \lim_{n \rightarrow+\infty} \dfrac{S_{n}}{n^{2}}$.
  11. There are $100$ marbles distributed into $k$ groups. A distribution is called "special" if any two groups have different numbers of marbles and if we divide any group into two smaller ones then among $k+1$ new groups there are groups with equal numbers of marbles. Find the maximum and minimum values for $k$ so that there exist corresponding special distributions. 
  12. Outside a cyclic quadrilateral $A B C D$, draw the squares $A B M N$, $B C P Q$, $C D R S$, $D A U V$. Let $B^{\prime}$ be the intersection between $P Q$ and $M N$, $D^{\prime}$ the intersection between $U V$ and $RS$. Show that the midpoint of $B^{\circ} D^{\circ}$ belongs to $B D$.

Issue 503

  1. Given integers $a, b, c$ satisfying $a=b-c=\dfrac{b}{c}$. Prove that $a+b+c$ is a cube of some integer.
  2. Given an isosceles $A B C$ with the acute vertex angle $A$. Draw the altitude $B H$ ($H$ is on $A C)$. The line through $H$ and parallel to $B C$ and the line through $C$ and parallel to $B H$ intersect at $E .$ Let $M$ be the midpoint of $H E .$ Find the value of the angle $\widehat{A M C}$.
  3. Solve the equation $$x^{2}-3 x+1=-\frac{\sqrt{3}}{3} \sqrt{x^{4}+x^{2}+1}.$$
  4. Given a half circle with the center $O$ and the diameter $A B=2 R$. Let $M$ be a point on the opposite ray of the ray $A B$. Draw a secant $M C D$ of the circle $(C$ is between $M$ and $D$). Assume that $A D$ intersects $B C$ at $I$. Determine the position of $M$ given that $M C I O$ is a cyclic quadrilateral.
  5. Given real numbers $a$, $b$ and $c$ satisfying $\left(1+a^{2}\right)\left(4+b^{2}\right)\left(9+c^{2}\right) \leq 100$. Show that $$-4 \leq 3 a b+2 a c+b c \leq 16.$$
  6. Solve the system of equations $$\begin{cases}\sqrt{x^{2}+x y+y^{2}}+\sqrt{y^{2}+y z+z^{2}}+\sqrt{z^{2}+z x+x^{2}} &=\sqrt{3}(x+y+z) \\ \sqrt{x y z}-(\sqrt{x}+\sqrt{y}+\sqrt{z})+2 &=0 \end{cases}.$$
  7. For any triangle $A B C$, show that $$ \tan \frac{A}{4}+\tan \frac{B}{4}+\tan \frac{C}{4}+\tan \frac{A}{4} \tan \frac{B}{4} + \tan \frac{B}{4} \tan \frac{C}{4}+\tan \frac{C}{4} \tan \frac{A}{4} \leq 3(9-5 \sqrt{3}).$$ When does the equality happen?
  8. Given a triangle $A B C$ inscribed in a circle $(O)$. The medians $A A_{1}$, $B B_{1}$, $C C_{1}$ respectively intersect $(O)$ at $A_{2}$, $B_{2}$, $C_{2}$. Let $A B=c$, $B C=a$, $C A=b$. Show that $$\frac{A_{1} A_{2}}{a}+\frac{B_{1} B_{2}}{b}+\frac{C_{1} C_{2}}{c} \geq \frac{\sqrt{3}}{2}.$$
  9. Given non-negative numbers $a$, $b$, $c$ satisfying $a+b+c=\dfrac{4}{3}$. Prove that $$3\left[a(a-1)^{2}+b(b-1)^{2}+c(c-1)^{2}\right] \geq a b+b c+c a.$$ When does the equality happen?
  10. Find all pairs of positive integers $(n ; k)$ so that $$(n+1)(n+2) \ldots(n+k)-k$$ is a complete square. 
  11. Find all functions $f(x)$ which are continuous on $[a ; b]$, are differentiable on $(a ; b)$, and satisfy $$f^{\prime}(x) \leq \frac{f(b)-f(a)}{b-a},\, \forall x \in(a ; b),$$ where $a$, $b$ are given real numbers with $a < b$.
  12. Given a circle $(O)$ and a point $K$ lying outside the circle. Draw the tangents $K I$, $K J$ to the circle at $I$, $J$. On the opposite ray of $I O$ take an arbitrary point $O$. The circle with center $O'$ radius $O^{\prime} J$ intersects $(O)$ at the other point $A$. $A I$ intersects $\left(O^{\prime}\right)$ at the other point $D$. The line through $K$ perpendicular to $O^{\prime}D$ meets $\left(O^{\prime}\right)$ at $B$ and $C$. Show that $I$ is the center of the incircle of $A B C$.

Issue 504

  1. Find the natural number $n$ given that $n^{5}+n+1$ has only one prime factor.
  2. Given a right isosceles triangle $A B C$ with the vertex angle $A$. Let $M$, $N$, $I$ respectively be the midpoints of $A B$, $A C$ and $N C$. Assume that $K$ is the perpendicular projection of $N$ on $B C$. Show that $A K$, $B I$ and $C M$ are concurrent.
  3. Given positive numbers $a$, $b$, $c$, $d$ such that $a+b=c+d=2019$ and $a b \geq c d$. Find the minimum value of the expression $$P=\frac{a+3 \sqrt[3]{b}+2}{\sqrt[3]{c}+\sqrt[3]{d}}.$$
  4. Given a triangle $A B C$ with the angle $\hat{A} > 90^{\circ}$. Choose a point $I$ inside the line segment $B C$ so that $B A$ intersects the circumcircle $\Delta A C I$ at $D$ $(D \neq A)$ and $C A$ intersects the circumcircle $\Delta A B I$ at $E$ $(E \neq A)$, $B E$ intersects $CD$ at $N$. Let $M$ be the midpoint of $B C$, $M A$ intersects the circumcircle $\triangle B N C$ at $F$. Show that $A$, $D$, $E$, $F$, $N$ both belong to a circle.
  5. Solve the system of equations $$\begin{cases} x^{4}+3 x &=y^{4}+y \\ x^{2}-y^{2} &=2\end{cases}.$$
  6. Find the sum of the squares of all real roots of the equation $$x^{5}+2018 x^{2}+2019=x^{4}+2019 x^{3}+2020 x.$$
  7. Given $3$ positive numbers $x, y, z$ such that $x y z=1$. Prove that $$\frac{1}{x^{k+1}(y+z)}+\frac{1}{y^{k+1}(z+x)}+\frac{1}{z^{k+1}(x+y)} \geq \frac{3}{2} \quad \left(k \in \mathbb{N}^{*}\right)$$
  8. Given two equilateral triangles $A B C$ and $A B^{\prime} C^{\prime}$ with the same orientation. Let $K$ be the second intersection between the circumcircles of $A B C$ and $A B^{\prime} C^{\prime}$. Let $M$ be the intersection between $B C^{\prime}$ and $C B^{\prime}$. Show that $M A=M K$.
  9. Determine the coefficient of $x$ in the polynomial expansion of $$(1+x)(1+2 x)^{2} \ldots(1+n x)^{n}.$$
  10. Given the real sequence $\left\{x_{n}\right\}$ determined as follows $$x_{1}=1,\quad x_{n+1}=x_{n}+\frac{1}{2 x_{n}},\, \forall n \geq 1.$$ Show that $\left[9 x_{81}\right]=81$ (where $[x]$ denotes the integral part of $x$ ).
  11. Given an integer $k \geq 2$ and aninteger $n \geq \dfrac{k(k+1)}{2}$. Find the maximal positive integer $m$ so that among $n$ arbitrary distinct positive integers which do not exceed $m$ there always exist $k+1$ numbers of which some number is equal to the sum of the remaining ones.
  12. Given a non-right triangle $A B C$. The altitudes $B B^{\prime}$ and $C C^{\prime}$ intersect at $H$. Let $M$ be the midpoint of $A H$. Let $K$ be an arbitrary point on $B^{\prime} C^{\prime}$ ($K$ is different from $B^{\prime}$, $C^{\prime}$). The line $A K$ intersects $M B^{\prime}$, $M C^{\prime}$ respectively at $E$, $F$. Let $N$ be the intersection between $B E$ and $C F$. Show that $K$ is the orthocenter of the triangle $N B C$.

