[Solutions] Hanoi Open Mathematics Competition 2017


Junior

  1. Suppose $x_1, x_2, x_3$ are the roots of polynomial $P(x) = x^3 - 6x^2 + 5x + 12$. What is the sum $|x_1| + |x_2| + |x_3|$?.
  2. How many pairs of positive integers $(x, y)$ are there, those satisfy the identity $2^x - y^2 = 1$?
  3. Suppose $n^2 + 4n + 25$ is a perfect square. How many such non-negative integers $n$'s are there?
  4. Put $S = 2^1 + 3^5 + 4^9 + 5^{13} + ... + 505^{2013} + 506^{2017}$. What is the last digit of $S$?
  5. Let $a, b, c$ be two-digit, three-digit, and four-digit numbers, respectively. Assume that the sum of all digits of number $a+b$, and the sum of all digits of $b + c$ are all equal to $2$. What is the largest value of $a + b + c$?.
  6. Find all triples of positive integers $(m,p,q)$ such that $2^mp^2 + 27 = q^3$ and $p$ is a prime. 
  7. Determine two last digits of number $Q = 2^{2017} + 2017^2$ 
  8. Determine all real solutions $x, y, z$ of the following system of equations $$\begin{cases} x^3 - 3x &= 4 - y \\ 2y^3 - 6y& = 6 - z \\ 3z^3 - 9z &= 8 - x\end{cases}$$
  9. Prove that the equilateral triangle of area $1$ can be covered by five arbitrary equilateral triangles having the total area $2$. 
  10. Find all non-negative integers $a, b, c$ such that the roots of equations $$\begin{cases}x^2 - 2ax + b &  0 \\ x^2- 2bx + c &= 0 \\ x^2 - 2cx + a &= 0 \end{cases}$$ are non-negative integers. 
  11. Let $S$ denote a square of the side-length $7$, and let eight squares of the side-length $3$ be given. Show that $S$ can be covered by those eight small squares. 
  12. Does there exist a sequence of $2017$ consecutive integers which contains exactly $17$ primes? 
  13. Let $a, b, c$ be the side-lengths of triangle $ABC$ with $a+b+c = 12$. Determine the smallest value of $$M =\frac{a}{b + c - a}+\frac{4b}{c + a - b}+\frac{9c}{a + b - c}.$$
  14. Given trapezoid $ABCD$ with bases $AB \parallel CD$ ($AB < CD$). Let $O$ be the intersection of $AC$ and $BD$. Two straight lines from $D$ and $C$ are perpendicular to $AC$ and $BD$ intersect at $E$, i.e. $CE \perp BD$ and $DE \perp AC$. By analogy, $AF \perp BD$ and $BF \perp AC$  Are three points $E$, $O$, $F$ located on the same line? 
  15. Show that an arbitrary quadrilateral can be divided into nine isosceles triangles.

Senior

  1. Suppose $x_1, x_2, x_3$ are the roots of polynomial $P(x) = x^3 - 4x^2 -3x + 2$. What is the sum $|x_1| + |x_2| + |x_3|$?.
  2. How many pairs of positive integers $(x, y)$ are there, those satisfy the identity $2^x - y^2 = 4$?
  3. The number of real triples $(x , y , z )$ that satisfy the equation $x^4 + 4y^4 + z^4 + 4 = 8xyz$ is?.
  4. Let $a,b,c$ be three distinct positive numbers. Consider the quadratic polynomial $$P (x) =\frac{c(x - a)(x - b)}{(c -a)(c -b)}+\frac{a(x - b)(x - c)}{(a - b)(a - c)}+\frac{b(x -c)(x - a)}{(b - c)(b - a)}+ 1.$$ The value of $P (2017)$ is?.
  5. Write $2017$ following numbers on the blackboard $$-\frac{1008}{1008}, -\frac{1007}{1008}, ..., -\frac{1}{1008}, 0,\frac{1}{1008},\frac{2}{1008}, ... ,\frac{1007}{1008},\frac{1008}{1008}.$$ One processes some steps as: erase two arbitrary numbers $x, y$ on the blackboard and then write on it the number $x + 7xy + y$. After $2016$ steps, there is only one number. The last one on the blackboard is?.
