$hide=mobile$type=ticker$c=12$cols=3$l=0$sr=random$b=0

Mathematics and Youth Magazine Problems 2022

This article has
views, Facebook comments and 0 Blogger comments. Leave a comment.

Issue 535

  1. Given odd coprime natural numbers $a, b$. Find all possible values of $$\gcd\left(2^{a}+2^{\frac{a+1}{2}}+1 ; 2^{b}+2^{\frac{b+1}{2}}+1\right)$$ where $\gcd(x, y)$ denote the greatest common divisor of two numbers $x$ and $y$.
  2. Suppose that $N$ is an even number which is not a multiple of $10$. Find the tens place of $N^{20}$ and the hundreds place of $N^{200}$.
  3. Given a prime number $p$. Find all pairs of integers $(x ; y)$ satisfying $$x^{2}-(p+2) x+2 p+1=p^{y} .$$
  4. Given a triangle $A B C$ inscribed in a circle $(O)$. The tangents to the circle at $B$ and $C$ intersect at $M$. $O M$ intersects $B C$ at $I, A M$ intersects $(O)$ at $N$, and draw the diameter $N P$. The lines $P A$ and $B C$ intersect at $E$ and $Q$ is the intersection between $P C$ and $B N$. Show that $M E$ is tangent to the circumcircle of $O I Q$.
  5. Given positive numbers $x_{1}, x_{2}, \ldots, x_{n}$. Show that $$\frac{x_{2}}{x_{1}\left(x_{1}+x_{2}\right)}+\frac{x_{3}}{x_{2}\left(x_{2}+x_{3}\right)}+\ldots+\frac{x_{1}}{x_{n}\left(x_{n}+x_{1}\right)} \geq \frac{1}{x_{1}+x_{2}}+\frac{1}{x_{2}+x_{3}}+\ldots+\frac{1}{x_{n}+x_{1}} .$$
  6. Suppose that the equation $$(x-15)(x-10)(x-1964)=2021$$ has $3$ solutions $x_{1}$, $x_{2}$, $x_{3}$. Find the value of the expression $$S=\sum_{i=1}^{3}\left[\left(x_{i}-15\right)^{3}+\left(x_{i}-10\right)^{3}+\left(x_{i}-1964\right)^{3}\right] .$$
  7. Given a function $f: \mathbb{N}^{*} \rightarrow \mathbb{R}$ satisfying the condition: For each positive integer $n>1$, there exists a prime divisor $p$ of $n$ so that $f(n)=f\left(\frac{n}{p}\right)-f(p)$. Suppose furthermore that $f(2021)=1$. Compute $f(2022)$.
  8. Given a triangle ABC incribed circle $( O )$. A circle $( J)$ passing through intersects the sides $A B$, $A C$ respectively at $D$ a $E$; intersects $(O)$ at the second point $P$. Let $I$, $K$ respectively be the circumcenters of $B D P$ and $CEP$. Prove that $I D$, $K E$, $A O$ are $O$ of $B D P$ and point on $(J)$.
  9. Given an arbitrary prime number $p$, and $q$ is an integer $0 \leq q \leq p-1$. Show that $$q !(p-q-1) !+(-1)^{q} \equiv 0 \pmod p$$ where $n !=1.2.3....n$.
  10. Find all increasing continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying $$f(f(x))=f(x)+1,\,\forall x \in \mathbb{R} .$$
  11. Find the smallest positive number $a>1$ satisfying the condition: For any point $P$ lies inside and on the boundary of the square $ABCD$, there always two among four triangles $PAB$, $PCD$, $PDA$, $PBC$ (some triangle can be reduced to a line segment) so that the ratio of two areas belongs to $\left[\frac{1}{a} ; a\right]$.
  12. Given a triangle $A B C$ inscribed in a circle $(O)$ with orthocenter $H$. The circle with diameter $A H$ intersects $(O)$ at the second point $K$. $O H$ intersects the tangent at $A$ to the circle $(O)$ at $P$. Let $S$ be the point on $(O)$ so that $A S || O H$. The line through $S$ perpendicular to $B C$ intersects $(O)$ at $T$. Show that $K T$ passes through the orthocenter of $A P H$.
[next]

Issue 536

  1. Let $m$ be the sum of the digits of the number $9^{2022}$, $n$ the sum of the digits of $m$ and $k$ the sum of the digits of $n$. Find $k$.
  2. Given a triangle $A B C$ with $\widehat{A B C}=40^{\circ}, \widehat{A C B}=10^{\circ}$. Let $d$ be the perpendicular bisector of the line segment $A B$, and $d^{\prime}$ the line through $C$ and perpendicular to $d$. Let $D$ be the intersection between $d$ and $d'$. Find the measurement of the angle $\widehat{B D A}$.
  3. Solve the equation $$\sqrt[4]{2 x-1}+\sqrt{1-x}=-x^{2}+3 x-1$$
  4. Given a quadrilateral $A B C D$ with $\widehat{C A D}=40^{\circ}$, $\widehat{B A C}=50^{\circ}$, $\widehat{C B D}=20^{\circ}$ and $\widehat{C D B}=25^{\circ}$. Find the measurement of the acute angle formed by the diagonals of the quadrilateral.
  5. Given real numbers $a, b$ so that $a+b=2$. Find the maximum value of the expression $$P=a b+\frac{1}{a^{2}+b^{2}+1}-\frac{1}{a^{3}+b^{3}+1}+\frac{1}{a^{4}+b^{4}+1} .$$
  6. Given $n$ positive numbers $a_{1}, a_{2}$, $\ldots, a_{n}\left(n \in \mathbb{N}^{*}\right)$. Let $S=a_{1}+a_{2}+\ldots+a_{n}$. Prove that $$\left(S-a_{1}\right)^{a_{1}}\left(S-a_{2}\right)^{a_{2}} \ldots\left(S-a_{n}\right)^{a_{n}} \leq\left(\frac{n-1}{n} \cdot S\right)^{S}.$$
  7. Given a non-obtuse triangle $A B C$. Show that $$\left(\sin \frac{A}{2}\right)^{\sin \frac{A}{2}}+\left(\sin \frac{B}{2}\right)^{\sin \frac{B}{2}}+\left(\sin \frac{C}{2}\right)^{\sin \frac{C}{2}} \geq \frac{3 \sqrt{2}}{2} .$$
  8. Given an equilateral triangle $A B C$ with the side $a$, inscribed in a circle $(O)$. Let $M$ be a point moving on $(O)$. Let $I, J, K$ respectively be the perpendicular projections of $M$ on $B C, C A, A B$. Find the minimum value of the expression $$P=4 M I^{4}+M J^{4}+M K^{4}.$$
  9. Given an acute triangle $A B C$ inscribed in a circle $(O)$ with radius $R$. The medians $A A_{1}$, $B B_{1}$, $C C_{1}$ respectively intersects $(O)$ at $A_{2}, B_{2}, C_{2}$. Show that $$A_{1} A_{2}+B_{1} B_{2}+C_{1} C_{2} \geq \frac{3 R}{2}.$$
  10. Given a prime $p$ and an integer $n$ which is greater than 4 . Show that the polynomial $f(x)=x^{n}-p x^{2}+p x+p^{2}$ cannot be factorized as a product of two integral coefficients polynomials whose degrees are greater or equal to $1$.
  11. Find all functions $f: \mathbb{Q} \rightarrow \mathbb{Q}$ satisfying $f(1)=0$ and $$f(x y-y)=f(x) f(y)+f(x)-1,\, \forall x, y \in \mathbb{Q}.$$
  12. Given a triangle $A B C$ inscribed in a circle $(O)$. The angle bisector of $\widehat{B A C}$ intersects $B C$ at $E$ and intersects $(O)$ at the second point $P$. Let $P^{\prime}$ be the reflection point of $P$ in $B C$. $A P^{\prime}$ intersects $B C$ at $K$. Let $L$ be the orthocenter of $A E I$. Show that the circle with diameter $A L$ is tangent to the Euler circle of $A B C$.
[next]

