$hide=mobile

Tổng Hợp Các Bài Toán Hay Luyện Thi Olympic Toán (Phần 1)

  1. Cho $G$ là trọng tâm của tam giác $ABC$. Các đường thẳng $AG$, $BG$, $CG$ gặp lại đường tròn tại $D$, $E$, $F$ tương ứng. Chứng minh rằng $$\dfrac{AG}{GD}+\dfrac{BG}{GE}+\dfrac{CG}{GF}=3$$
  2. Chứng minh với mọi số nguyên dương $n$, luôn tồn tại một bội $a(n)$ của $2^n+1$ sao cho $a(n)$ có đúng $n$ số $1$, và $n$ số $1$ này đứng liên tiếp. Ví dụ: có thể chọn $$a(1)=12,\quad a(2)=110,\quad a(3)=456111$$
  3. Cho tam giác $ABC$ có điểm $M$ chuyển động trên cạnh $BC$. Vẽ hình bình hành $MEAF$ với $E$ nằm trên $AB$, $F$ nằm trên $AC$. Điểm $N$ chia đoạn $EF$ theo tỉ số $\dfrac{1}{3}$. Lấy điểm $K$ thỏa mãn tam giác $ANK$ vuông cân tại $N$. Tìm quỹ tích điểm $K$
  4. Tìm tất cả các hàm số $f:\mathbb{R}\to \mathbb{R}$, $g:\mathbb{R} \to \mathbb{R}$ thoả mãn $$f(x+g(y))=xf(y)-yf(x)+g(x), \forall x,y \in \mathbb{R}$$
  5. Chứng minh rằng tồn tại vô số số chính phương một số lẻ chữ số, có đúng một chữ số $1$ trong biễu diễn thập phân và chữ số $1$ đứng thứ ở vị trí chính giữa.
  6. Cho tam giác vuông cố định $\triangle ABC$ vuông tại $C$. Trên đường vuông góc với mặt phẳng $(ABC)$ tại $A$, lấy một điểm di động $S$. Hạ $AD\perp SB$ và hạ $AF \perp SC$.
    a) Tìm quỹ tích của $D$ và $F$ khi $S$ di chuyển.
    b) Chứng tỏ rằng năm điểm $A$, $B$, $C$, $D$, $F$ nằm trên một hình cầu. Xác định tâm hình cầu đó.
    c) Chứng minh rằng $DF$ đi qua một điểm cố định trên $BC$
  7. Tìm tất cả các số nguyên dương $x$, $y$, $k$, $n$ thỏa mãn phương trình $$(x!)^k+(y!)^k=(k+1)^n \cdot (n!)^k$$
  8. Tìm $m$ để giá trị lớn nhất của $$y=\dfrac{|(1-m)x^2 +4x + 4 -m|}{x^2 +1}$$ là nhỏ nhất.
  9. Tính tích phân $$\int_{0}^{1} \dfrac{\ln(1+x)dx}{x^2 +1}$$
  10. Hình lập phương $S$ với độ dài các cạnh là $2$ gồm có $8$ khối lập phương đơn vị. Ta gọi lập phương $S$ với $1$ lập phương đơn vị được bỏ ra là $1$ "mảnh". Hình lập phương $T$ với độ dài các cạnh là $2^n$ gồm có $(2^n)^3$ lập phương đơn vị. Chứng minh rằng nếu $1$ lập phương đon vị được bỏ ra từ $T$, thì phần còn lại hoàn toàn có thể xây dựng từ các "mảnh".
  11. Cho lục giác lồi có $6$ góc bằng nhau $ABCDEF$. Biết $AB=AF=1(cm)$, $BE= 2,5 (cm)$ và $CF=3(cm)$. Tính độ dài các cạnh còn lại.
  12. Cho tam giác $\triangle ABC$, các trung tuyến $m_{a}$, $m_{b}$, $m_{c}$, $R$ là bán kính đường tròn ngoại tiếp. Chứng minh rằng $$\dfrac{1}{\sqrt{m_a}} + \dfrac{1}{\sqrt{m_b}} + \dfrac{1}{\sqrt{m_c}} \ge \sqrt{\dfrac{6}{R}}$$
  13. Cho hình vuông $n\times n$. Hãy tính số cách điền các chữ số $1$ và $-1$ vào để tổng mỗi hàng ngang, dọc đều bằng $0$.