  6. Find all pairs of integers $a, b$ such that the following system of equations has a unique integral solution $(x , y , z )$ $$\begin{cases}x + y &= a - 1 \\ x(y + 1) - z^2 &= b \end{cases}$$
  7. Let two positive integers $x, y$ satisfy the condition $44 \mid ( x^2 + y^2)$. Determine the smallest value of $T = x^3 + y^3$. 
  8. Let $a, b, c$ be the side-lengths of triangle $ABC$ with $a+b+c = 12$. Determine the smallest value of $$M =\frac{a}{b + c - a}+\frac{4b}{c + a - b}+\frac{9c}{a + b - c}.$$
  9. Cut off a square carton by a straight line into two pieces, then cut one of two pieces into two small pieces by a straight line, ect. By cutting $2017$ times we obtain $2018$ pieces. We write number $2$ in every triangle, number 1 in every quadrilateral, and $0$ in the polygons. Is the sum of all inserted numbers always greater than $2017$? 
  10. Consider all words constituted by eight letters from $\{C ,H,M, O\}$. We arrange the words in an alphabet sequence. Precisely, the first word is $CCCCCCCC$, the second one is $CCCCCCCH$, the third is $CCCCCCCM$, the fourth one is $CCCCCCCO, ...,$ and the last word is $OOOOOOOO$.
    a) Determine the $2017$th word of the sequence?
    b) What is the position of the word $HOMCHOMC$ in the sequence? 
  11. Let $ABC$ be an equilateral triangle, and let $P$ stand for an arbitrary point inside the triangle. Is it true that $| \angle PAB - \angle PAC| \ge | \angle PBC - \angle PCB|$ ? 
  12. Let $(O)$ denote a circle with a chord $AB$, and let $W$ be the midpoint of the minor arc $AB$. Let $C$ stand for an arbitrary point on the major arc $AB$. The tangent to the circle $(O)$ at $C$ meets the tangents at $A$ and $B$ at points $X$ and $Y$, respectively. The lines $W X$ and $W Y$ meet $AB$ at points $N$ and $M$ , respectively. Does the length of segment $NM$ depend on position of $C$ ? 
  13. Let $ABC$ be a triangle. For some $d>0$ let $P$ stand for a point inside the triangle such that $|AB| - |P B| \ge d$, and $|AC | - |P C | \ge d$. Is the following inequality true $|AM | - |P M | \ge d$, for any position of $M \in BC $? 
  14. Put $P = m^{2003}n^{2017} - m^{2017}n^{2003}$, where $m, n \in N$.
    a) Is $P$ divisible by $24$?
    b) Do there exist $m, n \in N$ such that $P$ is not divisible by $7$? 
  15. Let $S$ denote a square of side-length $7$, and let eight squares with side-length $3$ be given. Show that it is impossible to cover $S$ by those eight small squares with the condition: an arbitrary side of those (eight) squares is either coincided, parallel, or perpendicular to others of $S$.
MOlympiad.NET là dự án thu thập và phát hành các đề thi tuyển sinh và học sinh giỏi toán. Quý bạn đọc muốn giúp chúng tôi chỉnh sửa đề thi này, xin hãy để lại bình luận facebook (có thể đính kèm hình ảnh) hoặc google (có thể sử dụng $\LaTeX$) bên dưới. BBT rất mong bạn đọc ủng hộ UPLOAD đề thi và đáp án mới hoặc liên hệ
Chúng tôi nhận tất cả các định dạng của tài liệu: $\TeX$, PDF, WORD, IMG,...