Issue 537

  1. Find all natural numbers $a, b, c$ satisfying $a^{3}+a+2=2^{b}$ and $a^{2}=2^{c}+1$.
  2. Given a triangle $A B C$ with $\widehat{C A B}=30^{\circ}$, $\widehat{C B A}=100^{\circ}$. On the line segment $A B$ choose the point $D$ so that $C D=A B$. Find the measurement of the angle $\widehat{C D B}$.
  3. Suppose that $a, b, n$ are postitive integers satisfying $\dfrac{a^{n}-1}{b^{n}-1}$ and $\dfrac{a^{n+1}-1}{b^{n+1}-1}$ are prime numbers. Prove that $n=1$.
  4. Given an isosceles triangle $A B C$ with the vertex angle $A$ inscribed in the circle $(O ; R)$. $M$ is a point moving on the arc $B C$ which does not contain $A$. The points $D$ and $E$ respectively are the perpendicular projections of $M$ on $A B$ and $A C$. Determine the position of $M$ so that the sum $$M A+M B+M C+M D+M E$$ obtains its maximum value.
  5. Given a positive number $k$ and three numbers $a, b, c$ in the interval $[0 ; k]$ so that $a+b+c=2 k$. Find the minimum value of the expression $$A=a b(a+k)+b c(b+k)+c a(c+k).$$
  6. How many sets $A$ are there so that $A$ has $2020$ distinct positive numbers including $1$, $2$ and satisfies: For any two different elements $x$ and $y$ belong to $A$ then either $|x-y|$ or $x+y$ also belongs to $A$?
  7. For any triangle $A B C$, show that $$\frac{r_{i}}{a}+\frac{r_{b}}{b}+\frac{r_{c}}{c} \geq \sqrt{\frac{3}{2} \cdot \frac{4 R+r}{R}}$$ where $a=B C$, $b=A C$, $c=A B$; $R$, $r$, $r_{a}$, $r_{b}$, $r_{c}$ respectively are the circumradius, inradius, exradii corresponding to $A$, $B$, $C$ of the triangle.
  8. Given a triangle $A B C$ and let $(I)$ be its incircle. Let $E$, $F$ respectively be the points of tangency between $(I)$ and $A B$, $A C$. Let $M$, $N$ respectively be the points of the line segments $A B$, $A C$ so that $M N$ is tangent to $(I)$. Prove that $$\frac{E B}{E A} \cdot \frac{M A}{M B}+\frac{F C}{F A} \cdot \frac{N A}{N C}=1.$$
  9. Given $x, y \geq 1$. Show that $$\frac{x^{3}+y}{y^{3}+x}-1 \geq \ln \frac{\left(x^{2}+1\right)^{2}}{x}-\ln \frac{\left(y^{2}+1\right)^{2}}{y}$$
  10. Given an integer $n>1$. Show that if $4^{n}-2^{n}+1$ is a prime number then all the prime factors of $n$ must be less than $5$.
  11. Consider the function $f(x)=\dfrac{2033\cdot 25^{x}}{25^{x}+5}$, $x \in \mathbb{R}$. Compute the sum $$S=\sum_{k=1}^{2020}\left[\frac{\left[f\left(\frac{k}{2021}\right)\right]}{19}\right]$$ where $[x]$ is the largest integer which does not exceed $x$.
  12. Given an acute, scalene triangle $A B C$ inscribed in the circle $(O)$. The circle with center $C$ and radius $C B$ intersects $B A$ at $D$ (which is different from $B$) and intersects $(O)$ at $E$ (which is different from $B$). $D E$ intersects $(O)$ at $F$ (which is different from $E$). $C O$ intersects $D E$, $A B$ respectively at $G$, $L$. Let $Q$ be the reflection point of $E$ in the midpoint of $G F$. The point $P$ belongs to $E F$ so that $P L$ perpendicular to $B C$. The circumcircle of $L P Q$ intersects $A B$ at $R$ (which is different from $L$). Let $K$ be the reflection point of $R$ in $C F$. Show that $F K || B C$.
[next]

Issue 538

  1. Find all pairs of integers $(x ; y)$ so that $$x^{2}+y=y^{2023}.$$
  2. Given a triangle $A B C$ with $\widehat{B A C}=75^{\circ}, \widehat{A B C}=45^{\circ}$. Let $D$ be the point on the side $A B$ so that $A D=2 B D$. Find the measurement of the angle $\widehat{B C D}$.
  3. Find all positive integers $n$ so that $\dfrac{n+3}{2}$, $n-5$, $2 n+1$ are cube numbers.
  4. Let $I$ be the intersection of the interior angle bisectors of the right triangle $A B C$ with the right angle at $A$. Let $M$ be the midpoint of $B C$; and $N$ be the intersection between $M I$ and $A B$. Given that $\widehat{B N M}=75^{\circ}$, find the measurement of the angle $\widehat{A B C}$.
  5. Suppose that $x, y$ are positive numbers satisfying $x^{3} y^{3}+12 x y^{2}+8 \leq 8 y^{3}$. Find the minimum value of the expression $$Q=\frac{x^{4}+3 x^{2} y^{2}+2 y^{4}}{x y^{3}}.$$
  6. Given a prime $p$, $p>3$ and let $n=\dfrac{2^{2 p}-1}{3}$. Find the greatest common divisor of $2^{2^{n}-1}-2$ and $2^{n}-1$.
  7. Given a triangle $A B C$ with the lengths of the sides $B C=a$, $C A=b$, $A B=c$. Let $S$, $R$ respectively be the area and the radius of the circumcircle of $A B C$. Prove that $$a \cos ^{3} A+b \cos ^{3} B+c \cos ^{3} C \geq \frac{S}{2 R}.$$
  8. Given a circle $(O ; R)$ with two perpendicular diameters $A B$ and $C D$. Let $E$ be a moving point on the minor arc $A C$. $B E$ intersects $D C$ at $N$, $D E$ intersects $A B$ at $M$. Show that $$\frac{1}{M B}+\frac{1}{N D} \geq \frac{\sqrt{2}}{R}.$$
  9. Given positive numbers $a$, $b$, $c$, $d$ and a positive integer $n$. Show that $$\frac{a^{n}}{\sqrt[n]{b^{n}+c^{n}+d^{n}}}+\frac{b^{n}}{\sqrt[n]{c^{n}+d^{n}+a^{n}}}+\frac{c^{n}}{\sqrt[n]{d^{n}+a^{n}+b^{n}}} +\frac{d^{n}}{\sqrt[n]{a^{n}+b^{n}+c^{n}}} \geq \frac{a^{n-1}+b^{n-1}+c^{n-1}+d^{n-1}}{\sqrt[n]{3}}.$$
  10. Find all positive integers $n$ so that $$\frac{n^{2021 n-2020}-2021 n+2019}{2021 n-2020}$$ is an integer.
  11. Suppose that $x, y$ are real numbers. Find the minimum value of the expression $$P=\sin ^{4} x \cdot\left(\sin ^{4} y+\cos ^{4} y+\frac{9}{8} \cos ^{2} x \cdot \sin ^{2} 2 y\right)+\cos ^{4} x.$$
  12. Given a triangle $A B C$ and its circumcircle $(O)$. A point $P$ is moving on $(O)$. Let $Q$ be the reflection point of $P$ in $B C$. Let $E$, $F$ respectively be the intersections between $B Q$, $C Q$ and $A C$, $A B$. Show that the center of the Euler circle of $A E F$ belongs to a fixed line.
[next]

Issue 539

  1. Given $A=\overline{100 \ldots 02008 a b}$ (there are $2008$ digits $0$'s between the digits 1 and $2$). Find the digits $a$ and $b$ so that $A$ is divisible by $41$.
  2. Find the least possible number $n$ so that we can write $2108$ as a sum of $n$ perfect squares.
  3. Find integral solutions of the equation $$11 x^{2}+2 x y+16 y^{2}+4=7 z^{2}.$$
  4. Given a scalene triangle $A B C$ with $A B+A C=2 B C$. Let $(O)$ and $(I)$ respectively be the circumcircle and the incircle of $A B C$. $(I)$ is tangent to $B C$ at $D$. The ray $A I$ intersects $(O)$ at the second point $M$. The ray $M D$ intersects $(O)$ at the second point $E$. The ray $A E$ intersects $B C$ at $K$. Show that $K$, $I$, $O$ are collinear.
  5. Given positive numbers $x, y, z$ satisfying $x+y+z=3$. Find the minimum value of the expression $$P=\sqrt{x+3}+\sqrt{y+3}+\sqrt{z+3}+\frac{x^{2}+y^{2}+z^{2}}{2(x y+y z+z x)}$$
  6. Solve the system of equations $$\begin{cases} x^{2}+y^{2}+y &=5 \\ x^{3}+y^{3}+6 x y &=8\end{cases}$$
  7. Given two positive integers $m$, $n$. Let $$\begin{align}A&=(1+n)^{n}(1+m)^{m}-(1+n)^{n}-(1+m)^{m},\\ B&=(1+n)^{m}(1+m)^{n}-(1+n)^{m}-(1+m)^{n}.\end{align}$$ Find $A-m n B \pmod{m n^{2}}$.
  8. Given $5$ different points $A$, $B$, $C$, $D$, $E$ on the space. Let $M$, $N$, $P$ respectively be the midpoints of the line segments connecting the midpoints of the pairs $B C$ and $D E$, $C D$ and $E A$, $D E$ and $A B$. Show that the lines $A M$, $B N$, $C P$ are concurrent.
  9. Given a triangle $A B C$ with $A B=c$, $B C=a$, $C A=b$. The medians $A A_{1}$, $B B_{1}$, $C C_{1}$ respectively intersect the circumcircle $(O)$ at $A_{2}$, $B_{2}$, $C_{2}$. Let $G$ be the centroid of $A B C$. Show that $$\frac{1}{G A_{2}}+\frac{1}{G B_{2}}+\frac{1}{G C_{2}} \leq \frac{9}{\sqrt{a^{2}+b^{2}+c^{2}}}.$$
  10. Find the largest possible number $m$ so that for each positive integer $n$, the sum of the prime divisors (not necessarily different) of $n$ is not less than $m \ln n$.
  11. Find all functions $\mathrm{f}: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$ satisfying $$f(x+y f(x))=f(x)+x f(y),\, \forall x, y \in \mathbb{R}^{+}.$$
  12. Given an acute triangle $A B C$ $(A B<A C)$. The altitudes $B E$, $C F$ meet at $H$. Let $M$ and $N$ respectively be the midpoints of $A H$ and $B C$. The circle with the diameter $A H$ intersects $A N$ at the second point $U$. $E F$ intersects $A H$ at $T$. Suppose that $K$ is the reflection point of $U$ in $B C$. Show that $K H$, $N T$ meet together at some point on the circumcircle of $M B C$.
[next]