  14. Cho $\triangle ABC$ và điểm $O$ nằm trong tam giác đó. Các đường tròn nội tiếp các tam giác $\triangle OAB$, $\triangle OBC$, $\triangle OCA$ có bán kính bằng nhau. Chứng minh rằng nếu $O$ là tâm đường tròn nội tiếp, trọng tâm hay trực tâm của $\triangle ABC$ thì $\triangle ABC$ là tam giác đều
  15. Tính toán hai tổng sau $$S_1=\sum_{k=1}^n k^n{n\choose k},\quad S_2=\sum_{k=1}^n k^k{n\choose k}$$ (Ký hiệu $\binom{n}{k}=C_n^k$ là số tổ hợp chập $k$ của $n$ phần tử.)
  16. Với $\varepsilon >0$ cho trước, hàm $f:\mathbb R\mapsto \mathbb R$ thỏa mãn $$\left|f(x+y)-f(x-y)-2f(y)\right|\le \varepsilon,\forall x,y\in\mathbb R.$$ Chứng minh rằng $\exists$ hàm $g:\mathbb R\mapsto \mathbb R$ cộng tính sao cho $\left|f(x)-g(x)\right|\le \varepsilon$
  17. Cho $n$ là số nguyên dương. Chứng minh rằng nếu phương trình $$x^3-3xy^2+y^3=n$$ có ngiệm nguyên thì nó sẽ có ít nhất $3$ ngiệm nguyên. Khi $n=2891$ phương trình có ngiệm nguyên không?
  18. Cho đường tròn $(O)$. Từ điểm $A$ ở ngoài đường tròn kẻ 2 tiếp tuyến $AB$ và $AC$ ($B$, $C$ là các tiếp điểm), $M$, $N$ lần lượt là trung điểm của $AB$, $AC$; $P$ là điểm bất kỳ trên đường thẳng $MN$. Kẻ $PD$ là tiếp tuyến của $(O)$. Chứng minh rằng $PA=PD$
  19. Một tập $H$ các điểm trong mặt phẳng gọi là tốt nếu mỗi bộ $3$ điểm của $H$ có một trục đối xứng. Chứng minh rằng
    a) Một tập tốt không cần phải có trục đối xứng.
    b) Nếu một tập tốt $H$ có $2003$ phần tử thì tất cả chúng phải nằm trên một đường thẳng.
  20. Trong tam giác $ABC$ có $I$ là tâm đường tròn nội tiếp. Qua $I$, kẻ các đường thẳng $l_1$, $l_2$, $l_3$ lần lượt song song với các cạnh $AB$, $BC$, $CA$. Giả sử $l_1$ cắt $BC$, $CA$ lần lượt tại $B_1$, $A_1$; $l_2$ cắt $CA$, $AB$ lần lượt tại $C_2$, $B_2$; $l_3$ cắt $AB$, $BC$ lần lượt tại $A_3$, $C_3$. Chứng minh rằng $$A_1B_1^2+B_2C_2^2+A_3C_3^2 \geq 6r^2$$ trong đó $r$ là bán kính đường tròn nội tiếp tam giác $ABC$.
  21. Giải các phương trình sau
    a) $3^{2^{x}}+2^{2^{x}}=2^x+3^{x+1}+x+1$.
    b) $3^{\sin^2x}+3^{\cos^2x}=2^{-x}+2^{x}+2 $
  22. Chứng minh rằng với mọi số nguyên dương $n$, phương trình $$ (C_{n}^{0})^{2}.x^{n} + (C_{n}^{1})^{2}.x^{n-1} +....+ (C_{n}^{n})^{2} = 0$$ có $n$ nghiệm thực phân biệt và tất cả các nghiệm đó đều âm
  23. Trên bờ một biển hồ hình tròn có $2n$ thành phố $(n \geq 2)$. Giữa hai thành phố tùy ý có thể có hoặc không có đường thủy nối trực tiếp với nhau. Người ta nhận thấy rằng đối với $2$ thành phố $A$ và $B$ bất kì thì giữa chúng có đường thủy nối trực tiếp với nhau khi và chỉ khi giữa các thành phố $A$' và $B'$ không có đường thủy nối trực tiếp với nhau, trong đó $A'$ và $B'$ theo thứ tự là hai thành phố gần với $A$ và $B$ nhất nếu đi từ $A$ đến $A'$ và $B$ đến $B'$ trên bờ hồ dọc theo cùng một chiều (cùng chiều kim đồng hồ hoặc ngược chiều kim đồng hồ). Chứng tỏ rằng: từ mỗi thành phố đều có thể đi bằng đường thủy đến một thành phố tùy ý khác nhau theo một lộ trình qua không quá hai thành phố trung gian.