Issue 505

  1. Find the smallest positive interger $a$ so that $2 a$ is a square and $3 a$ is a cube.
  2. Find different non-zero digits $a$, $b$, $c$, $d$ so that $\overline{a b c d a 1}-4 n=n^{2}$ for some postitive integer $n$ (the last digit of $\overline{abcdal}$ is $1$).
  3. Find all polynomials $P(x)$ whose the coefficients are integers between $0$ and $8$ and $P(9)=32078$
  4. Let $ABCD$ be a convex quadrilateral. Denote the midpoints of $A B$, $A C$, $C D$, $D B$ respectively $M$, $N$, $P$, $Q$. Let the lengths of the sides $A B$, $B C$, $C D$, $D A$ respectively be $a$, $b$, $c$, $d$. Let the area of $M N P Q$ be $S$. Assume that $A D$ and $B C$ are perpendicular. Show that $$\frac{(c-a)^{2}-(b-d)^{2}}{8} \leq S \leq \frac{(b+d)^{2}-(c-a)^{2}}{8}$$
  5. Let $x$, $y$, $z$ be positive numbers such that $x+y+z=3$. Find the minimum value of the expression $$P=x^{5}+y^{5}+z^{5}+\frac{2}{x+y}+\frac{2}{y+z}+\frac{2}{z+x}+\frac{10}{x y z}.$$
  6. Find all real solutions of the equation $$\sqrt[3]{\frac{x^{3}-3 x+\left(x^{2}-1\right) \sqrt{x^{2}-4}}{2}}+\sqrt[3]{\frac{x^{3}-3 x-\left(x^{2}-1\right) \sqrt{x^{2}-4}}{2}}=x^{2}-2.$$
  7. Given the equation $$\frac{1}{3} x^{5}+2 x^{4}-5 x^{3}-7 x^{2}+12 x-1=0.$$ a) Show that the equation has $5$ distinct roots.
    b) Let $x_{I}$ $(i=1,5)$ be the roots of the equation. Find the sum $$S=\sum_{i=1}^{5} \frac{x_{i}-1}{x_{i}^{5}+6 x_{i}^{4}-3}.$$
  8. Given any triangle $A B C$ show that $$ \left(1+\sin ^{2} \frac{A}{2}\right)\left(1+\sin ^{2} \frac{B}{2}\right)\left(1+\sin ^{2} \frac{C}{2}\right) \geq \frac{125}{64}.$$
  9. Given positive numbers $a$, $b$, $c$ and a number $-2<k<2$. Prove that $$27\left(a^{2}+k a b+b^{2}\right)\left(b^{2}+k b c+c^{2}\right)\left(c^{2}+k c a+a^{2}\right) \geq (k+2)^{3}(a b+b c+c a)^{3}.$$
  10. A man using a map on his phone walked from the point $A$ to the point $B$. He arrived $B$ after a few straight walks and correspondingly a few rotations of the phone (to find the right directions). Assume that each time he needed to rotate his phone clockwisely an acute angle from the previous direction. Given that the sum of all the angles is $\alpha$ which is less than $180^{\circ}$. Show that the total distance that he walked is less than or equal to $\dfrac{A B}{\cos \frac{\alpha}{2}}.$
  11. Given the real sequence $\left(a_{n}\right)$ determined as follows $$a_{1}=2020, \quad a_{n+1}=1+\frac{2}{a_{n}},\, \forall n \geq 1.$$ a) Prove that $2 n<a_{1}+a_{2}+\ldots+a_{n}<2 n+2018$ for any arbitrary $n=1,2, \ldots$.
    b) Find the maximal real number $a$ such that the inequality $$\sqrt{x^{2}+a_{1}^{2}}+\sqrt{x^{2}+a_{2}^{2}}+\ldots+\sqrt{x^{2}+a_{n}^{2}} \geq n \sqrt{x^{2}+a^{2}}$$ holds for any given $x \in \mathbb{R}$, $n=1,2, \ldots$.
  12. Given a triangle $A B C$ which is not an isosceles triangle with the vertex angle $A$. Let $M$ be on the side $B C$. Let $I_{1}$, $I_{2}$ respectively be the incenters of the triangles $A B M$, $A C M$. Assume that $N$, $P$, $Q$ respectively be the second intersections between $A M$, $A B$, $A C$ and the circumcircle of $A I_{1} I_{2}$. Let $J_{1}$, $J_{2}$ respectively be the incenters of the triangles $A P N$, $A Q N$. Prove that the radical center of the circumcircles of $A I_{1} I_{2}$, $A J_{1} J_{2}$, $M I_{1} I_{2}$ belongs to $B C$.

Issue 506

  1. Find all integers $x$, $y$, $z$ which satisfy $$3 x^{2}+6 y^{2}+2 z^{2}+3 y^{2} z^{2}-18 x=6.$$
  2. Given an isosceles triangle $A B C$ with the vertex angle $A$. Let $H$ be the point in the interior domain determined by the angle $A$ such that $H B \perp B A$, $H C \perp C A$. On the line segment $B C$ we choose $M$ such that $B M=\dfrac{1}{4} B C$. Let $N$ be the midpoint of $A C$ Calculate the angle $\widehat{H M N}$.
  3. Find all pairs of integers $(x ; y)$ satisfying $$y^{3}-2(x-4) y^{2}+\left(x^{2}-9 x-1\right) y+3 x^{2}+x=0.$$
  4. Given an acute triangle $A B C$ and suppose that $B E$ and $C F$ are the two altitudes. Draw $F H$ and $E K$ perpendicular to $B C$ $(H, K \in B C)$. Draw $H M$ parallel to $A C$ and $K N$ parallel to $A B$ $(M \in A B, N \in A C)$. Show that $E F \parallel M N$.
  5. Solve the equation $$\sqrt{\frac{x-1}{x+1}}+\frac{2 x+6}{(\sqrt{x-1}+\sqrt{x+3})^{2}}=2.$$
  6. Given two positive numbers $a$ and $b$ such that $a<b$ and $a^{b}=b^{a}$. Show that there exists a positve number $c$ such that $$a=\left(1+\frac{1}{c}\right)^{c},\quad b=\left(1+\frac{1}{c}\right)^{c+1}.$$
  7. Solve the system of equations $$\begin{cases}\tan x-\tan y &=(1+\sqrt{x+y})^{y}-(1+\sqrt{x+y})^{x} \\ 3^{\sqrt{1-x}}+5^{\sqrt{1-y}} &=2(1+\sqrt{9-10 x+y})\end{cases}.$$
  8. Show that for any triangle $A B C$ we always have $$\frac{(b+c) a}{m_{a}^{2}}+\frac{(c+a) b}{m_{b}^{2}}+\frac{(a+b) c}{m_{c}^{2}} \geq 8$$ where $a$, $b$, $c$, $m_{a}$, $m_{b}$, $m_{c}$ respectively are the lengths of the sides $B C$, $C A$, $A B$ and the corresponding medians.
  9. Let $a$, $b$, $c$ be positive numbers such that $a+b+c=3$. Find the minimum value of the expression $$M=\sqrt[3]{\frac{a^{5}}{b^{4}}}+\sqrt[3]{\frac{b^{5}}{c^{4}}}+\sqrt[3]{\frac{c^{5}}{a^{4}}}.$$
  10. Find all natural numbers $n$ so that $2^{n}+n^{2}+1$ is a perfect square.
  11. Given a strictly increasing sequence of positive integers $\left(a_{n}\right)$. Let $$S_{n}=\frac{\sqrt{a_{1}}}{\left[a_{1}, a_{2}\right]}+\frac{\sqrt{a_{2}}}{\left[a_{2}, a_{3}\right]}+\ldots+\frac{\sqrt{a_{n}}}{\left[a_{n}, a_{n+1}\right]},\, \forall n=1,2, \ldots$$ (for positive integers $x, y$ we denote $[x, y]$ the least common multiple (l.c.m.) of $x$ and $y$.) Show that the sequence $\left(S_{n}\right)$ has the finite limit when $n \rightarrow+\infty$.
  12. Given an acute triangle $A B C$ $(A B < A C)$. Two altitudes $B E$ and $C F$ intersect at $H$. Let $I$ be the center of the circle which passes through $A$, $B$ and is tangent to $B C$ and $J$ the center of the circle which passes through $B$, $H$ and is tangent to $B C$. Let $M$ be the midpoint of $A H$, and $S=E F \cap B C$ Show that $S M$ bisects $I J$.