Issue 540

  1. Prove that $$1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\ldots+\frac{1}{\sqrt{2022}}>2(\sqrt{2023}-1)$$
  2. Let $$A=1+\frac{1}{2}(1+2)+\frac{1}{3^{2}}(1+2+3)^{2}+\ldots+\frac{1}{2021^{2020}}(1+2+\ldots+2021)^{2020}.$$ Compare $A$ with $\left(2^{2020}\right)^{20} .$
  3.  Compute the sum $$S=\frac{a}{1-a^{2}}+\frac{a^{2}}{1-a^{4}}+\frac{a^{4}}{1-a^{8}}+\ldots+\frac{a^{2^{n}}}{1-a^{2^{n+1}}}$$ with $a=\sqrt[2^n]{2}$, $n=2022$.
  4. Given a right triangle $A B C$ with the right angle $A$. Let $D$ be a point on the side $B C$ satisfying $$\frac{2}{A D^{2}}=\frac{1}{D B^{2}}+\frac{1}{D C^{2}}.$$ Show that either $D$ is the midpoint of $B C$ or $D$ is the intersection between the angle bisector of $A$ and $B C$.
  5. Find the integral solutions of the equation $$9 x^{2}-6 x-3+32 \sqrt{3 x+1}=64.$$
  6. Let $(x ; y ; z)$ be a permutation of $3$ positive numbers $a, b, c$. Show that $$\frac{x^{2}}{\sqrt{a b(a+2 c)(b+2 c)}}+\frac{y^{2}}{\sqrt{b c(b+2 a)(c+2 a)}} +\frac{z^{2}}{\sqrt{c a(c+2 b)(a+2 b)}} \geq 1.$$
  7. Find all pairs of prime numbers $(p ; q)$ satisfying $$p^{3}-127=q^{6}-121 q^{3}.$$
  8. Given a triangle $A B C$ and a point $M$ on the side $A B$. The line through $M$ and parallel to $B C$ intersects $A C$ at $N$. The line through $N$ and parallel to $A B$ intersects $C M$ at $I$. Show that $$S_{I M N} \leq \frac{4}{27} S_{A B C}.$$
  9. Given a triangle $A B C$ with $A B=c$, $B C=a$, $C A=b$. Let $I$ be the incenter of $A B C$. Show that $$I A^{2}+I B^{2}+I C^{2} \leq \frac{a^{3}+b^{3}+c^{3}}{a+b+c}.$$
  10. Let $p$ be a prime number in the form $2^{2^{n}}+1$ $(n \in \mathbb{N}, n \geq 1)$. Let $S=3+3^{2}+\ldots+3^{p-2}$. Show that
    • For any positive integer $h$ with $h<p$ and $h$ is not a divisor of $p-1$ then $3^{h}+1$ is not divisible by $p$.
    • $S+1 \vdots p$
  11. Given $n$ real numbers $a_{1}, a_{2}, \ldots, a_{n}$ satisfying $0 \leq a_{i}<1$, $\forall i=\overline{1, n}$, $n \geq 2$ Find the least positive constant $k$ so that the following inequality holds $$\frac{1}{\prod_{i=1}^{n}\left(1-a_{i}\right)}-\frac{\sum_{i=1}^{n} a_{i}}{k}+\sum_{1 \leq i<j \leq n} a_{i} a_{j}+\sum_{i=1}^{n} a_{i}^{2} \geq 1.$$
  12. Given a triangle $A B C$ and its incenter $I$, and $D$ is a point on $B C$. Let $K$ be the intersection between the line through $D$ and perpendicular to $I B$ with the external angle bisector of $\widehat{B A C}$. Let $L$ be the intersection between the line through $D$ and perpendicular to $I C$ with the external angle bisector of $\widehat{B A C}$. The points $P, Q$ respectively are on $I B$, $I C$ so that $\widehat{P D Q}=90^{\circ}$. Prove that $K P \perp L Q$.
[next]

Issue 541

  1. Find all natural numbers $x, y$ satisfying $$(x y+3)(x y+2)=2007^{n 7}+1930 .$$
  2. Given a triangle $A B C$ $(A B<A C)$ with $\widehat{B A C}=\alpha$. Let $M$ be the midpoint of $B C$. Let $D$ be the point on the side $A C$ such that $A D=\dfrac{A B+A C}{2}$. Find the measurement of $\widehat{A D M}$ in terms of $\alpha$.
  3. Find all positive numbers $x$ satisfying $$\frac{1945}{6 x+3}+\frac{1954}{4 x+5}+\frac{1975}{3 x+9}+\frac{2023}{2 x+14}=15 .$$
  4. Outside a given triangle $A B C$ draw triangles $A B D$, $B C E$, $C A F$ such that $\widehat{A D B}=\widehat{B E C}=\widehat{C F A}=90^{\circ}$, $\widehat{A B D}=\widehat{C B E}=\widehat{C A F}=\alpha$. Prove that $D F=A E$.
  5. Let $x$, $y$ be positive numbers such that $x y \geq 1$. Find the minimum value of the expression $$A=\frac{x}{y+1}+\frac{y}{x+1}+\frac{1}{x y+1}.$$
  6. Find all natural numbers $x$, $y$ which are greater than $1$ and satisfy $$1+x+x^{2}+\ldots+x^{n-1}=5^{y}.$$
  7. Given positive numbers $a, b, c$ such that $a+b+c=1$. Show that $$\frac{2 a-3 b c}{2 a+3 b c}+\frac{2 b-3 c a}{2 b+3 c a}+\frac{2 c-3 a b}{2 c+3 a b} \leq 1 .$$
  8. Given an equilateral triangle $A B C$ inscribed in a circle $(O)$ with radius $R$. Show that, for an arbitrary point $M$ on the circle $(O)$, we always have $$6 \sqrt{2}<\frac{M A^{3}+M B^{3}+M C^{3}}{R^{3}}<3 \sqrt[4]{216}.$$
  9. Let $a, b, c$ be the lengths of three sides of a triangle which has the circumference $5$ and $m_{a}$, $m_{b}$, $m_{c}$ be the lengths of the corresponding medians. Find the minimum value of the expression $$T=m_{a}^{2}+m_{b}^{2}+2 m_{c}^{2}+4 c .$$
  10. Given a positive integer $n$. Show that there does not exist a $(2 n+1)$-polygon with equal sides and integral vertices i.e. the components of the coordinates of all vertices are integers.
  11. For each positive integer $n$, show that there exists a unique positive integer $x_{n}$ satisfying $$(2+\sqrt{7})^{n}=\sqrt{x_{n}-3^{n}}+\sqrt{x_{n}}.$$
  12. In a plane there are 4 fixed points $A$, $B$, $C$, $D$ which are collinear in that order. Find the locus of the points $M$ such that two triangles $M A C$ and $M B D$ share the same orthocenter.
[next]