  24. Cho hàm số $f : \mathbb{R} \to \mathbb{R}$ thỏa mãn
    • $f(3x)=3f(x), \forall x \in \mathbb{R}$. 
    • $f(x)=1-|x-2|, \forall x \in [1;3]$. 
    Tìm số $x$ nhỏ nhất thỏa mãn $f(x)=2001$.
  25. Biết đa thức $f(x)=a x^{3} +a x^{2} +cx +d$, $(a \neq 0)$ có ba nghiệm thực phân biệt. Hỏi đa thức $$g(x)=4(a x^{3} +a x^{2} +cx +d)(3ax+b)-(3a x^{2}+2bx+c)^{2}$$ có bao nhiêu nghiệm?
  26. Với mỗi số nguyên $N$ ta thực hiện một trong hai phép toán sau
    a) Bớt đi các số $0$ của $N$.
    b) Nhân $N$ với một số nguyên dương tùy ý.
    Chứng minh rằng sau hữu hạn phép toán như vậy bằng cách hợp lí ta có $1$ số có $1$ chữ số
  27. Tìm giá trị nhỏ nhất và lớn nhất của $$D=\sin^5x+ \sqrt{3} \cos x.$$
  28. Cho lục giác $A_1A_2A_3A_4A_5A_6$ có các cạnh bằng nhau và $$\widehat{A_1}+\widehat{A_3}+\widehat{A_5}=\widehat{A_2}+\widehat{A_4}+\widehat{A_6}.$$ Chứng minh rằng $$\widehat{A_1}=\widehat{A_4},\, \widehat{A_2}=\widehat{A_5},\, \widehat{A_3}=\widehat{A_6}$$
  29. Một mạng đường giao thông gồm một số tuyến xe buýt thỏa mãn
    a) Hai bến xe buýt bất kỳ cùng nằm trên $1$ tuyến xe buýt nào đó;
    b) Hai tuyến xe buýt chỉ có đúng $1$ bến xe chung;
    c) Mỗi tuyến xe buýt có ít nhất $3$ bến xe.
    Có $7$ bến xe buýt. Chứng minh rằng số bến xe trên mỗi tuyến bằng nhau .Tính số xe trên mỗi tuyến này
  30. Cho hình lập phương $ABCD.A'B'C'D'$ có cạnh là $a$. Tìm giá trị nhỏ nhất của độ dài đoạn thẳng có hai đầu nằm trên hai đường thẳng $AB'$ và $BC'$ đồng thời hợp với mặt phẳng $ABCD$ một góc $60^0$
  31. Tìm hàm số liên tục $f:\mathbb{R}\to\mathbb{R}$ thoả mãn $$f(x+2002)(f(x)+\sqrt{2003})=-2004, \forall x$$
  32. Giải hệ phương trình $$\begin{cases}y + \dfrac{y+3x}{x^2+y^2} &= 3\\ \dfrac{x - 3y}{x^2+y^2}&=x \end{cases}.$$
  33. Cho tập hợp $X= \{ 1,2,3...,n \} \subset \mathbb{N}$. Gọi $A$ là con của tập con của $X$ thỏa mãn điều kiện tồn tại hai phần tử bất kì $a$, $b$ sao cho $b\mid a$. Tìm số nguyên dương $m$ nhỏ nhất sao cho $|A| =m$.