Issue 507

  1. Does it exist a natural number $n$ so that the last digit of the sum $1+2+3+\ldots+n$ is $2$, $4$, $7$ or $9$?.
  2. Given a right triangle $A B C$ with the right angle $A$ and $A B<A C$. Let $E$ and $F$ be the points on the sides $A C$ and $B C$ respectively such that $E F \perp B C$ and $E F=F B$. Let $D$ be the point on the side $A C$ such that $A D=A B$. Prove that $E F D$ is an isosceles triangle.
  3. Find positive integral solutions of the equation $$1+5^{x}=2^{y}+5.2^{2}.$$
  4. Given an acute triangle $A B C$. Outside the triangle, draw two equilateral triangles $A B D$ and $A C E$. On the line segments $A D$, $CE$, $CB$ choose the points $M$, $N$, $F$ respectively so that $$\frac{A M}{A D}=\frac{C N}{C E}=\frac{C F}{C B}=\frac{1}{3} .$$ Compare the lengths of two length segments $M N$ and $E F$.
  5. Given real numbers $x,y, z \geq 0$ such that $\max \{x ; y ; z\} \geq 1$. Show that $$x^{3}+y^{3}+z^{3}+(x+y+z-1)^{2} \geq 1+3 x y z.$$
  6. Solve the system of equations $$\begin{cases}x^{3}+x+2 &=8 y^{3}-6 x y+2 y \\ \sqrt{x^{2}-2 y+2}+2 \sqrt[4]{x^{3}(5-4 y)} &=2 y^{2}-x+2\end{cases}.$$
  7. Suppose that $$P(x)=x^{n}+x^{n-1}+a_{n-2} x^{n-2}+\ldots+a_{1} x+a_{0}$$ has $n$ distinct real roots $x_{1}, x_{2}, \ldots, x_{n}$. Show that $$\frac{x_{1}^{n}}{P^{\prime}\left(x_{1}\right)}+\frac{x_{2}^{n}}{P^{\prime}\left(x_{2}\right)}+\ldots+\frac{x_{n}^{n}}{P^{\prime}\left(x_{n}\right)}=-1$$ where $P^{\prime}(x)$ is the derivative of $P(x)$.
  8. Suppose that the inscribed sphere of the tetrahedron $A_{1} A_{2} A_{3} A_{4}$ is tangent to the face which is opposite to $A_{i}$ at $B_{I}$ $(i=1,2,3,4)$. Prove that if $B_{1} B_{2} B_{3} B_{4}$ is almost-regular (opposite sides have the same length) if and only if $A_{1} A_{2} A_{3} A_{4}$ is almost-regular.
  9. Find the minimum and maximum values of the expression $$P=\frac{\left(2 x^{2}+5 x+5\right)^{2}}{(x+1)^{4}+1}$$
  10. Find all prime numbers $p$ and positive integers $a, b$ so that $p^{a}+p^{b}$ is a perfect square.
  11. Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying $$f((x+z)(y+z))=(f(x)+f(z))(f(y)+f(z)),\,\forall x, y, z \in \mathbb{R}.$$
  12. Given a triangle $A B C$ and a point $M$ on the side $B C$. The symmedians through $M$ of the triangles $M A B$, $M A C$ intersect the circles $(M A B)$, $(M A C)$ respectively at $Q$, $R$ which are different from $M$. Let $P$ be the point on $B C$ so that $AP \perp AM$. Denote by $l$ the external common tangent, which closer to $A$, of two circles $(M A B)$, $(MAC)$. Suppose that $l$ is parallel to $B C$. Show that $l$ is tangent to $(P Q R)$. (The notion $(X Y Z)$ is for the circumcircle of the triangle $X Y Z$).

Issue 508

  1. Let $$A=11.13 .15+13.15 .17+\ldots+91.93 .95+93.95 .97.$$ Is $A$ divisible by $5 ?$
  2. Find $2019$ numbers so that the absolute values of these numbers do not exceed 0,5 and the sum of any $3$ arbitrary numbers among these is an integer.
  3. Let $x, y, z$ be positive numbers. Find the minimum value of the expression $$P=x^{2}+y^{2}+z^{2}+\frac{x^{3}}{x^{2}+y^{2}}+\frac{y^{3}}{y^{2}+z^{2}}+\frac{z^{3}}{z^{2}+x^{2}}-\frac{7}{6}(x+y+z).$$
  4. Given a triangle $A B C$ with $\widehat{A B C}$ and $\widehat{A C B}$ are acute. Let $M$ be the midpoint of $A B .$ On the opposite ray of the ray $B C$ choose the point $D$ such that $\widehat{D A B}=\widehat{B C M}$. Through $B$ draw a line perpendicular to $C D$. This line intersects the perpendicular bisector of $A B$ at $E$. Show that $D E$ is perpendicular to $A C$.
  5. Solve the equation $$x^{2010}-2011 x^{670}+\sqrt{2010}=0.$$
  6. Given non-negative numbers $a$, $b$, $c$ with at most one of them is equal to $0$. Show that for every positive integer $n$ we have $$\frac{a^{2^{2}}+b^{2^{n}}}{a^{2^{2}}+c^{2^{n}}}+\frac{b^{2^{n}}+c^{2^{n}}}{b^{2^{n}}+a^{2^{n}}}+\frac{c^{2^{n}}+a^{2^{n}}}{c^{2^{n}}+b^{2^{n}}} \geq \frac{a+b}{a+c}+\frac{b+c}{b+a}+\frac{c+a}{c+b}.$$
  7. Find the value of the expression $$f(A, B, C)=\sin A+\sin B+\sin C-\sin A \sin B \sin C$$ where $A$, $B$, $C$ are the angles of a triangle.
  8. Given a tetrahedron $O A B C$ with $O A$, $O B$, $O C$ are pairwise perpendicular and $O A=a$, $O B=b$, $O C=c$. Let $r$ be the radius of the inscribed sphere of $O A B C$. Show that $$\frac{1}{r} \geq \frac{\sqrt{3}+1}{\sqrt{3}}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right).$$
  9. Suppose that the positive numbers $a, b, c, d$ form a pregression (in that order) with the common difference $m$. Show that $$e^{a^2}\left(4 m^{2}+2 m a+1\right)+e^{b^{2}} \cdot 2 m a+e^{c^{2}}\left(2 m^{2}+2 m a\right)<e^{d^{2}}$$
  10. Show that, for any integer $n \geq 1$, the equation $x^{2 n+1}=x+1$ has exactly one real solution which is denoted by $x_{n}$. Then find $\displaystyle \lim _{n \rightarrow+\infty} x_{n}$
  11. Find all the functions $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying $$f(x) f(y)+f(x+y)=x f(y)+y f(x)+f(x y)+x+y+1,\,\forall x, y \in \mathbb{R}.$$
  12. Given a harmonic quadrilateral $A B C D$ (a cyclic quadrilateral in which the products of two opposite sides are equal) inscribed the circle $(O)$. Let $M$ be the midpoint of $A C$. Let $X$, $Y$, $Z$, $T$ respectively be the perpendicular projection of $M$ on $A B$, $B C$, $C D$, $D A$. Let $E=A B \cap C D$, $F=A D \cap C B$, $P=A C \cap B D$, $Q=X Z \cap Y T$. Show that $P Q$ passes through the midpoint of $E F$.