Issue 542

  1. Find all natural numbers $n$ satisfying $$\frac{n+2}{n+1}+\frac{n+3}{n+2}+\ldots+\frac{n+2024}{n+2023} = \frac{n-2024}{n-2023}+\frac{n-2025}{n-2024}+\ldots+\frac{n-4046}{n-4045} .$$
  2. Given an isosceles triangle $A B C$ with $\hat{A}=100^{\circ}$, the angle bisector $B D$. On the side $B C$ choose the point $N$ so that $B N=B D$. Show that $N A+N C=B D$.
  3. Let $a, b, c$ be integers so that $a b-b c-c a$ is divisible by $3$. Show that if $a^3+b^3$ $+c^3$ is divisible by $3$ then $a^3+b^3+c^3$ is divisible by $27$.
  4. Given a triangle $A B C$ with $\widehat{A B C}=30^{\circ}$. Outside $A B C$ draw the right isosceles triangle $A C D$ with right angle $D$. Show that $$2 B D^2=B A^2+B C^2+B A \cdot B C .$$
  5. Consider pairs of real numbers $(x ; y)$ satisfying $$2 x+y-x y=1\quad (*).$$ The pairs $(a ; b)$ and $(m ; n)$, with $a>1>m$, satisfy $(*)$. Find the minimal value of the expression $$P=(a-m)^2+(b-n)^2.$$
  6. Given $100$ positive integers $a_1, a_2, \ldots, a_{100}$ satisfying the conditions
    • $1 \leq a_1<a_2<\ldots<a_{99}<a_{100}$.
    • $a_{i+1}=a_i^3+2006$ with $i=1,2, \ldots, 99$.
    Show that among $100$ given numbers there is at most one perfect square.
  7. Given an acute triangle $A B C$. Find the minimal value of the expression $$P=\sin A+\sin B+\sin C+\tan A+\tan B+\tan C.$$
  8. Given an acute triangle $A B C$ with orthocenter $H$ and incenter $I$. The rays $A H$, ${BH}$, ${CH}$ respectively intersect the circumcircle $A B C$ at $A_2$, $B_2$, $C_2$ respectively. Show that $$\frac{1}{H A_2}+\frac{1}{H B_2}+\frac{1}{H C_2} \geq \frac{1}{I A}+\frac{1}{I B}+\frac{1}{I C}.$$
  9. Show that the following inequality always holds for arbitrary real numbers $x, y, z$ we have $$\left(x^2-x+1\right)\left(y^2-y+1\right)\left(z^2-z+1\right) \geq(x-y)(y-z)(z-x) .$$ When does the equality happen?
  10. Show that for every positive integer $m$, the number $2 m^2+4 m+4$ has no divisor of the form $2^n-1$, where $n$ is an integer which is bigger than $1$.
  11. Given real numbers $a, b, c$ satisfying $a+b+c=3$. Show that $$\frac{1}{\sqrt{a^2+3}}+\frac{1}{\sqrt{b^2+3}}+\frac{1}{\sqrt{c^2+3}} \leq \frac{3}{2}.$$
  12. Given a triangle $A B C$ and let $\omega$, $\gamma$ be its circumcircle and the incircle respectively. The circle $\gamma$ is tangent to $B C$ at $D$. $M$ is a moving point on the minor arc $B C$ of $\omega$. From $M$ draw the tangents $M E$, $M F$ with $\gamma$ (at $E$, $F$ respectively). $P$ is the reflection point of $D$ in the center of $\gamma$. Let $H$ be the orthocenter of $P E F$.
    a) Show that $H$ always belongs to a fixed circle.
    b) Choose $B_1$, $C_1$ on the opposite rays of the rays $C A$, $C B$ respectively $\left(B_1 \neq C, C_1 \neq B\right)$. Through $B_1$ draw the other tangent which is different from $A C$ with $\gamma$, and that tangent intersects $B C$, $B A$ at $A_1$, $C_2$ respectively. Through $C_1$ draw the other tangent which is different from $A B$ with $\gamma$, and that tangent intersects $C B$, $C A$ at $A_2$, $B_2$ respectively. Assume that $B_1 C_2$, $C_1 B_2$, $A M$ are concurrent and the circumcircles of $M A_1 A_2$, $M B_1 B_2$, $M C_1 C_2$ intersect $\omega$ again at $X$, $Y$, $Z$ respectively. Show that $A X$, $B Y$, $C Z$ are concurrent.
[next]

Issue 543

  1. Compute $$S=\frac{1}{2 !}+\frac{2}{3 !}+\frac{3}{4 !}+\ldots+\frac{2020}{2021 !}+\frac{2022}{2022 !}$$ with $n !=1.2 .3 \ldots n$.
  2. Given two polynomials $f(x)=a x^2+b x+c$ and $g(x)=(c-b) x^2+(c-a) x+a+b$, where $a$, $b$, $c$ are integers and $b \neq c$. Assume that $f(x)$ and $g(x)$ have a common solution. Show that $a+b+2009 c$ is divisible by $3$.
  3. Solve the system of equations $$\begin{cases}8 x^4 &=y\left(16+3 x^4\right) \\ 8 y^4 &=z\left(16+3 y^4\right) \\ 8 z^4 &=x\left(16+3 z^4\right)\end{cases}$$
  4. Given a circle $(O ; R)$ with a diameter $B C$. A point $A$ is moving on $(O)$ but is different from $B$ and $C$. Let $H$ be the perpendicular projection of $A$ on $B C$, and $E$ the midpoint of $A H$. The line through $H$ and perpendicular to $C E$ intersects the line $B A$ at $D$. Show that the length of $C D$ is a constant.
  5. Consider the real numbers $x$, $y$ satisfying $27 x^3+216 y^3=16$. Find the maximum value of the expression $$A=\frac{(x+2 y+1)^3}{3\left(x^2+y^2\right)-2(2 x+y)+3} .$$
  6. Find all the primes $p$ so that the sum $A=7^p+9 p^6$ is a complete square.
  7. Given positive numbers $x$, $y$, $z$. Consider all rectangles $A B C D$ so that there exists a point $P$ which is totally inside the rectangle and satisfies $P A=x$, $P B=y$, $P C=z$. Find the maximum value of the area of the rectangle $A B C D$.
  8. On a given plane $(\alpha)$ fix three points $A$, $B$, $C$ so that the triangle $A B C$ is equilateral with side $a$. On the space a point $S$ is moving, but not on the plane $(\alpha)$, so that the distance from $A$ to the plane $(S B C)$ is equal to the distance between two lines $S A$ and $B C$; and $S A=a$. Show that $S$ lies on a fixed circle.
  9. Consider positive numbers $x$, $y$, $z$ satisfying $x y z=1$. Find the maximum value of the expression $$P=\frac{1}{2 x^2+y^2+z\left(x^2+y^2+z\right)} + \frac{1}{2 y^2+z^2+x\left(y^2+z^2+x\right)}+\frac{1}{2 z^2+x^2+y\left(z^2+x^2+y\right)}.$$
  10. Find all polynomials $f$ with integral coefficients so that: For each prime $p$ and arbitrary $u, v \in \mathbb{N}$ satisfying $p \mid u v-1$ then $p \mid f(u) f(v)-1$
  11. Consider the sequence $a_n=\sin n q$, where $n \in \mathbb{N}$, $q \in \mathbb{R}$. Find the values of $q$ for which the limit $\lim _{n \rightarrow-\infty} a_n$ exists.
  12. Given a triangle $A B C$ with the centroid $G$. $D$, $E$, $F$ are respectively the perpendicular projections of $G$ on $B C$, $C A$, $A B$. Show that the Lemoine point of the triangle $D E F$ lies on the Euler line of the triangle $A B C$.
[next]