  34. Cho tam giác $ABC$ có các cạnh lần lượt là $a$, $b$, $c$, các đường phân giác $AA'$, $BB'$, $CC'$. Đặt $B'C' = a_1$, $C'A'= b_1$, $A'B' = c_1$. Gọi $S$ là diện tích tam giác $ABC$. Chứng minh rằng $$(a+b)^2a_1b_1+(b+c)^2b_1c_1+(c+a)^2c_1a_1 \geq 16S^2.$$
  35. Cho số nguyên dương $n$. Chứng minh có ít nhất $2^{n-1}+n$ số có thể chọn từ $\{ 1,2,...,2^n \}$ sao cho với mỗi cặp hai số phân biệt đã chọn $x$, $y$ ta đều có $x+y$ không là ước của $xy$.
  36. Cho elip $$(E):\frac{ x^{2} }{4}+ \frac{ y^{2} }{9} =1.$$ Một góc vuông $\widehat{MON}$ quay quanh gốc tọa độ, với $M$, $N$ thuộc elip. Chứng minh $MN$ tiếp xúc một đường tròn cố định.
  37. Chứng minh rằng với mọi số tự nhiên $n$, luôn tồn tại duy nhất đa thức $f(x)$ thỏa mãn đồng thời hai điều kiện
    • Hệ số của $f$ thuộc $\{ 0,1,2,..,9 \}$,
    • $f(-2)=f(-5)=n$.
  38. Cho tam giác $ABC$ vuông ở $A$, nửa đường tròn đường kính $AB$ cắt $BC$ tại $D$. Trên cung $AD$ lấy một điểm $E$. Nối $BE$ và kéo dài cắt $AC$ tại $F$.
    a) Chứng minh tứ giác $CDEF$ là một tứ giác nội tiếp.
    b) Kéo dài $DE$ cắt $AC$ ở $K$. Tia phân giác của góc $CKD$ cắt $EF$ và $CD$ tại $M$ và $N$. Tia phân giác của góc $CBF$ cắt $DE$ và $CF$ tại $P$ và $Q$. Tứ giác $MPNQ$ là hình gì ? Tại sao?
  39. Tìm nguyên hàm $$\int \dfrac{x\sin x}{\sqrt{3+\sin^2x}}dx$$
  40. Cho $p \in [1;2)$ Chứng minh tồn tại dãy số $\{u_n \}$ thỏa mãn $$\left( \dfrac{u_{n+1}}{u_{n}}-1 \right)u_{n}^{1-\frac{1}{p}}< \infty$$
  41. Tìm tất cả tập hợp $A$ có hữu hạn phần tử thỏa mãn đồng thời hai điều kiện
    a) $A$ có ít nhất $3$ phần tử.
    b) Với bất kì ba số $a,b,c$ đôi một phân biệt cùng thuộc $A$ thì $ab+bc+ca$ thuộc $A$
  42. Cho hình hộp $ABCD.A'B'C'D'$ có hai đáy là hình chữ nhật. Gọi $\alpha$, $\beta$ lần lượt là các góc tạo bởi đường chéo $AC'$ với các cạnh $AB$, $AD$. Gọi $\phi$ là góc phẳng nhị diện $(B,AC,D)$. Chứng minh rằng $$\cos \phi = -\cot \alpha . \cot \beta$$
  43. Cho hình chữ nhật có diện tích bằng $1$. Bên trong có $5$ điểm phân biệt (có thể nằm trên biên hình chữ nhật) sao cho không có $3$ điểm nào thẳng hàng. Chứng minh rằng tồn tại ít nhất $2$ tam giác với đỉnh là $3$ trong $5$điểm trên có diện tích bằng $\frac{1}{4}$.
  44. Người ta dự định lát nền một căn phòng hình chữ nhật bằng các viên gạch men hình thang cân với kích thước: đáy nhỏ $7cm$, đáy lớn $21cm$, cạnh bên $7\sqrt{2}$. Số lượng gạch men không hạn chế. Hỏi có thể lát kín được hay không ? (không được đập vỡ từng viên gạch hay lát chờm viên này lên viên kia). Giải thích tại sao ?