Issue 509

  1. Compare the following numbers $$A=\frac{1}{5}+\frac{2}{5^{2}}+\frac{3}{5^{3}}+\cdots+\frac{2018}{5^{2018}} ; \quad B=\frac{2018}{2019}$$
  2. Suppose that $P$ is a point inside a triangle $A B C$ so that $\widehat{P B C}=30^{\circ}$, $\widehat{P B A}=8^{\circ}$ and $\widehat{P A B}=\widehat{P A C}=22^{\circ}$. Find the value of the angle $\widehat{A P C}$.
  3. Find positive solutions of the equation $$\frac{1}{5 x^{2}-x+3}+\frac{1}{5 x^{2}+x+7} +\frac{1}{5 x^{2}+3 x+13}+\frac{1}{5 x^{2}+5 x+21}=\frac{4}{x^{2}+6 x+5}.$$
  4. Given a square $A B C D$ with the length of a side $a$. On the sides $A D$ and $C D$ respectively choose two points $M$, $N$ so that $M D+D N=a$. Let $E$ be the intersection of two lines $B N$ and $A D$. Let $F$ be the intersection of two lines $B M$ and $C D$. Show that $$M E^{2}-N E^{2}+N F^{2}-M F^{2}=2 a^{2}.$$
  5. Given positive numbers $a, b, c$ Find the minimum value of the expression $$P=\frac{a}{\sqrt[3]{a}+\sqrt[3]{b c}}+\frac{b}{\sqrt[3]{b}+\sqrt[3]{c a}}+\frac{c}{\sqrt[3]{c}+\sqrt[3]{a b}} + \frac{9 \sqrt[3]{(a+1)(b+1)(c+1)}}{4(a+b+c)}.$$
  6. Let $a, b, c, d$ be positive numbers such that $$\frac{1}{a b}+\frac{1}{b c}+\frac{1}{c d}+\frac{1}{a d}=1 .$$ Show that $$\frac{a b c d}{8}+2 \geq \sqrt{(a+c)\left(\frac{1}{a}+\frac{1}{c}\right)}+\sqrt{(b+d)\left(\frac{1}{b}+\frac{1}{d}\right)}.$$
  7. Find real solutions of the following system of equations $$\begin{cases} x^{3}+2 y^{3} &=2 x^{2}+z^{2} \\ 2 x^{3}+3 x^{2} &=3 y^{3}+2 z^{2}+7 \\ x^{3}+x^{2}+y^{2}+2 x y &=2 x z+2 y z+2\end{cases}$$
  8. Given a triangle $A B C$ inscribed in a circle $(O)$. Assume that $B O$ and $C O$ intersect the altitude $A D$ of the triangle respectively at $E$ and $F$. Let $I$ and $J$ respectively be the centers of the circles $(A C F)$ and $(A B E)$. Two points $K$, $H$ are on $A B$, $A C$ respectively so that $J K \parallel A O \parallel  I H$. Suppose that $I J$ intersects $A B$ and $A C$ at $M$ and $N$. Show that the intersection between $M H$ and $N K$ is on the midsegment, which is opposite to the vertex $A$, of the triangle $A B C$.
  9. Solve the equation $$8^{x}+27^{\frac{1}{x}}+2^{x+1} \cdot 3^{\frac{x+1}{x}}+2^{x} \cdot 3^{\frac{2 x+1}{x}}=125.$$
  10. Let $[x]$ be the maximal integer which does not exceed $x$ and let $\{x\}=x-[x]$. Consider the sequence $\left(u_{n}\right)$ with $$u_{n}=\left\{\frac{2^{2 n+1}+n^{2}+n+2}{2^{n+1}+2}\right\}.$$ Find the number of terms of the sequence $\left(u_{n}\right)$ satisfying $$\frac{2526.2^{n-99}}{2^{n}+1} \leq u_{n} \leq \frac{23}{65}.$$
  11. Find all functions $f: \mathbb{N}^{*} \rightarrow \mathbb{R} \backslash\{0\}$ so that $$f(1)+f(2)+\cdots+f(n)=\frac{f(n) f(n+1)}{2}, \forall n \in \mathbb{N}^{*}.$$
  12. Given a triangle $A B C$ with $A B+A C=2 B C$. Let $I_{a}$ be the center of the excircle corresponding to the angle $A$. The circle $\left(A, A I_{a}\right)$ intersects $B C$ at $E$ and $F$ with $E$ is on the ray $C B$ and $F$ is on the ray $B C$. The circle $\left(E B I_{\alpha}\right)$ meets $A B$ at $M$ and the circle $\left(F C I_{\alpha}\right)$ meets $A C$ at $N$. Show that $B C N M$ is both a cyclic and tangential quadrilateral.

Issue 510

  1. Find natural numbers $x, y, z$ satisfying $$3^{x}+5^{y}-2^{z}=(2 z+3)^{3}.$$
  2. Given a right triangle $A B C$ with the right angle $A$ and $\hat{B}=75^{\circ}$. Let $H$ be the point on the opposite ray of $A B$ such that $B H=2 A C$. Find the angle $\widehat{B H C}$.
  3. Given that $x y(x+y)+y z(y+z)+z x(z+x)+2 x y z=0$. Show that $$x^{2019}+y^{2019}+z^{2019}=(x+y+z)^{2019}.$$
  4. Given a triangle $A B C$ with $\widehat{A B C}=30^{\circ}$. Outside the triangle $A B C$, construct the isosceles triangle $A C D$ with the right angle $D$. Show that $$2 B D^{2}=B A^{2}+B C^{2}+B A \cdot B C.$$
  5. Find the minimum value of the expression $$T=\frac{5-3 x}{\sqrt{1-y^{2}}}+\frac{5-3 y}{\sqrt{1-z^{2}}}+\frac{5-3 z}{\sqrt{1-x^{2}}}.$$
  6. Find all possible values for the parameter $m$ so that the equation $$4^{x}+2=m \cdot 2^{x}(1-x) x$$ has a unique solution.
  7. Let $a, b, c$ be non-negative numbers such that $(a+b)(b+c)(c+a)>0$. Find the minimum value of the expression $$P=\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{a+b}}+\frac{4 \sqrt{a b+b c+c a}}{a+b+c}.$$
  8. Given a triangle $A B C$ with $\widehat{C}=45^{\circ}$. Let $G$ be the centroid of $A B C .$ Let $\widehat{A G B}=\alpha$. Prove that $$\frac{\sqrt{2}}{\sin A \sin B}+3 \cot \alpha=1.$$
  9. Let $a, b, c$ be positive number such that $a^{2}+b^{2}+c^{2}=3$. Show that $$\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a} \geq \frac{1}{2 \sqrt{2}}\left(\sqrt{a^{2}+b^{2}}+\sqrt{b^{2}+c^{2}}+\sqrt{c^{2}+a^{2}}\right).$$
  10. For any real numbers $a, b, c$ we let $$T(a, b, c)=|a-b|+|b-c|+|c-a|.$$ Consider a sequence $(*)$ of integers $x_{1}, x_{2}, \ldots, x_{12}$ satisfying the conditions: there exists a polynomial $f(x)$ with integral coefficients so that $f\left(x_{1}\right), f\left(x_{2}\right), \ldots, f\left(x_{12}\right)$ are different and $$880<\sum_{k<j=k \leq 12} T\left(f\left(x_{i}\right), f\left(x_{j}\right), f\left(x_{k}\right)\right) \leq 3758.$$ Show that from the sequence $(*)$ we can always extract an arithmetic progression with at least four terms.
  11. Find all functions $h(x): \mathbb{R} \rightarrow \mathbb{R}$ which satisfy all of the following conditions
    • $h(2019)=0$
    • $h(x+1)=h(x)$, $\forall x \in \mathbb{R}$.
    • $3^{x+y}[h(x) h(y)+h(x+y)]=3^{x}(y+1) h(x)+3^{y}(x+1) h(y)+3^{x y} h(x y)$, $\forall x, y \in \mathbb{R}$.
  12. Given an acute triangle $A B C$ inscribed in a circle $(\Omega)$. The points $E$, $F$ are on the sides $CA$, $A B$ respectively so that the quadrilateral $B C E F$ is cyclic. The perpendicular bisector of $C E$ intersects $B C$, $E F$ at $N$, $R$ respectively. The perpendicular bisector of $B F$ intersects $B C$, $E F$ at $M$, $Q$ respectively. Let $K$ be the reflection point of $E$ over the line $R M$. Let $L$ be the reflection point of $F$ over the line $Q N$. Suppose that the intersection between $R K$ and $Q^{B}$ is $S$; the intersection between $Q L$ and $R C$ is $T$.
    a) Show that four points $Q, R, S, T$ both belong to a circle, say $(\omega)$.
    b) Show that $(\omega)$ and $(\Omega)$ are tangent to each.