Name

Abel Albania AMM Amsterdam An Giang Andrew Wiles Anh APMO Austria (Áo) Ba Đình Ba Lan Bà Rịa Vũng Tàu Bắc Bộ Bắc Giang Bắc Kạn Bạc Liêu Bắc Ninh Bắc Trung Bộ Bài Toán Hay Balkan Baltic Way BAMO Bất Đẳng Thức Bến Tre Benelux Bình Định Bình Dương Bình Phước Bình Thuận Birch BMO Booklet Bosnia Herzegovina BoxMath Brazil British Bùi Đắc Hiên Bùi Thị Thiện Mỹ Bùi Văn Tuyên Bùi Xuân Diệu Bulgaria Buôn Ma Thuột BxMO Cà Mau Cần Thơ Canada Cao Bằng Cao Quang Minh Câu Chuyện Toán Học Caucasus CGMO China - Trung Quốc Chọn Đội Tuyển Chu Tuấn Anh Chuyên Đề Chuyên Sư Phạm Chuyên Trần Hưng Đạo Collection College Mathematic Concours Cono Sur Contest Correspondence Cosmin Poahata Crux Czech-Polish-Slovak Đà Nẵng Đa Thức Đại Số Đắk Lắk Đắk Nông Đan Phượng Danube Đào Thái Hiệp ĐBSCL Đề Thi Đề Thi HSG Đề Thi JMO Điện Biên Định Lý Định Lý Beaty Đỗ Hữu Đức Thịnh Do Thái Doãn Quang Tiến Đoàn Quỳnh Đoàn Văn Trung Đống Đa Đồng Nai Đồng Tháp Du Hiền Vinh Đức Dương Quỳnh Châu Duyên Hải Bắc Bộ E-Book EGMO ELMO EMC Epsilon Estonian Euler Evan Chen Fermat Finland Forum Of Geometry Furstenberg G. Polya Gặp Gỡ Toán Học Gauss GDTX Geometry Gia Lai Gia Viễn Giải Tích Hàm Giảng Võ Giới hạn Goldbach Hà Giang Hà Lan Hà Nam Hà Nội Hà Tĩnh Hà Trung Kiên Hải Dương Hải Phòng Hậu Giang Hậu Lộc Hilbert Hình Học HKUST Hòa Bình Hoài Nhơn Hoàng Bá Minh Hoàng Minh Quân Hodge Hojoo Lee HOMC HongKong HSG 10 HSG 10 Bắc Giang HSG 10 Thái Nguyên HSG 10 Vĩnh Phúc HSG 11 HSG 11 Bắc Giang HSG 11 Lạng Sơn HSG 11 Thái Nguyên HSG 11 Vĩnh Phúc HSG 12 HSG 12 2010-2011 HSG 12 2011-2012 HSG 12 2012-2013 HSG 12 2013-2014 HSG 12 2014-2015 HSG 12 2015-2016 HSG 12 2016-2017 HSG 12 2017-2018 HSG 12 2018-2019 HSG 12 2019-2020 HSG 12 2020-2021 HSG 12 2021-2022 HSG 12 Bắc Giang HSG 12 Bình Phước HSG 12 Đồng Tháp HSG 12 Lạng Sơn HSG 12 Long An HSG 12 Quảng Nam HSG 12 Quảng Ninh HSG 12 Thái Nguyên HSG 12 Vĩnh Phúc HSG 9 HSG 9 2010-2011 HSG 9 2011-2012 HSG 9 2012-2013 HSG 9 2013-2014 HSG 9 2014-2015 HSG 9 2015-2016 HSG 9 2016-2017 HSG 9 2017-2018 HSG 9 2018-2019 HSG 9 2019-2020 HSG 9 2020-2021 HSG 9 2021-202 HSG 9 2021-2022 HSG 9 Bắc Giang HSG 9 Bình Phước HSG 9 Đồng Tháp HSG 9 Lạng Sơn HSG 9 Long An HSG 9 Quảng Nam HSG 9 Quảng Ninh HSG 9 Vĩnh Phúc HSG Cấp Trường HSG Quốc Gia HSG Quốc Tế Hứa Lâm Phong Hứa Thuần Phỏng Hùng Vương Hưng Yên Hương Sơn Huỳnh Kim Linh Hy Lạp IMC IMO IMT India - Ấn Độ Inequality InMC International Iran Jakob JBMO Jewish Journal Junior K2pi Kazakhstan Khánh Hòa KHTN Kiên Giang Kim Liên Kon Tum Korea - Hàn Quốc Kvant Kỷ Yếu Lai Châu Lâm Đồng Lăng Hồng Nguyệt Anh Lạng Sơn Langlands Lào Cai Lê Hải Châu Lê Hải Khôi Lê Hoành Phò Lê Khánh Sỹ Lê