  45. Cho tứ giác $ABCD$, đặt $M=\max \{ \sin A, \sin B, \sin C, \sin D \}$. Chứng minh rằng $$1-\cos (A+B)\cos(B+C)\cos(B+D) \leq 2M \sin \dfrac{A+B}{2} \sin \dfrac{B+C}{2} \sin\dfrac{C+A}{2} $$
  46. Cho tam giác $ABC$ với độ dài ba cạnh là $a, b, c$ và độ dài các đường trung tuyến tương ứng là $ m_a,m_b,m_c$. Với mỗi số thực $k$ đặt $$S_k= \left( \dfrac{a^k+b^k+c^k}{m_a^k+m_b^k+m_c^k} \right)^{\frac{1}{k}}.$$ a) Tính $ \lim_{k \to 0}S_k$.
    b) Định dạng tam giác $ABC$ để cho $ S_k$ không phụ thuộc vào $k$.
  47. Cho $x$, $y$, $z$ là các số thực thỏa mãn $xyz=1$, chứng minh rằng $$\frac{x}{z^3(x+11z)}+\frac{y}{x^3(y+11x)}+\frac{z}{y^3(z+11y)} +\dfrac{1}{12} \geq \dfrac{1}{24}(x+y)(y+z)(z+x).$$
  48. Cho $x$, $y$, $z$ là các số thực thỏa mãn $xyz=1$. Chứng minh rằng $$\frac{x}{z^3(x(x-y)+(x+z)(y+z))}+\frac{y}{x^3(y(y-z)+(y+x)(z+zy)}+\frac{z}{y^3(z(z-x)+(z+y)(x+y))} \\ +1 \geq \dfrac{1}{8}(x+y)(y+z)(z+x) + \dfrac{1}{4}(x+y+z).$$
  49. Cho $x$, $y$, $z$ là các số thực thỏa mãn $x^2+y^2+z^2=xy+yz+zx+1$. Chứng minh rằng $$\frac{x^4}{x+7y}+\frac{y^4}{y+7z}+\frac{z^4}{z+7x} > \frac{1}{8}(x+y+z+3xyz)$$
  50. Hình chóp $S.ABCD$ có đáy $ABCD$ là hình bình hành. Mặt Phẳng ($\alpha$) cắt $SA$, $SB$, $SC$ tại $A_1$, $B_1$, $C_1$. Gọi $O$ là giao của $AC$ và $BD$, $O_1$ là giao của $A_1C_1$ và $SO$.
    a) Tìm giao điểm $D_1$ của mặt phẳng $\alpha$ và $SD$.
    b) Chứng minh rằng $\dfrac{SA}{SA_1}+\dfrac{SC}{SC_1}=2\dfrac{SO}{SO_1}$.
    c) Chứng minh rằng $\dfrac{SA}{SA_1}+\dfrac{SC}{SC_1}=\dfrac{SB}{SB_1}+\dfrac{SD}{SD_1}$
  51. Tìm $n$ nguyên dương để $$(n^2+1)\mid n!$$
  52. Giải phương trình $$\sqrt{ \sqrt{2}-1-x }+ \sqrt[4]{x}= \dfrac{1}{ \sqrt[4]{2} } $$
  53. Cho tứ diện $ABCD$, $M$ là một điểm trong tứ diện. Gọi $A_1$, $B_1$, $C_1$, $D_1$ là hình chiếu vuông góc của $M$ lên các mặt cuả tứ diện. Gọi $D_a$ là đường thẳng qua $A$ vuông góc với $(B_1C_1D_1)$, các đường thẳng $D_b$, $D_c$, $D_d$ xác định tương tự. Chứng minh $D_a$, $D_b$, $D_c$, $D_d$ đồng quy.
  54. Cho dãy số nguyên dương $ \{ a_n \}_{n\ge 1}^{ + \infty}$ thỏa mãn $$ a_1 = 1,\, a_2 = 2,\quad a_{mn} = a_m \cdot a_n,\quad a_{m+n} \le C \left( a_m + a_n \right),\, \forall m,n \in \mathbb{N^{*}}$$ trong đó $ C \ge 1 $ là hằng số cho trước. Chứng minh rằng $ a_n = n, \forall n \in \mathbb{N^{*}} $ 
  55. Ứng với mỗi $k>1$, gọi $$M(k) = \max \left \{ \frac{n}{s(n)}|{10^{k-1} \leq n \leq 10^k-1}\right \};$$ $$m(k) = \min \left \{ \frac{n}{s(n)} | {10^{k-1} \leq n \leq 10^k-1}\right \}.$$ Có thể biểu diễn $M(k), m(k)$ theo $k$ hay không?