Issue 544

  1. Find the sum of all largest odd divisors of the numbers $2022, 2023, ..., 4044$.
  2. Given a triangle $A B C$ with $\widehat{B}=80^{\circ}$, $\widehat{C}=60^{\circ}$. On the opposite ray of the ray $C B$ choose the point $M$ so that $\widehat{M A B}=60^{\circ}$. Compare the lengths of the line segments $B M$ and $A C$.
  3. Find all natural numbers $a$ so that $3 a^{2 n}+6 a^n+27$ is a perfect square for any positive integer $n$.
  4. Give a trapezium $A B C D$ ($A B || C D$, $A B<C D$). Let $M$, $N$ respectively be the midpoints of $A B$, $C D$. Through $A$ draw the line $\left(d_1\right)$ perpendicular to $A D$. Through $B$ draw the line $\left(d_2\right)$ perpendicular to $B C$. Show that if $C D-A B=$ $2 M N$ then the lines $\left(d_1\right)$, $\left(d_2\right)$ and $M N$ are concurrent.
  5. Solve the system of equations $$\begin{cases} 20 x+11 y &=2024 \\ x^3+4 x &=y^3+3\left(x^2+y^2\right)+4 y+4\end{cases}$$
  6. Given real numbers $x, y, z$ which are greater than $1$ and satisfy $$\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2.$$ Prove that $$x+y+z \leq x y z+\frac{9}{8}.$$
  7. Find pairs of non-zero polynomials with integral coefficients $P(x)$, $Q(x)$ so that $$\frac{P(\sqrt{2}+\sqrt{17}+\sqrt{19})}{Q(\sqrt{2}+\sqrt{17}+\sqrt{19})}=\sqrt{2}+\sqrt{7}.$$
  8. Given an acute triangle $A B C$ inscribed in a circle $(O)$. Two points $D$, $E$ are on the line segment $A B$, $A C$ respectively so that $A D=A E$. The perpendicular bisectors of $B D$ and $C E$ intersects the minor arcs $\overparen{A B}$, $\overparen{A C}$ of $(O)$ at the points $G$, $H$ respectively. Let $P$ be the intersection between $G D$ and $E H$; let $K$ be the circumcenter of the triangle $P G H$. Show that $O A$ is parallel to $K P$.
  9. Given positive numbers $x$, $y$. Find the minimum value of the expression $$F=\frac{x y}{\left(x+\sqrt{x^2+y^2}\right)^2} .$$
  10. Given a real sequence $\left(a_n\right)$ determined as follows $a_1=1$ and $$a_{n+1}=\sqrt{\frac{n}{n+1}} \cdot a_n+\frac{1}{n+1},\, n=1,2, \ldots$$ Show that the sequence $\left(a_n\right)$ has a finite limit and find that limit.
  11. Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying $$f(x y)-f(f(x)-f(y))=x f(y)+x+y,\,\forall \forall x, y \in \mathbb{R}.$$
  12. Given a triangle $A B C$ inscribed in a circle $(O)$ and $H$ is the orthocenter of the triangle. Let $P$ be the reflection point of $H$ in $O$. Draw $P K \perp B C$ $(K \in B C)$. Let $M$ be the midpoint of $B C$. $B P$, $C P$ intersect $A C$, $A B$ at $E$, $F$ respectively. Denote by $H_1$, $H_2$ the orthocenters of triangles $B E C$, $B F C$ respectively. Show that the points $H_1$, $H_2$, $K$, $M$ belong to the same circle.
[next]

Issue 545

  1. Find positive integers $m$, $n$ so that both $\dfrac{m^{12}}{1023 m+n}$ and $\dfrac{n^{12}}{1023 n+m}$ are prime numbers.
  2. Given a square $A B C D$. A point $K$ is moving on the side $A B$ and $K$ is different from $A$. Draw the square $D K I E$ where $I$ is in the same half-plane defined by $A D$ with the point $B$. Find the measurement of the angle $\widehat{E B I}$.
  3. Find all positive integers $n$ so that $\sqrt{n+1}+\sqrt{2^n+1}$ is also a positive integer.
  4. Given an acute triangle $A B C$ with the orthocenter $H$. Show that $$H A+H B+H C<\sqrt{\frac{2}{3}}(A B+B C+C A) .$$
  5. Given positive numbers $a, b, c,d$. Show that $$a^4+b^4+c^4+d^4-4 a b c d \geq 4(a-b)^2 \sqrt{a b c d} .$$
  6. Solve the equation $$\left(x^2+3 x+3\right) \sqrt{2 x^2+x+1}-x^3-4 x^2-12 x=9 .$$
  7. Denote $[x]$ the largest integer which does not exceed $x$. Let $\{x\}=x-[x]$. Find all triples of real numbers $(x ; y ; z)$ satisfying the system of equations $$\begin{cases}x+[y]+\{z\} &=1,1 \\ \{x\}+y+[z] &=2,2 \\ [x]+\{y\}+z &=3,3\end{cases}$$
  8. Suppose that the line segments $A B$ and $C D$ intersect at $M$ $(M \notin\{A, B, C, D\})$. Draw the rays $B x || A C$ and $C y || B D$, and assume that they intersect at $N$. Let $E$, $F$ respectively be the midpoints of $B C$ and $A D$. Show that $E F$ and $M N$ are either parallel or coincident.
  9. Find the maximum value of the expression $$\frac{3 a+2 b+c}{(a+b)(a+c)(b+c)}$$ where $a, b, c$ are positive numbers satisfying $$3 b c+4 a c+5 b a \leq 6 a b c .$$
  10. For $n \in \mathbb{N}^*$, we write on a board the numbers $1,2,3, \ldots, 3 n+1$. Then in each step, we delete $4$ numbers, e.g. $a, b, c, d$, and we write again on the board the number whose value is $64(a+b+c+d)$. After $n$ steps, there is remain number is always greater than $\frac{64}{625} n^5$.
  11. Given the sequence $\left(x_n\right)$ of positive numbers which satisfy only one number on the board. Show that the $$\frac{2}{x_n+2}+\frac{1}{x_{n+1}+2}+\frac{1}{x_{n+1}}=1,\, n=0,1,2, \ldots.$$ Show that $\left(x_n\right)$ has a limit which is a finite number and find that limit.
  12. Given a triangle $A B C$ and its incircle $(I)$. Let $D$, $E$, $F$ repectively be the points where $(I)$ is tangent to $B C$, $C A$, $A B$. Let $A^{\prime}$, $B^{\prime}$, $C^{\prime}$ respectively be the reflection points of $A$, $B$, $C$ in $E F$, $F D$, $D E$. Let $X=E B^{\prime} \cap F C^{\prime}$, $Y=F C^{\prime} \cap D A^{\prime}$, $Z=D A^{\prime} \cap E B^{\prime}$. Show that the orthocenter of $X Y Z$ is the center of the Euler circle of $D E F$.