$hide=mobile$type=ticker$c=36$cols=2$l=0$sr=random$b=0

Name

Abel,5,Albania,2,AMM,2,Amsterdam,4,An Giang,47,Andrew Wiles,1,Anh,2,APMO,21,Austria (Áo),1,Ba Lan,1,Bà Rịa Vũng Tàu,77,Bắc Bộ,2,Bắc Giang,62,Bắc Kạn,4,Bạc Liêu,19,Bắc Ninh,54,Bắc Trung Bộ,3,Bài Toán Hay,5,Balkan,41,Baltic Way,32,BAMO,1,Bất Đẳng Thức,69,Bến Tre,73,Benelux,16,Bình Định,65,Bình Dương,39,Bình Phước,52,Bình Thuận,42,Birch,1,BMO,41,Booklet,12,Bosnia Herzegovina,3,BoxMath,3,Brazil,2,British,16,Bùi Đắc Hiên,1,Bùi Thị Thiện Mỹ,1,Bùi Văn Tuyên,1,Bùi Xuân Diệu,1,Bulgaria,6,Buôn Ma Thuột,2,BxMO,15,Cà Mau,22,Cần Thơ,28,Canada,40,Cao Bằng,12,Cao Quang Minh,1,Câu Chuyện Toán Học,43,Caucasus,3,CGMO,11,China - Trung Quốc,25,Chọn Đội Tuyển,532,Chu Tuấn Anh,1,Chuyên Đề,125,Chuyên SPHCM,7,Chuyên SPHN,30,Chuyên Trần Hưng Đạo,3,Collection,8,College Mathematic,1,Concours,1,Cono Sur,1,Contest,675,Correspondence,1,Cosmin Poahata,1,Crux,2,Czech-Polish-Slovak,28,Đà Nẵng,50,Đa Thức,2,Đại Số,20,Đắk Lắk,76,Đắk Nông,15,Danube,7,Đào Thái Hiệp,1,ĐBSCL,2,Đề Thi,1,Đề Thi HSG,2272,Đề Thi JMO,1,DHBB,32,Điện Biên,15,Định Lý,1,Định Lý Beaty,1,Đỗ Hữu Đức Thịnh,1,Do Thái,3,Doãn Quang Tiến,5,Đoàn Quỳnh,1,Đoàn Văn Trung,1,Đồng Nai,65,Đồng Tháp,64,Du Hiền Vinh,1,Đức,1,Dương Quỳnh Châu,1,Dương Tú,1,Duyên Hải Bắc Bộ,32,E-Book,31,EGMO,30,ELMO,19,EMC,11,Epsilon,1,Estonian,5,Euler,1,Evan Chen,1,Fermat,3,Finland,4,Forum Of Geometry,2,Furstenberg,1,G. Polya,3,Gặp Gỡ Toán Học,30,Gauss,1,GDTX,3,Geometry,14,GGTH,30,Gia Lai,40,Gia Viễn,2,Giải Tích Hàm,1,Giới hạn,2,Goldbach,1,Hà Giang,5,Hà Lan,1,Hà Nam,45,Hà Nội,256,Hà Tĩnh,92,Hà Trung Kiên,1,Hải Dương,71,Hải Phòng,57,Hậu Giang,14,Hélènne Esnault,1,Hilbert,2,Hình Học,33,HKUST,7,Hòa Bình,33,Hoài Nhơn,1,Hoàng Bá Minh,1,Hoàng Minh Quân,1,Hodge,1,Hojoo Lee,2,HOMC,5,HongKong,8,HSG 10,126,HSG 10 2010-2011,4,HSG 10 2011-2012,7,HSG 10 2012-2013,8,HSG 10 2013-2014,7,HSG 10 2014-2015,6,HSG 10 2015-2016,2,HSG 10 2016-2017,8,HSG 10 2017-2018,4,HSG 10 2018-2019,4,HSG 10 2019-2020,7,HSG 10 2020-2021,3,HSG 10 2021-2022,4,HSG 10 2022-2023,11,HSG 10 2023-2024,1,HSG 10 Bà Rịa Vũng Tàu,2,HSG 10 Bắc Giang,1,HSG 10 Bạc Liêu,2,HSG 10 Bình Định,1,HSG 10 Bình Dương,1,HSG 10 Bình Thuận,4,HSG 10 Chuyên SPHN,5,HSG 10 Đắk Lắk,2,HSG 10 Đồng Nai,4,HSG 10 Gia Lai,2,HSG 10 Hà Nam,4,HSG 10 Hà Tĩnh,15,HSG 10 Hải Dương,10,HSG 10 KHTN,9,HSG 10 Nghệ An,1,HSG 10 Ninh Thuận,1,HSG 10 Phú Yên,2,HSG 10 PTNK,10,HSG 10 Quảng Nam,1,HSG 10 Quảng Trị,2,HSG 10 Thái Nguyên,9,HSG 10 Vĩnh Phúc,14,HSG 1015-2016,3,HSG 11,135,HSG 11 2009-2010,1,HSG 11 2010-2011,6,HSG 11 2011-2012,10,HSG 11 2012-2013,9,HSG 11 2013-2014,7,HSG 11 2014-2015,10,HSG 11 2015-2016,6,HSG 11 2016-2017,8,HSG 11 2017-2018,7,HSG 11 2018-2019,8,HSG 11 2019-2020,5,HSG 11 2020-2021,8,HSG 11 2021-2022,4,HSG 11 2022-2023,7,HSG 11 2023-2024,1,HSG 11 An Giang,2,HSG 11 Bà Rịa Vũng Tàu,1,HSG 11 Bắc Giang,4,HSG 11 Bạc Liêu,3,HSG 11 Bắc Ninh,2,HSG 11 Bình Định,12,HSG 11 Bình Dương,3,HSG 11 Bình Thuận,1,HSG 11 Cà Mau,1,HSG 11 Đà Nẵng,9,HSG 11 Đồng Nai,1,HSG 11 Hà Nam,2,HSG 11 Hà Tĩnh,12,HSG 11 Hải Phòng,1,HSG 11 Kiên Giang,4,HSG 11 Lạng Sơn,11,HSG 11 Nghệ An,6,HSG 11 Ninh Bình,2,HSG 11 Quảng Bình,12,HSG 11 Quảng Nam,1,HSG 11 Quảng Ngãi,9,HSG 11 Quảng Trị,3,HSG 11 Sóc Trăng,1,HSG 11 Thái Nguyên,8,HSG 11 Thanh Hóa,3,HSG 11 Trà Vinh,1,HSG 11 Tuyên Quang,1,HSG 11 Vĩnh Long,3,HSG 11 Vĩnh Phúc,11,HSG 12,674,HSG 12 2009-2010,2,HSG 12 2010-2011,39,HSG 12 2011-2012,44,HSG 12 2012-2013,58,HSG 12 2013-2014,53,HSG 12 2014-2015,44,HSG 12 2015-2016,37,HSG 12 2016-2017,46,HSG 12 2017-2018,55,HSG 12 2018-2019,43,HSG 12 2019-2020,43,HSG 12 2020-2021,52,HSG 12 2021-2022,35,HSG 12 2022-2023,42,HSG 12 2023-2024,28,HSG 12 2023-2041,1,HSG 12 2024-2025,1,HSG 12 An Giang,9,HSG 12 Bà Rịa Vũng Tàu,13,HSG 12 Bắc Giang,18,HSG 12 Bạc Liêu,4,HSG 12 Bắc Ninh,13,HSG 12 Bến Tre,20,HSG 12 Bình Định,17,HSG 