  56. Cho $x$, $y$, $z$ là các hằng số, $A$, $B$, $C$ là ba góc tam giác. Tìm giá trị lớn nhất của biểu thức $$P = x\sin ^2A + y\sin ^2B + z\sin ^2C$$
  57. Cho đa thức $P(x)$ và $Q(x)=aP(x)+bP'(x)+cP''(x)$ với $a,b,c$ thuộc $\mathbb R$, $a\neq 0$, $b^2-4ac >0$. Chứng minh rằng nếu $Q(x)$ vô nghiệm thì $P(x)$ vô nghiệm
  58. Cho $C$ là một điểm nằm trên đường kính $AB$ của nửa đường tròn tâm $O$, khác $A$, $B$, $O$. Hai tia vuông góc với nhau qua $C$ cắt nửa đường tròn tại $D$, $E$. Đường thẳng qua $D$ vuông góc với $DC$ cắt lại đường tròn tại $K$. Chứng minh rằng nếu $K$ không trùng $E$ thì $KE$ song song $AB$
  59. Tìm các giá trị của tham số $m$ sao cho hệ phương trình sau có nghiệm $$\begin{cases} x^2+3xz+z^2&=1 \\ 3y^2+3yz+z^2&=4 \\ x^2-xy+y^2&=m \end{cases}.$$
  60. Cho tứ giác $ABCD$ nội tiếp, $M$ là một điểm bất kì, $X$, $Y$, $Z$, $T$, $U$, $V$ lần lượt là hình chiếu của $M$ lên các đường thẳng $AB$, $CD$, $AC$, $BD$, $AD$, $BC$. Gọi $E$, $F$, $G$ thứ tự là trung điểm của $XY$, $ZT$, $UV$. Chứng minh rằng $E$, $F$, $G$ thẳng hàng.
  61. Chứng minh tồn tại dãy số $(a_n)$ là dãy tăng các số nguyên dương sao cho dãy $(b_n)$ với $b_n=k+a_n,\forall n$ chứa hữu hạn các số nguyên tố (với mọi số tự nhiên $k$)
  62. Tính tích phân $$I=\int_{1}^{e}\dfrac{\ln x(\ln x+1)}{(1+x+\ln x)^3}dx$$
  63. Cho $a,b,c$ là các số nguyên, $b$ lẻ, xác định dãy $f(n)$ như sau $$f(0)=4,\,f(1)=0,\,f(2)=2c,\,f(3)=3b,\, f(n+3)=af(n-1)+bf(n)+cf(n+1), \forall n \in \mathbb{N}^*.$$ Chứng minh rằng với mọi số nguyên dương $m$, và mọi số nguyên tố $p$ ta có $f(p^m)$ chia hết cho $p$.
  64. Cho tam giác $ABC$ nhọn, $M$ di động trên đoạn $BC$. Đường tròn đường kính $AM$ cắt $AB$, $AC$ ở $P$, $Q$. Tiếp tuyến của nó tại $P$, $Q$ cắt nhau ở $T$. Tìm quĩ tích $T$ khi $M$ di động
  65. Giải phương trình $$\sin x\sin 2x\sin 3x + \cos x\cos 2x\cos 3x = \dfrac{1}{2}$$
  66. Kéo dài các trung tuyến của tam giác $ABC$ cho đến khi chúng cắt đường tròn ngoại tiếp của tam giác, gọi độ dài của các đoạn này là $M_a$, $M_b$, $M_c$. Chứng minh $$M_a+M_b+M_c\geq \dfrac{4}{3}(m_a+m_b+m_c),\quad M_a+M_b+M_c\geq \dfrac{2 \sqrt{3} }{3}(a+b+c).$$ Khi nào thì có dấu đẳng thức?