$hide=mobile$type=ticker$c=36$cols=2$l=0$sr=random$b=0

Name

Abel,5,Albania,2,AMM,2,Amsterdam,4,An Giang,45,Andrew Wiles,1,Anh,2,APMO,21,Austria (Áo),1,Ba Lan,1,Bà Rịa Vũng Tàu,77,Bắc Bộ,2,Bắc Giang,62,Bắc Kạn,4,Bạc Liêu,18,Bắc Ninh,53,Bắc Trung Bộ,3,Bài Toán Hay,5,Balkan,41,Baltic Way,32,BAMO,1,Bất Đẳng Thức,69,Bến Tre,72,Benelux,16,Bình Định,65,Bình Dương,38,Bình Phước,52,Bình Thuận,42,Birch,1,BMO,41,Booklet,12,Bosnia Herzegovina,3,BoxMath,3,Brazil,2,British,16,Bùi Đắc Hiên,1,Bùi Thị Thiện Mỹ,1,Bùi Văn Tuyên,1,Bùi Xuân Diệu,1,Bulgaria,6,Buôn Ma Thuột,2,BxMO,15,Cà Mau,22,Cần Thơ,27,Canada,40,Cao Bằng,12,Cao Quang Minh,1,Câu Chuyện Toán Học,43,Caucasus,3,CGMO,11,China - Trung Quốc,25,Chọn Đội Tuyển,515,Chu Tuấn Anh,1,Chuyên Đề,125,Chuyên SPHCM,7,Chuyên SPHN,30,Chuyên Trần Hưng Đạo,3,Collection,8,College Mathematic,1,Concours,1,Cono Sur,1,Contest,675,Correspondence,1,Cosmin Poahata,1,Crux,2,Czech-Polish-Slovak,28,Đà Nẵng,50,Đa Thức,2,Đại Số,20,Đắk Lắk,76,Đắk Nông,15,Danube,7,Đào Thái Hiệp,1,ĐBSCL,2,Đề Thi,1,Đề Thi HSG,2249,Đề Thi JMO,1,DHBB,30,Điện Biên,15,Định Lý,1,Định Lý Beaty,1,Đỗ Hữu Đức Thịnh,1,Do Thái,3,Doãn Quang Tiến,5,Đoàn Quỳnh,1,Đoàn Văn Trung,1,Đồng Nai,64,Đồng Tháp,63,Du Hiền Vinh,1,Đức,1,Dương Quỳnh Châu,1,Dương Tú,1,Duyên Hải Bắc Bộ,30,E-Book,31,EGMO,30,ELMO,19,EMC,11,Epsilon,1,Estonian,5,Euler,1,Evan Chen,1,Fermat,3,Finland,4,Forum Of Geometry,2,Furstenberg,1,G. Polya,3,Gặp Gỡ Toán Học,30,Gauss,1,GDTX,3,Geometry,14,GGTH,30,Gia Lai,40,Gia Viễn,2,Giải Tích Hàm,1,Giới hạn,2,Goldbach,1,Hà Giang,5,Hà Lan,1,Hà Nam,45,Hà Nội,255,Hà Tĩnh,91,Hà Trung Kiên,1,Hải Dương,70,Hải Phòng,57,Hậu Giang,14,Hélènne Esnault,1,Hilbert,2,Hình Học,33,HKUST,7,Hòa Bình,33,Hoài Nhơn,1,Hoàng Bá Minh,1,Hoàng Minh Quân,1,Hodge,1,Hojoo Lee,2,HOMC,5,HongKong,8,HSG 10,126,HSG 10 2010-2011,4,HSG 10 2011-2012,7,HSG 10 2012-2013,8,HSG 10 2013-2014,7,HSG 10 2014-2015,6,HSG 10 2015-2016,2,HSG 10 2016-2017,8,HSG 10 2017-2018,4,HSG 10 2018-2019,4,HSG 10 2019-2020,7,HSG 10 2020-2021,3,HSG 10 2021-2022,4,HSG 10 2022-2023,11,HSG 10 2023-2024,1,HSG 10 Bà Rịa Vũng Tàu,2,HSG 10 Bắc Giang,1,HSG 10 Bạc Liêu,2,HSG 10 Bình Định,1,HSG 10 Bình Dương,1,HSG 10 Bình Thuận,4,HSG 10 Chuyên SPHN,5,HSG 10 Đắk Lắk,2,HSG 10 Đồng Nai,4,HSG 10 Gia Lai,2,HSG 10 Hà Nam,4,HSG 10 Hà Tĩnh,15,HSG 10 Hải Dương,10,HSG 10 KHTN,9,HSG 10 Nghệ An,1,HSG 10 Ninh Thuận,1,HSG 10 Phú Yên,2,HSG 10 PTNK,10,HSG 10 Quảng Nam,1,HSG 10 Quảng Trị,2,HSG 10 Thái Nguyên,9,HSG 10 Vĩnh Phúc,14,HSG 1015-2016,3,HSG 11,135,HSG 11 2009-2010,1,HSG 11 2010-2011,6,HSG 11 2011-2012,10,HSG 11 2012-2013,9,HSG 11 2013-2014,7,HSG 11 2014-2015,10,HSG 11 2015-2016,6,HSG 11 2016-2017,8,HSG 11 2017-2018,7,HSG 11 2018-2019,8,HSG 11 2019-2020,5,HSG 11 2020-2021,8,HSG 11 2021-2022,4,HSG 11 2022-2023,7,HSG 11 2023-2024,1,HSG 11 An Giang,2,HSG 11 Bà Rịa Vũng Tàu,1,HSG 11 Bắc Giang,4,HSG 11 Bạc Liêu,3,HSG 11 Bắc Ninh,2,HSG 11 Bình Định,12,HSG 11 Bình Dương,3,HSG 11 Bình Thuận,1,HSG 11 Cà Mau,1,HSG 11 Đà Nẵng,9,HSG 11 Đồng Nai,1,HSG 11 Hà Nam,2,HSG 11 Hà Tĩnh,12,HSG 11 Hải Phòng,1,HSG 11 Kiên Giang,4,HSG 11 Lạng Sơn,11,HSG 11 Nghệ An,6,HSG 11 Ninh Bình,2,HSG 11 Quảng Bình,12,HSG 11 Quảng Nam,1,HSG 11 Quảng Ngãi,9,HSG 11 Quảng Trị,3,HSG 11 Sóc Trăng,1,HSG 11 Thái Nguyên,8,HSG 11 Thanh Hóa,3,HSG 11 Trà Vinh,1,HSG 11 Tuyên Quang,1,HSG 11 Vĩnh Long,3,HSG 11 Vĩnh Phúc,11,HSG 12,668,HSG 12 2009-2010,2,HSG 12 2010-2011,39,HSG 12 2011-2012,44,HSG 12 2012-2013,58,HSG 12 2013-2014,53,HSG 12 2014-2015,44,HSG 12 2015-2016,37,HSG 12 2016-2017,46,HSG 12 2017-2018,55,HSG 12 2018-2019,43,HSG 12 2019-2020,43,HSG 12 2020-2021,52,HSG 12 2021-2022,35,HSG 12 2022-2023,42,HSG 12 2023-2024,23,HSG 12 2023-2041,1,HSG 12 An Giang,8,HSG 12 Bà Rịa Vũng Tàu,13,HSG 12 Bắc Giang,18,HSG 12 Bạc Liêu,3,HSG 12 Bắc Ninh,13,HSG 12 Bến Tre,19,HSG 12 Bình Định,17,HSG 12 Bình Dương,8,HSG 12 Bình Phước,9,HSG 12 Bình Thuận,8,HSG 12 Cà Mau,7,HSG 12 Cần Thơ,7,HSG 12 Cao Bằng,5,HSG 12 Chuyên SPHN,11,HSG 12 Đà Nẵng,3,HSG 12 Đắk Lắk,21,HSG 12 Đắk Nông,1,HSG 12 Điện Biên,3,HSG 12 Đồng Nai,20,HSG 12 Đồng Tháp,18,HSG 12 Gia Lai,14,HSG 12 Hà Nam,5,HSG 12 Hà Nội,17,HSG 12 Hà Tĩnh,16,HSG 12 Hải Dương,16,HSG 12 Hải Phòng,20,HSG 12 Hậu Giang,4,HSG 12 Hòa Bình,10,HSG 12 Hưng Yên,10,HSG 12 Khánh Hòa,4,HSG 12 KHTN,26,HSG 12 Kiên Giang,12,HSG 12 Kon Tum,3,HSG 12 Lai Châu,4,HSG 12 Lâm Đồng,11,HSG 12 Lạng Sơn,8,HSG 12 Lào Cai,17,HSG 12 Long An,18,HSG 12 Nam Định,7,HSG 12 Nghệ An,13,HSG 12 Ninh Bình,12,HSG 12 Ninh Thuận,7,HSG 12 Phú Thọ,18,HSG 12 Phú Yên,13,HSG 12 Quảng Bình,14,HSG 12 Quảng Nam,11,HSG 12 Quảng Ngãi,6,HSG 12 Quảng Ninh,20,HSG 12 Quảng Trị,10,HSG 12 Sóc Trăng,4,HSG 12 Sơn La,5,HSG 12 Tây Ninh,6,HSG 12 Thái Bình,11,HSG 12 Thái Nguyên,13,HSG 12 Thanh Hóa,17,HSG 12 Thừa Thiên Huế,19,HSG 12 Tiền Giang,3,HSG 12 TPHCM,13,HSG 12 Tuyên Quang,3,HSG 12 Vĩnh Long,7,HSG 12 Vĩnh Phúc,20,HSG 12 Yên Bái,6,HSG 9,573,HSG 9 2009-2010,1,HSG 9 2010-2011,21,HSG 9 2011-2012,42,HSG 9 2012-2013,41,HSG 9 2013-2014,35,HSG 9 2014-2015,41,HSG 9 2015-2016,38,HSG 9 2016-2017,42,HSG 9 2017-2018,45,HSG 9 2018-2019,41,HSG 9 