12 Bình Dương,8,HSG 12 Bình Phước,9,HSG 12 Bình Thuận,8,HSG 12 Cà Mau,7,HSG 12 Cần Thơ,7,HSG 12 Cao Bằng,5,HSG 12 Chuyên SPHN,11,HSG 12 Đà Nẵng,3,HSG 12 Đắk Lắk,21,HSG 12 Đắk Nông,1,HSG 12 Điện Biên,3,HSG 12 Đồng Nai,21,HSG 12 Đồng Tháp,18,HSG 12 Gia Lai,14,HSG 12 Hà Nam,5,HSG 12 Hà Nội,17,HSG 12 Hà Tĩnh,16,HSG 12 Hải Dương,16,HSG 12 Hải Phòng,20,HSG 12 Hậu Giang,4,HSG 12 Hòa Bình,10,HSG 12 Hưng Yên,10,HSG 12 Khánh Hòa,4,HSG 12 KHTN,26,HSG 12 Kiên Giang,12,HSG 12 Kon Tum,3,HSG 12 Lai Châu,4,HSG 12 Lâm Đồng,11,HSG 12 Lạng Sơn,8,HSG 12 Lào Cai,17,HSG 12 Long An,18,HSG 12 Nam Định,7,HSG 12 Nghệ An,13,HSG 12 Ninh Bình,12,HSG 12 Ninh Thuận,7,HSG 12 Phú Thọ,18,HSG 12 Phú Yên,13,HSG 12 Quảng Bình,14,HSG 12 Quảng Nam,12,HSG 12 Quảng Ngãi,7,HSG 12 Quảng Ninh,20,HSG 12 Quảng Trị,10,HSG 12 Sóc Trăng,4,HSG 12 Sơn La,5,HSG 12 Tây Ninh,6,HSG 12 Thái Bình,11,HSG 12 Thái Nguyên,13,HSG 12 Thanh Hóa,17,HSG 12 Thừa Thiên Huế,19,HSG 12 Tiền Giang,3,HSG 12 TPHCM,13,HSG 12 Tuyên Quang,3,HSG 12 Vĩnh Long,7,HSG 12 Vĩnh Phúc,20,HSG 12 Yên Bái,6,HSG 9,573,HSG 9 2009-2010,1,HSG 9 2010-2011,21,HSG 9 2011-2012,42,HSG 9 2012-2013,41,HSG 9 2013-2014,35,HSG 9 2014-2015,41,HSG 9 2015-2016,38,HSG 9 2016-2017,42,HSG 9 2017-2018,45,HSG 9 2018-2019,41,HSG 9 2019-2020,18,HSG 9 2020-2021,50,HSG 9 2021-2022,53,HSG 9 2022-2023,55,HSG 9 2023-2024,15,HSG 9 An Giang,9,HSG 9 Bà Rịa Vũng Tàu,8,HSG 9 Bắc Giang,14,HSG 9 Bắc Kạn,1,HSG 9 Bạc Liêu,1,HSG 9 Bắc Ninh,12,HSG 9 Bến Tre,9,HSG 9 Bình Định,11,HSG 9 Bình Dương,7,HSG 9 Bình Phước,13,HSG 9 Bình Thuận,5,HSG 9 Cà Mau,2,HSG 9 Cần Thơ,4,HSG 9 Cao Bằng,2,HSG 9 Đà Nẵng,11,HSG 9 Đắk Lắk,12,HSG 9 Đắk Nông,3,HSG 9 Điện Biên,5,HSG 9 Đồng Nai,8,HSG 9 Đồng Tháp,10,HSG 9 Gia Lai,9,HSG 9 Hà Giang,4,HSG 9 Hà Nam,10,HSG 9 Hà Nội,15,HSG 9 Hà Tĩnh,13,HSG 9 Hải Dương,16,HSG 9 Hải Phòng,8,HSG 9 Hậu Giang,6,HSG 9 Hòa Bình,4,HSG 9 Hưng Yên,11,HSG 9 Khánh Hòa,6,HSG 9 Kiên Giang,16,HSG 9 Kon Tum,9,HSG 9 Lai Châu,2,HSG 9 Lâm Đồng,14,HSG 9 Lạng Sơn,10,HSG 9 Lào Cai,4,HSG 9 Long An,10,HSG 9 Nam Định,9,HSG 9 Nghệ An,21,HSG 9 Ninh Bình,14,HSG 9 Ninh Thuận,4,HSG 9 Phú Thọ,13,HSG 9 Phú Yên,9,HSG 9 Quảng Bình,14,HSG 9 Quảng Nam,12,HSG 9 Quảng Ngãi,13,HSG 9 Quảng Ninh,17,HSG 9 Quảng Trị,10,HSG 9 Sóc Trăng,9,HSG 9 Sơn La,5,HSG 9 Tây Ninh,16,HSG 9 Thái Bình,11,HSG 9 Thái Nguyên,5,HSG 9 Thanh Hóa,12,HSG 9 Thừa Thiên Huế,9,HSG 9 Tiền Giang,7,HSG 9 TPHCM,11,HSG 9 Trà Vinh,2,HSG 9 Tuyên Quang,6,HSG 9 Vĩnh Long,12,HSG 9 Vĩnh Phúc,12,HSG 9 Yên Bái,5,HSG Cấp Trường,80,HSG Quốc Gia,113,HSG Quốc Tế,16,Hứa Lâm Phong,1,Hứa Thuần Phỏng,1,Hùng Vương,2,Hưng Yên,44,Huỳnh Kim Linh,1,Hy Lạp,1,IMC,26,IMO,58,IMT,2,IMU,2,India - Ấn Độ,47,Inequality,13,InMC,1,International,349,Iran,13,Jakob,1,JBMO,41,Jewish,1,Journal,30,Junior,38,K2pi,1,Kazakhstan,1,Khánh Hòa,30,KHTN,64,Kiên Giang,74,Kon Tum,24,Korea - Hàn Quốc,5,Kvant,2,Kỷ Yếu,46,Lai Châu,12,Lâm Đồng,48,Lăng Hồng Nguyệt Anh,1,Lạng Sơn,37,Langlands,1,Lào Cai,35,Lê Hải Châu,1,Lê Hải Khôi,1,Lê Hoành Phò,4,Lê Hồng Phong,5,Lê Khánh Sỹ,3,Lê Minh Cường,1,Lê Phúc Lữ,1,Lê Phương,1,Lê Viết Hải,1,Lê Việt Hưng,2,Leibniz,1,Long An,52,Lớp 10 Chuyên,709,Lớp 10 Không Chuyên,355,Lớp 11,1,Lục Ngạn,1,Lượng giác,1,Lưu Giang Nam,2,Lưu Lý Tưởng,1,Macedonian,1,Malaysia,1,Margulis,2,Mark Levi,1,Mathematical Excalibur,1,Mathematical Reflections,1,Mathematics Magazine,1,Mathematics Today,1,Mathley,1,MathLinks,1,MathProblems Journal,1,Mathscope,8,MathsVN,5,MathVN,1,MEMO,13,Menelaus,1,Metropolises,4,Mexico,1,MIC,1,Michael Atiyah,1,Michael Guillen,1,Mochizuki,1,Moldova,1,Moscow,1,MYM,25,MYTS,4,Nam Định,46,Nam Phi,1,National,276,Nesbitt,1,Newton,4,Nghệ An,73,Ngô Bảo Châu,2,Ngô Việt Hải,1,Ngọc Huyền,2,Nguyễn Anh Tuyến,1,Nguyễn Bá Đang,1,Nguyễn Đình Thi,1,Nguyễn Đức Tấn,1,Nguyễn Đức Thắng,1,Nguyễn Duy Khương,1,Nguyễn Duy Tùng,1,Nguyễn Hữu Điển,3,Nguyễn Minh Hà,1,Nguyễn Minh