Minh Cường Lê Phúc Lữ Lê Phương Lê Quý Đôn Lê Viết Hải Lê Việt Hưng Leibniz Long An Lớp 10 Lớp 10 Chuyên Lớp 10 Không Chuyên Lớp 11 Lục Ngạn Lượng giác Lương Tài Lưu Giang Nam Lý Thánh Tông Macedonian Malaysia Margulis Mark Levi Mathematical Excalibur Mathematical Reflections Mathematics Magazine Mathematics Today Mathley MathLinks MathProblems Journal Mathscope MathsVN MathVN MEMO Metropolises Mexico MIC Michael Guillen Mochizuki Moldova Moscow MYM MYTS Nam Định Nam Phi National Nesbitt Newton Nghệ An Ngô Bảo Châu Ngô Việt Hải Ngọc Huyền Nguyễn Anh Tuyến Nguyễn Bá Đang Nguyễn Đình Thi Nguyễn Đức Tấn Nguyễn Đức Thắng Nguyễn Duy Khương Nguyễn Duy Tùng Nguyễn Hữu Điển Nguyễn Mình Hà Nguyễn Minh Tuấn Nguyễn Nhất Huy Nguyễn Phan Tài Vương Nguyễn Phú Khánh Nguyễn Phúc Tăng Nguyễn Quản Bá Hồng Nguyễn Quang Sơn Nguyễn Tài Chung Nguyễn Tăng Vũ Nguyễn Tất Thu Nguyễn Thúc Vũ Hoàng Nguyễn Trung Tuấn Nguyễn Tuấn Anh Nguyễn Văn Huyện Nguyễn Văn Mậu Nguyễn Văn Nho Nguyễn Văn Quý Nguyễn Văn Thông Nguyễn Việt Anh Nguyễn Vũ Lương Nhật Bản Nhóm $\LaTeX$ Nhóm Toán Ninh Bình Ninh Thuận Nội Suy Lagrange Nội Suy Newton Nordic Olympiad Corner Olympiad Preliminary Olympic 10 Olympic 10/3 Olympic 11 Olympic 12 Olympic 24/3 Olympic 24/3 Quảng Nam Olympic 27/4 Olympic 30/4 Olympic KHTN Olympic Sinh Viên Olympic Tháng 4 Olympic Toán Olympic Toán Sơ Cấp PAMO Phạm Đình Đồng Phạm Đức Tài Phạm Huy Hoàng Pham Kim Hung Phạm Quốc Sang Phan Huy Khải Phan Quang Đạt Phan Thành Nam Pháp Philippines Phú Thọ Phú Yên Phùng Hồ Hải Phương Trình Hàm Phương Trình Pythagoras Pi Polish Problems PT-HPT PTNK Putnam Quảng Bình Quảng Nam Quảng Ngãi Quảng Ninh Quảng Trị Quỹ Tích Riemann RMM RMO Romania Romanian Mathematical Russia Sách Thường Thức Toán Sách Toán Sách Toán Cao Học Sách Toán THCS Saudi Arabia - Ả Rập Xê Út Scholze Serbia Sharygin Shortlists Simon Singh Singapore Số Học - Tổ Hợp Sóc Trăng Sơn La Spain Star Education Stars of Mathematics Swinnerton-Dyer Talent Search Tăng Hải Tuân Tạp Chí Tập San Tây Ban Nha Tây Ninh Thạch Hà Thái Bình Thái Nguyên Thái Vân Thanh Hóa THCS Thổ Nhĩ Kỳ Thomas J. Mildorf THPT Chuyên Lê Quý Đôn THPTQG THTT Thừa Thiên Huế Tiền Giang Tin Tức Toán Học Titu Andreescu Toán 12 Toán Cao Cấp Toán Chuyên Toán Rời Rạc Toán Tuổi Thơ Tôn Ngọc Minh Quân TOT TPHCM Trà Vinh Trắc Nghiệm Trắc Nghiệm Toán Trại Hè Trại Hè Hùng Vương Trại Hè Phương Nam Trần Đăng Phúc Trần Minh Hiền Trần Nam Dũng Trần Phương Trần Quang Hùng Trần Quốc Anh Trần Quốc Luật Trần Quốc Nghĩa Trần Tiến Tự Trịnh Đào Chiến Trường Đông Trường Hè Trường Thu Trường Xuân TST TST 2010-2011 TST 2011-2012 TST 2012-2013 TST 2013-2014 TST 2014-2015 TST 2015-2016 TST 