2019-2020,18,HSG 9 2020-2021,50,HSG 9 2021-2022,53,HSG 9 2022-2023,55,HSG 9 2023-2024,15,HSG 9 An Giang,9,HSG 9 Bà Rịa Vũng Tàu,8,HSG 9 Bắc Giang,14,HSG 9 Bắc Kạn,1,HSG 9 Bạc Liêu,1,HSG 9 Bắc Ninh,12,HSG 9 Bến Tre,9,HSG 9 Bình Định,11,HSG 9 Bình Dương,7,HSG 9 Bình Phước,13,HSG 9 Bình Thuận,5,HSG 9 Cà Mau,2,HSG 9 Cần Thơ,4,HSG 9 Cao Bằng,2,HSG 9 Đà Nẵng,11,HSG 9 Đắk Lắk,12,HSG 9 Đắk Nông,3,HSG 9 Điện Biên,5,HSG 9 Đồng Nai,8,HSG 9 Đồng Tháp,10,HSG 9 Gia Lai,9,HSG 9 Hà Giang,4,HSG 9 Hà Nam,10,HSG 9 Hà Nội,15,HSG 9 Hà Tĩnh,13,HSG 9 Hải Dương,16,HSG 9 Hải Phòng,8,HSG 9 Hậu Giang,6,HSG 9 Hòa Bình,4,HSG 9 Hưng Yên,11,HSG 9 Khánh Hòa,6,HSG 9 Kiên Giang,16,HSG 9 Kon Tum,9,HSG 9 Lai Châu,2,HSG 9 Lâm Đồng,14,HSG 9 Lạng Sơn,10,HSG 9 Lào Cai,4,HSG 9 Long An,10,HSG 9 Nam Định,9,HSG 9 Nghệ An,21,HSG 9 Ninh Bình,14,HSG 9 Ninh Thuận,4,HSG 9 Phú Thọ,13,HSG 9 Phú Yên,9,HSG 9 Quảng Bình,14,HSG 9 Quảng Nam,12,HSG 9 Quảng Ngãi,13,HSG 9 Quảng Ninh,17,HSG 9 Quảng Trị,10,HSG 9 Sóc Trăng,9,HSG 9 Sơn La,5,HSG 9 Tây Ninh,16,HSG 9 Thái Bình,11,HSG 9 Thái Nguyên,5,HSG 9 Thanh Hóa,12,HSG 9 Thừa Thiên Huế,9,HSG 9 Tiền Giang,7,HSG 9 TPHCM,11,HSG 9 Trà Vinh,2,HSG 9 Tuyên Quang,6,HSG 9 Vĩnh Long,12,HSG 9 Vĩnh Phúc,12,HSG 9 Yên Bái,5,HSG Cấp Trường,80,HSG Quốc Gia,113,HSG Quốc Tế,16,Hứa Lâm Phong,1,Hứa Thuần Phỏng,1,Hùng Vương,2,Hưng Yên,43,Huỳnh Kim Linh,1,Hy Lạp,1,IMC,26,IMO,58,IMT,2,IMU,2,India - Ấn Độ,47,Inequality,13,InMC,1,International,349,Iran,13,Jakob,1,JBMO,41,Jewish,1,Journal,30,Junior,38,K2pi,1,Kazakhstan,1,Khánh Hòa,30,KHTN,64,Kiên Giang,74,Kon Tum,24,Korea - Hàn Quốc,5,Kvant,2,Kỷ Yếu,46,Lai Châu,12,Lâm Đồng,47,Lăng Hồng Nguyệt Anh,1,Lạng Sơn,37,Langlands,1,Lào Cai,35,Lê Hải Châu,1,Lê Hải Khôi,1,Lê Hoành Phò,4,Lê Hồng Phong,5,Lê Khánh Sỹ,3,Lê Minh Cường,1,Lê Phúc Lữ,1,Lê Phương,1,Lê Viết Hải,1,Lê Việt Hưng,2,Leibniz,1,Long An,52,Lớp 10 Chuyên,709,Lớp 10 Không Chuyên,355,Lớp 11,1,Lục Ngạn,1,Lượng giác,1,Lưu Giang Nam,2,Lưu Lý Tưởng,1,Macedonian,1,Malaysia,1,Margulis,2,Mark Levi,1,Mathematical Excalibur,1,Mathematical Reflections,1,Mathematics Magazine,1,Mathematics Today,1,Mathley,1,MathLinks,1,MathProblems Journal,1,Mathscope,8,MathsVN,5,MathVN,1,MEMO,13,Menelaus,1,Metropolises,4,Mexico,1,MIC,1,Michael Atiyah,1,Michael Guillen,1,Mochizuki,1,Moldova,1,Moscow,1,MYM,25,MYTS,4,Nam Định,45,Nam Phi,1,National,276,Nesbitt,1,Newton,4,Nghệ An,73,Ngô Bảo Châu,2,Ngô Việt Hải,1,Ngọc Huyền,2,Nguyễn Anh Tuyến,1,Nguyễn Bá Đang,1,Nguyễn Đình Thi,1,Nguyễn Đức Tấn,1,Nguyễn Đức Thắng,1,Nguyễn Duy Khương,1,Nguyễn Duy Tùng,1,Nguyễn Hữu Điển,3,Nguyễn Minh Hà,1,Nguyễn Minh Tuấn,9,Nguyễn Nhất Huy,1,Nguyễn Phan Tài Vương,1,Nguyễn Phú Khánh,1,Nguyễn Phúc Tăng,2,Nguyễn Quản Bá Hồng,1,Nguyễn Quang Sơn,1,Nguyễn Song Thiên Long,1,Nguyễn Tài Chung,5,Nguyễn Tăng Vũ,1,Nguyễn Tất Thu,1,Nguyễn Thúc Vũ Hoàng,1,Nguyễn Trung Tuấn,8,Nguyễn Tuấn Anh,2,Nguyễn Văn Huyện,3,Nguyễn Văn Mậu,25,Nguyễn Văn Nho,1,Nguyễn Văn Quý,2,Nguyễn Văn Thông,1,Nguyễn Việt Anh,1,Nguyễn Vũ Lương,2,Nhật Bản,4,Nhóm $\LaTeX$,4,Nhóm Toán,1,Ninh Bình,61,Ninh Thuận,26,Nội Suy Lagrange,2,Nội Suy Newton,1,Nordic,21,Olympiad Corner,1,Olympiad Preliminary,2,Olympic 10,134,Olympic 10/3,6,Olympic 10/3 Đắk Lắk,6,Olympic 11,122,Olympic 12,52,Olympic 23/3,2,Olympic 24/3,10,Olympic 24/3 Quảng Nam,10,Olympic 27/4,24,Olympic 30/4,61,Olympic KHTN,8,Olympic Sinh Viên,78,Olympic Tháng 4,12,Olympic Toán,344,Olympic Toán Sơ Cấp,3,Ôn Thi 10,2,PAMO,1,Phạm Đình Đồng,1,Phạm Đức Tài,1,Phạm Huy Hoàng,1,Pham Kim Hung,3,Phạm Quốc Sang,2,Phan Huy Khải,1,Phan Quang Đạt,1,Phan Thành Nam,1,Pháp,2,Philippines,8,Phú Thọ,32,Phú Yên,42,Phùng Hồ Hải,1,Phương Trình Hàm,11,Phương Trình Pythagoras,1,Pi,1,Polish,32,Problems,1,PT-HPT,14,PTNK,64,Putnam,27,Quảng Bình,64,Quảng Nam,57,Quảng Ngãi,49,Quảng Ninh,60,Quảng Trị,42,Quỹ Tích,1,Riemann,1,RMM,14,RMO,24,Romania,38,Romanian Mathematical,1,Russia,1,Sách Thường Thức Toán,7,Sách Toán,70,Sách Toán Cao Học,1,Sách Toán THCS,7,Saudi Arabia - Ả Rập Xê Út,9,Scholze,1,Serbia,17,Sharygin,28,Shortlists,56,Simon Singh,1,Singapore,1,Số Học - Tổ Hợp,28,Sóc Trăng,36,Sơn La,22,Spain,8,Star Education,1,Stars of Mathematics,11,Swinnerton-Dyer,1,Talent Search,1,Tăng Hải Tuân,2,Tạp Chí,17,Tập San,3,Tây Ban Nha,1,Tây Ninh,37,Thái Bình,45,Thái Nguyên,61,Thái Vân,2,Thanh Hóa,69,THCS,2,Thổ Nhĩ Kỳ,5,Thomas J. Mildorf,1,Thông Tin Toán Học,43,THPT Chuyên Lê Quý Đôn,1,THPT Chuyên Nguyễn Du,9,THPTQG,16,THTT,31,Thừa Thiên Huế,56,Tiền Giang,30,Tin Tức Toán Học,1,Titu Andreescu,2,Toán 12,7,Toán Cao Cấp,3,Toán Rời Rạc,5,Toán Tuổi Thơ,3,Tôn Ngọc Minh Quân,2,TOT,1,TPHCM,158,Trà Vinh,10,Trắc Nghiệm,1,Trắc Nghiệm Toán,2,Trại Hè,39,Trại Hè Hùng Vương,30,Trại Hè Phương Nam,7,Trần Đăng Phúc,1,Trần Minh Hiền,2,Trần Nam Dũng,12,Trần Phương,1,Trần Quang Hùng,1,Trần Quốc Anh,2,Trần Quốc Luật,1,Trần Quốc Nghĩa,1,Trần Tiến Tự,1,Trịnh Đào Chiến,2,Trường Đông,23,Trường Hè,10,Trường Thu,1,Trường Xuân,3,TST,544,TST 2008-2009,1,TST 2010-2011,22,TST 2011-2012,23,TST 2012-2013,32,TST 2013-2014,29,TST 2014-2015,27,TST 2015-2016,26,TST 2016-2017,41,TST 2017-2018,42,TST 2018-2019,30,TST 