Tuấn,9,Nguyễn Nhất Huy,1,Nguyễn Phan Tài Vương,1,Nguyễn Phú Khánh,1,Nguyễn Phúc Tăng,2,Nguyễn Quản Bá Hồng,1,Nguyễn Quang Sơn,1,Nguyễn Song Thiên Long,1,Nguyễn Tài Chung,5,Nguyễn Tăng Vũ,1,Nguyễn Tất Thu,1,Nguyễn Thúc Vũ Hoàng,1,Nguyễn Trung Tuấn,8,Nguyễn Tuấn Anh,2,Nguyễn Văn Huyện,3,Nguyễn Văn Mậu,25,Nguyễn Văn Nho,1,Nguyễn Văn Quý,2,Nguyễn Văn Thông,1,Nguyễn Việt Anh,1,Nguyễn Vũ Lương,2,Nhật Bản,4,Nhóm $\LaTeX$,4,Nhóm Toán,1,Ninh Bình,61,Ninh Thuận,26,Nội Suy Lagrange,2,Nội Suy Newton,1,Nordic,21,Olympiad Corner,1,Olympiad Preliminary,2,Olympic 10,136,Olympic 10/3,6,Olympic 10/3 Đắk Lắk,6,Olympic 11,124,Olympic 12,52,Olympic 23/3,2,Olympic 24/3,10,Olympic 24/3 Quảng Nam,10,Olympic 27/4,24,Olympic 30/4,61,Olympic KHTN,8,Olympic Sinh Viên,78,Olympic Tháng 4,12,Olympic Toán,348,Olympic Toán Sơ Cấp,3,Ôn Thi 10,2,PAMO,1,Phạm Đình Đồng,1,Phạm Đức Tài,1,Phạm Huy Hoàng,1,Pham Kim Hung,3,Phạm Quốc Sang,2,Phan Huy Khải,1,Phan Quang Đạt,1,Phan Thành Nam,1,Pháp,2,Philippines,8,Phú Thọ,32,Phú Yên,43,Phùng Hồ Hải,1,Phương Trình Hàm,11,Phương Trình Pythagoras,1,Pi,1,Polish,32,Problems,1,PT-HPT,14,PTNK,65,Putnam,27,Quảng Bình,65,Quảng Nam,58,Quảng Ngãi,50,Quảng Ninh,61,Quảng Trị,42,Quỹ Tích,1,Riemann,1,RMM,14,RMO,24,Romania,38,Romanian Mathematical,1,Russia,1,Sách Thường Thức Toán,7,Sách Toán,70,Sách Toán Cao Học,1,Sách Toán THCS,7,Saudi Arabia - Ả Rập Xê Út,9,Scholze,1,Serbia,17,Sharygin,28,Shortlists,56,Simon Singh,1,Singapore,1,Số Học - Tổ Hợp,28,Sóc Trăng,37,Sơn La,22,Spain,8,Star Education,1,Stars of Mathematics,11,Swinnerton-Dyer,1,Talent Search,1,Tăng Hải Tuân,2,Tạp Chí,17,Tập San,3,Tây Ban Nha,1,Tây Ninh,37,Thái Bình,45,Thái Nguyên,61,Thái Vân,2,Thanh Hóa,69,THCS,2,Thổ Nhĩ Kỳ,5,Thomas J. Mildorf,1,Thông Tin Toán Học,43,THPT Chuyên Lê Quý Đôn,1,THPT Chuyên Nguyễn Du,9,THPTQG,16,THTT,31,Thừa Thiên Huế,56,Tiền Giang,30,Tin Tức Toán Học,1,Titu Andreescu,2,Toán 12,7,Toán Cao Cấp,3,Toán Rời Rạc,5,Toán Tuổi Thơ,3,Tôn Ngọc Minh Quân,2,TOT,1,TPHCM,160,Trà Vinh,10,Trắc Nghiệm,1,Trắc Nghiệm Toán,2,Trại Hè,41,Trại Hè Hùng Vương,32,Trại Hè Hùng Vương 10,11,Trại Hè Hùng Vương 11,10,Trại Hè Phương Nam,7,Trần Đăng Phúc,1,Trần Minh Hiền,2,Trần Nam Dũng,12,Trần Phương,1,Trần Quang Hùng,1,Trần Quốc Anh,2,Trần Quốc Luật,1,Trần Quốc Nghĩa,1,Trần Tiến Tự,1,Trịnh Đào Chiến,2,Trường Đông,23,Trường Hè,10,Trường Thu,1,Trường Xuân,3,TST,561,TST 2008-2009,1,TST 2010-2011,22,TST 2011-2012,23,TST 2012-2013,32,TST 2013-2014,29,TST 2014-2015,27,TST 2015-2016,26,TST 2016-2017,41,TST 2017-2018,42,TST 2018-2019,30,TST 2019-2020,34,TST 2020-2021,30,TST 2021-2022,38,TST 2022-2023,42,TST 2023-2024,22,TST 2024-2025,18,TST An Giang,9,TST Bà Rịa Vũng Tàu,11,TST Bắc Giang,5,TST Bắc Ninh,12,TST Bến Tre,10,TST Bình Định,5,TST Bình Dương,8,TST Bình Phước,9,TST Bình Thuận,9,TST Cà Mau,7,TST Cần Thơ,7,TST Cao Bằng,2,TST Đà Nẵng,8,TST Đắk Lắk,12,TST Đắk Nông,2,TST Điện Biên,2,TST Đồng Nai,13,TST Đồng Tháp,13,TST Gia Lai,4,TST Hà Nam,8,TST Hà Nội,13,TST Hà Tĩnh,16,TST Hải Dương,12,TST Hải Phòng,13,TST Hậu Giang,1,TST Hòa Bình,4,TST Hưng Yên,11,TST Khánh Hòa,8,TST Kiên Giang,11,TST Kon Tum,6,TST Lâm Đồng,13,TST Lạng Sơn,3,TST Lào Cai,4,TST Long An,6,TST Nam Định,9,TST Nghệ An,7,TST Ninh Bình,11,TST Ninh Thuận,4,TST Phú Thọ,13,TST Phú Yên,6,TST PTNK,16,TST Quảng Bình,13,TST Quảng Nam,7,TST Quảng Ngãi,8,TST Quảng Ninh,10,TST Quảng Trị,10,TST Sóc Trăng,6,TST Sơn La,7,TST Thái Bình,6,TST Thái Nguyên,8,TST Thanh Hóa,9,TST Thừa Thiên Huế,4,TST Tiền Giang,6,TST TPHCM,15,TST Trà Vinh,1,TST Tuyên Quang,1,TST Vĩnh Long,7,TST Vĩnh Phúc,7,TST Yên Bái,8,Tuyên Quang,14,Tuyển Sinh,4,Tuyển Sinh 10,1064,Tuyển Sinh 10 An Giang,18,Tuyển Sinh 10 Bà Rịa Vũng Tàu,22,Tuyển Sinh 10 Bắc Giang,19,Tuyển Sinh 10 Bắc Kạn,3,Tuyển Sinh 10 Bạc Liêu,9,Tuyển Sinh 10 Bắc Ninh,15,Tuyển Sinh 10 Bến Tre,34,Tuyển Sinh 10 Bình Định,19,Tuyển Sinh 10 