2016-2017 TST 2017-2018 TST 2018-2019 TST 2019-2020 TST 2020-2021 TST 2021-2022 TST Bắc Giang TST Bình Phước TST Đồng Tháp TST Lạng Sơn TST Long An TST Quảng Nam TST Quảng Ninh TST Thái Nguyên TST Vĩnh Phúc Tuyên Quang Tuyển Sinh Tuyển Sinh 10 Tuyển Sinh 10 Bắc Giang Tuyển Sinh 10 Bình Phước Tuyển Sinh 10 Đồng Tháp Tuyển Sinh 10 Lạng Sơn Tuyển Sinh 10 Long An Tuyển Sinh 10 Quảng Nam Tuyển Sinh 10 Quảng Ninh Tuyển Sinh 10 Thái Nguyên Tuyển Sinh 10 Vĩnh Phúc Tuyển Sinh 2010-2011 Tuyển Sinh 2011-2012 Tuyển Sinh 2011-2022 Tuyển Sinh 2012-2013 Tuyển Sinh 2013-2014 Tuyển Sinh 2014-2015 Tuyển Sinh 2015-2016 Tuyển Sinh 2016-2017 Tuyển Sinh 2017-2018 Tuyển Sinh 2018-2019 Tuyển Sinh 2019-2020 Tuyển Sinh 2020-2021 Tuyển Sinh 2021-202 Tuyển Sinh 2021-2022 Tuyển Tập Tuymaada UK - Anh Undergraduate USA - Mỹ USA TSTST USAJMO USATST USEMO Uzbekistan Vasile Cîrtoaje Vật Lý Viện Toán Học Vietnam Viktor Prasolov VIMF Vinh Vĩnh Long Vĩnh Phúc Virginia Tech VLTT VMEO VMF VMO VNTST Võ Anh Khoa Võ Quốc Bá Cẩn Võ Thành Văn Vojtěch Jarník Vũ Hữu Bình Vương Trung Dũng WFNMC Journal Wiles Yên Bái Yên Định Yên Thành Zhautykov Zhou Yuan Zhe
false
ltr
item
MOlympiad.NET: [Solutions] Hanoi Open Mathematics Competition 2017
[Solutions] Hanoi Open Mathematics Competition 2017
MOlympiad.NET
https://www.molympiad.net/2020/03/hanoi-open-mathematics-competition-2017.html
https://www.molympiad.net/
https://www.molympiad.net/
https://www.molympiad.net/2020/03/hanoi-open-mathematics-competition-2017.html
true
2506595080985176441
UTF-8
Not found any posts Not found any related posts VIEW ALL Readmore Reply Cancel reply Delete By Home PAGES POSTS View All RECOMMENDED FOR YOU Tag ARCHIVE SEARCH ALL POSTS Not found any post match with your request Back Home Contents See also related Sunday Monday Tuesday Wednesday Thursday Friday Saturday Sun Mon Tue Wed Thu Fri Sat January February March April May June July August September October November December Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec just now 1 minute ago $$1$$ minutes ago 1 hour ago $$1$$ hours ago Yesterday $$1$$ days ago $$1$$ weeks ago more than 5 weeks ago Followers Follow Copy All Code Select All Code All codes were copied to your clipboard Can not copy the codes / texts, please press [CTRL]+[C] (or CMD+C with Mac) to copy THIS PREMIUM CONTENT IS LOCKED
PLEASE FOLLOW THE INSTRUCTIONS TO VIEW THIS CONTENT
NỘI DUNG CAO CẤP NÀY ĐÃ BỊ KHÓA
XIN HÃY LÀM THEO HƯỚNG DẪN ĐỂ XEM NỘI DUNG NÀY
STEP 1: SHARE THIS ARTICLE TO A SOCIAL NETWORK
BƯỚC 1: CHIA SẺ BÀI VIẾT NÀY LÊN MẠNG XÃ HỘI
STEP 2: CLICK THE LINK ON YOUR SOCIAL NETWORK
BƯỚC 2: BẤM VÀO ĐƯỜNG DẪN TRÊN MẠNG XÃ HỘI CỦA BẠN