2019-2020,34,TST 2020-2021,30,TST 2021-2022,38,TST 2022-2023,42,TST 2023-2024,23,TST An Giang,8,TST Bà Rịa Vũng Tàu,11,TST Bắc Giang,5,TST Bắc Ninh,11,TST Bến Tre,10,TST Bình Định,5,TST Bình Dương,7,TST Bình Phước,9,TST Bình Thuận,9,TST Cà Mau,7,TST Cần Thơ,6,TST Cao Bằng,2,TST Đà Nẵng,8,TST Đắk Lắk,12,TST Đắk Nông,2,TST Điện Biên,2,TST Đồng Nai,13,TST Đồng Tháp,12,TST Gia Lai,4,TST Hà Nam,8,TST Hà Nội,12,TST Hà Tĩnh,15,TST Hải Dương,11,TST Hải Phòng,13,TST Hậu Giang,1,TST Hòa Bình,4,TST Hưng Yên,10,TST Khánh Hòa,8,TST Kiên Giang,11,TST Kon Tum,6,TST Lâm Đồng,12,TST Lạng Sơn,3,TST Lào Cai,4,TST Long An,6,TST Nam Định,8,TST Nghệ An,7,TST Ninh Bình,11,TST Ninh Thuận,4,TST Phú Thọ,13,TST Phú Yên,5,TST PTNK,15,TST Quảng Bình,12,TST Quảng Nam,7,TST Quảng Ngãi,8,TST Quảng Ninh,9,TST Quảng Trị,10,TST Sóc Trăng,5,TST Sơn La,7,TST Thái Bình,6,TST Thái Nguyên,8,TST Thanh Hóa,9,TST Thừa Thiên Huế,4,TST Tiền Giang,6,TST TPHCM,14,TST Trà Vinh,1,TST Tuyên Quang,1,TST Vĩnh Long,7,TST Vĩnh Phúc,7,TST Yên Bái,8,Tuyên Quang,14,Tuyển Sinh,4,Tuyển Sinh 10,1064,Tuyển Sinh 10 An Giang,18,Tuyển Sinh 10 Bà Rịa Vũng Tàu,22,Tuyển Sinh 10 Bắc Giang,19,Tuyển Sinh 10 Bắc Kạn,3,Tuyển Sinh 10 Bạc Liêu,9,Tuyển Sinh 10 Bắc Ninh,15,Tuyển Sinh 10 Bến Tre,34,Tuyển Sinh 10 Bình Định,19,Tuyển Sinh 10 Bình Dương,12,Tuyển Sinh 10 Bình Phước,21,Tuyển Sinh 10 Bình Thuận,15,Tuyển Sinh 10 Cà Mau,5,Tuyển Sinh 10 Cần Thơ,10,Tuyển Sinh 10 Cao Bằng,2,Tuyển Sinh 10 Chuyên SPHN,19,Tuyển Sinh 10 Đà Nẵng,18,Tuyển Sinh 10 Đại Học Vinh,13,Tuyển Sinh 10 Đắk Lắk,21,Tuyển Sinh 10 Đắk Nông,7,Tuyển Sinh 10 Điện Biên,5,Tuyển Sinh 10 Đồng Nai,18,Tuyển Sinh 10 Đồng Tháp,23,Tuyển Sinh 10 Gia Lai,10,Tuyển Sinh 10 Hà Giang,1,Tuyển Sinh 10 Hà Nam,16,Tuyển Sinh 10 Hà Nội,80,Tuyển Sinh 10 Hà Tĩnh,19,Tuyển Sinh 10 Hải Dương,17,Tuyển Sinh 10 Hải Phòng,15,Tuyển Sinh 10 Hậu Giang,3,Tuyển Sinh 10 Hòa Bình,15,Tuyển Sinh 10 Hưng Yên,12,Tuyển Sinh 10 Khánh Hòa,12,Tuyển Sinh 10 KHTN,21,Tuyển Sinh 10 Kiên Giang,31,Tuyển Sinh 10 Kon Tum,6,Tuyển Sinh 10 Lai Châu,6,Tuyển Sinh 10 Lâm Đồng,10,Tuyển Sinh 10 Lạng Sơn,6,Tuyển Sinh 10 Lào Cai,10,Tuyển Sinh 10 Long An,18,Tuyển Sinh 10 Nam Định,21,Tuyển Sinh 10 Nghệ An,23,Tuyển Sinh 10 Ninh Bình,20,Tuyển Sinh 10 Ninh Thuận,10,Tuyển Sinh 10 Phú Thọ,18,Tuyển Sinh 10 Phú Yên,12,Tuyển Sinh 10 PTNK,37,Tuyển Sinh 10 Quảng Bình,12,Tuyển Sinh 10 Quảng Nam,15,Tuyển Sinh 10 Quảng Ngãi,13,Tuyển Sinh 10 Quảng Ninh,12,Tuyển Sinh 10 Quảng Trị,7,Tuyển Sinh 10 Sóc Trăng,17,Tuyển Sinh 10 Sơn La,5,Tuyển Sinh 10 Tây Ninh,15,Tuyển Sinh 10 Thái Bình,17,Tuyển Sinh 10 Thái Nguyên,18,Tuyển Sinh 10 Thanh Hóa,27,Tuyển Sinh 10 Thừa Thiên Huế,24,Tuyển Sinh 10 Tiền Giang,14,Tuyển Sinh 10 TPHCM,23,Tuyển Sinh 10 Trà Vinh,6,Tuyển Sinh 10 Tuyên Quang,3,Tuyển Sinh 10 Vĩnh Long,12,Tuyển Sinh 10 Vĩnh Phúc,22,Tuyển Sinh 2008-2009,1,Tuyển Sinh 2009-2010,1,Tuyển Sinh 2010-2011,6,Tuyển Sinh 2011-2012,20,Tuyển Sinh 2012-2013,65,Tuyển Sinh 2013-2014,77,Tuyển Sinh 2013-2044,1,Tuyển Sinh 2014-2015,81,Tuyển Sinh 2015-2016,64,Tuyển Sinh 2016-2017,72,Tuyển Sinh 2017-2018,126,Tuyển Sinh 2018-2019,61,Tuyển Sinh 2019-2020,90,Tuyển Sinh 2020-2021,59,Tuyển Sinh 2021-202,1,Tuyển Sinh 2021-2022,69,Tuyển Sinh 2022-2023,113,Tuyển Sinh 2023-2024,49,Tuyển Sinh Chuyên SPHCM,7,Tuyển Sinh Yên Bái,6,Tuyển Tập,45,Tuymaada,6,UK - Anh,16,Undergraduate,69,USA - Mỹ,62,USA TSTST,6,USAJMO,12,USATST,8,USEMO,4,Uzbekistan,1,Vasile Cîrtoaje,4,Vật Lý,1,Viện Toán Học,6,Vietnam,4,Viktor Prasolov,1,VIMF,1,Vinh,32,Vĩnh Long,41,Vĩnh Phúc,86,Virginia Tech,1,VLTT,1,VMEO,4,VMF,12,VMO,58,VNTST,25,Võ Anh Khoa,1,Võ Quốc Bá Cẩn,26,Võ Thành Văn,1,Vojtěch Jarník,6,Vũ Hữu Bình,7,Vương Trung Dũng,1,WFNMC Journal,1,Wiles,1,Xác Suất,1,Yên Bái,25,Yên Thành,1,Zhautykov,14,Zhou Yuan Zhe,1,
ltr
item
MOlympiad.NET: Mathematics and Youth Magazine Problems 2022
Mathematics and Youth Magazine Problems 2022
MOlympiad.NET
https://www.molympiad.net/2022/01/mym-2022.html
https://www.molympiad.net/
https://www.molympiad.net/
https://www.molympiad.net/2022/01/mym-2022.html
true
2506595080985176441
UTF-8
Loaded All Posts Not found any posts VIEW ALL Readmore Reply Cancel reply Delete By Home PAGES POSTS View All RECOMMENDED FOR YOU Tag ARCHIVE SEARCH ALL POSTS Not found any post match with your request Back Home Sunday Monday Tuesday Wednesday Thursday Friday Saturday Sun Mon Tue Wed Thu Fri Sat January February March April May June July August September October November December Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec just now 1 minute ago $$1$$ minutes ago 1 hour ago $$1$$ hours ago Yesterday $$1$$ days ago $$1$$ weeks ago more than 5 weeks ago Followers Follow THIS PREMIUM CONTENT IS LOCKED
NỘI DUNG CAO CẤP NÀY ĐÃ BỊ KHÓA
STEP 1: SHARE THIS ARTICLE TO A SOCIAL NETWORK
BƯỚC 1: CHIA SẺ BÀI VIẾT NÀY LÊN MẠNG XÃ HỘI
STEP 2: CLICK THE LINK ON YOUR SOCIAL NETWORK
BƯỚC 2: BẤM VÀO ĐƯỜNG DẪN TRÊN MẠNG XÃ HỘI CỦA BẠN
Copy All Code Select All Code All codes were copied to your clipboard Can not copy the codes / texts, please press [CTRL]+[C] (or CMD+C with Mac) to copy Table of Content