Bình Dương,12,Tuyển Sinh 10 Bình Phước,21,Tuyển Sinh 10 Bình Thuận,15,Tuyển Sinh 10 Cà Mau,5,Tuyển Sinh 10 Cần Thơ,10,Tuyển Sinh 10 Cao Bằng,2,Tuyển Sinh 10 Chuyên SPHN,19,Tuyển Sinh 10 Đà Nẵng,18,Tuyển Sinh 10 Đại Học Vinh,13,Tuyển Sinh 10 Đắk Lắk,21,Tuyển Sinh 10 Đắk Nông,7,Tuyển Sinh 10 Điện Biên,5,Tuyển Sinh 10 Đồng Nai,18,Tuyển Sinh 10 Đồng Tháp,23,Tuyển Sinh 10 Gia Lai,10,Tuyển Sinh 10 Hà Giang,1,Tuyển Sinh 10 Hà Nam,16,Tuyển Sinh 10 Hà Nội,80,Tuyển Sinh 10 Hà Tĩnh,19,Tuyển Sinh 10 Hải Dương,17,Tuyển Sinh 10 Hải Phòng,15,Tuyển Sinh 10 Hậu Giang,3,Tuyển Sinh 10 Hòa Bình,15,Tuyển Sinh 10 Hưng Yên,12,Tuyển Sinh 10 Khánh Hòa,12,Tuyển Sinh 10 KHTN,21,Tuyển Sinh 10 Kiên Giang,31,Tuyển Sinh 10 Kon Tum,6,Tuyển Sinh 10 Lai Châu,6,Tuyển Sinh 10 Lâm Đồng,10,Tuyển Sinh 10 Lạng Sơn,6,Tuyển Sinh 10 Lào Cai,10,Tuyển Sinh 10 Long An,18,Tuyển Sinh 10 Nam Định,21,Tuyển Sinh 10 Nghệ An,23,Tuyển Sinh 10 Ninh Bình,20,Tuyển Sinh 10 Ninh Thuận,10,Tuyển Sinh 10 Phú Thọ,18,Tuyển Sinh 10 Phú Yên,12,Tuyển Sinh 10 PTNK,37,Tuyển Sinh 10 Quảng Bình,12,Tuyển Sinh 10 Quảng Nam,15,Tuyển Sinh 10 Quảng Ngãi,13,Tuyển Sinh 10 Quảng Ninh,12,Tuyển Sinh 10 Quảng Trị,7,Tuyển Sinh 10 Sóc Trăng,17,Tuyển Sinh 10 Sơn La,5,Tuyển Sinh 10 Tây Ninh,15,Tuyển Sinh 10 Thái Bình,17,Tuyển Sinh 10 Thái Nguyên,18,Tuyển Sinh 10 Thanh Hóa,27,Tuyển Sinh 10 Thừa Thiên Huế,24,Tuyển Sinh 10 Tiền Giang,14,Tuyển Sinh 10 TPHCM,23,Tuyển Sinh 10 Trà Vinh,6,Tuyển Sinh 10 Tuyên Quang,3,Tuyển Sinh 10 Vĩnh Long,12,Tuyển Sinh 10 Vĩnh Phúc,22,Tuyển Sinh 2008-2009,1,Tuyển Sinh 2009-2010,1,Tuyển Sinh 2010-2011,6,Tuyển Sinh 2011-2012,20,Tuyển Sinh 2012-2013,65,Tuyển Sinh 2013-2014,77,Tuyển Sinh 2013-2044,1,Tuyển Sinh 2014-2015,81,Tuyển Sinh 2015-2016,64,Tuyển Sinh 2016-2017,72,Tuyển Sinh 2017-2018,126,Tuyển Sinh 2018-2019,61,Tuyển Sinh 2019-2020,90,Tuyển Sinh 2020-2021,59,Tuyển Sinh 2021-202,1,Tuyển Sinh 2021-2022,69,Tuyển Sinh 2022-2023,113,Tuyển Sinh 2023-2024,49,Tuyển Sinh Chuyên SPHCM,7,Tuyển Sinh Yên Bái,6,Tuyển Tập,45,Tuymaada,6,UK - Anh,16,Undergraduate,69,USA - Mỹ,62,USA TSTST,6,USAJMO,12,USATST,8,USEMO,4,Uzbekistan,1,Vasile Cîrtoaje,4,Vật Lý,1,Viện Toán Học,6,Vietnam,4,Viktor Prasolov,1,VIMF,1,Vinh,32,Vĩnh Long,41,Vĩnh Phúc,86,Virginia Tech,1,VLTT,1,VMEO,4,VMF,12,VMO,58,VNTST,25,Võ Anh Khoa,1,Võ Quốc Bá Cẩn,26,Võ Thành Văn,1,Vojtěch Jarník,6,Vũ Hữu Bình,7,Vương Trung Dũng,1,WFNMC Journal,1,Wiles,1,Xác Suất,1,Yên Bái,25,Yên Thành,1,Zhautykov,14,Zhou Yuan Zhe,1,
ltr
item
MOlympiad.NET: Mathematics and Youth Magazine Problems 2019
Mathematics and Youth Magazine Problems 2019
MOlympiad.NET
https://www.molympiad.net/2022/03/mathematics-and-youth-magazine-problems.html
https://www.molympiad.net/
https://www.molympiad.net/
https://www.molympiad.net/2022/03/mathematics-and-youth-magazine-problems.html
true
2506595080985176441
UTF-8
Loaded All Posts Not found any posts VIEW ALL Readmore Reply Cancel reply Delete By Home PAGES POSTS View All RECOMMENDED FOR YOU Tag ARCHIVE SEARCH ALL POSTS Not found any post match with your request Back Home Sunday Monday Tuesday Wednesday Thursday Friday Saturday Sun Mon Tue Wed Thu Fri Sat January February March April May June July August September October November December Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec just now 1 minute ago $$1$$ minutes ago 1 hour ago $$1$$ hours ago Yesterday $$1$$ days ago $$1$$ weeks ago more than 5 weeks ago Followers Follow THIS PREMIUM CONTENT IS LOCKED
NỘI DUNG CAO CẤP NÀY ĐÃ BỊ KHÓA
STEP 1: SHARE THIS ARTICLE TO A SOCIAL NETWORK
BƯỚC 1: CHIA SẺ BÀI VIẾT NÀY LÊN MẠNG XÃ HỘI
STEP 2: CLICK THE LINK ON YOUR SOCIAL NETWORK
BƯỚC 2: BẤM VÀO ĐƯỜNG DẪN TRÊN MẠNG XÃ HỘI CỦA BẠN
Copy All Code Select All Code All codes were copied to your clipboard Can not copy the codes / texts, please press [CTRL]+[C] (or CMD+C with Mac) to copy Table of Content