  67. Cho $P(x) = x^{2} + ax+ b$. Biết rằng $\forall x$ thỏa mãn $|x| \leq 1$, ta có $|P(x)| \leq \frac{1}{2}$. Tính giá trị của biểu thức $a^3 + b^3$
  68. Cho tam giác $ABC$ có trực tâm $H$. Biết đường tròn ngoại tiếp tam giác $HBC$ là $$x^2+y^2-x-5y+4=0.$$ $H$ thuộc đường thẳng $\Delta :3x-y-4=0$. Trung điểm của $AB$ là $M(2,3)$. Xác định tọa độ các đỉnh của tam giác.
  69. Cho tam giác $ABC$. Tìm giá trị nhỏ nhất, lớn nhất của $$F=\sin A^{n} \sin B^{n+1} \sin C^{2n+1}$$
  70. Chứng minh rằng tổng các bình phương khoảng cách từ các đỉnh của tam giác đều $ABC$ nội tiếp đường tròn $(O,R)$ đến đường thẳng $d$ bất kỳ qua $O$ không đổi.
  71. Cho hàm số $y=f(x)$ có đạo hàm cấp hai $f''(x) \geq 0$ trên toàn bộ $\mathbb{R}$ và $a \in \mathbb R$ cố định. Tìm giá trị lớn nhất của hàm số $$g(x)=f(x)-(a-x)f'(x)$$ trên $\mathbb R$.
  72. Cho $n\geq 3$ và $a_k> 0$, $k = 1,2,...,n$. Đặt $S= \sum\limits_{i=1}^{n}a_i$, $P= a_1.a_2...a_n$. Bất đẳng thức sau có đúng không? $$ \sum\limits_{i=1}^{n} \dfrac{1}{S- a_i} < \sqrt[n]{\dfrac{S}{P}}$$
  73. Với mỗi $n \in \mathbb{N}^*$, kí hiệu $a(n)$ là số chữ số $1$ của $n$ (trong hệ thập phân). Có tồn tại hay không số $n$ thỏa $a(n^2+1)=7a(n)$ 
  74. Trong không gian, cho tam giác $ABC$, dựng đường thẳng $d$ bất kỳ qua $A$. Từ $B$ và $C$ kẻ các đường vuông góc với $d$ lần lượt tại $B'$ và $C'$. Biết độ dài ba cạnh tam giác là $a,b,c$. Hãy tính giá trị lớn nhất của thể tích tứ diện $BCB'C'$ 
  75. Cho $n$ là một số nguyên dương và $b$ là số nguyên lớn nhất mà bé hơn $\left( \sqrt[3]{28} - 3 \right)^{-n}$. Chứng minh rằng $b$ không chia hết cho $6$ 
  76. Cho $2$ phương trình $x^2+px+q=0$ và $x^2+mx+n=0$ ($p,q,m,n$ nguyên) có $1$ nghiệm chung không phải là số nguyên. Chứng minh $p=m,q=n$. 
  77. Trong không gian cho hai đường thẳng $x$, $y$ chéo nhau. Giả sử $A$, $B$ là hai điểm cố định trên $ x$ và $CD$ là đoạn thẳng có chiều dài $l$ cho trước có thể di chuyển trên $y$. Tìm vị trí của $CD$ sao cho diện tích toàn phần của tứ diện $ABCD$ nhỏ nhất 
  78. Tìm tất cả các hàm $f:\mathbb{N}^*\to \mathbb{N}^*$ thỏa mãn đồng thời hai điều kiện
    • $f(f(n))=n, \forall n\in \mathbb{N}^* $,
    • $n| \left (f(1)+f(2)+...+f(n) \right ),\forall n\in \mathbb{N}^*$.
  79. Cho trước số thực dương $a$, đường thẳng $d$ và hai điểm $A$, $B$ nằm cùng phía đối với $d$. Dựng điểm $M \in d$ sao cho $AM+MB =a$
  80. Cho $ x,y,z>0$ thỏa $ xy+yz+zx=1$. Chứng minh rằng $$\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x} -2(x^2+y^2+z^2) \geq \sqrt{3} -2 $$
  81. Một tờ giấy có dạng hình vuông $ABCD$. Gấp tờ giấy sao cho $C$ nằm trên cạnh $AB$. Tìm giá trị nhỏ nhất của $\dfrac{MR}{RQ}$
  82. Giải hệ phương trình $$\begin{cases}4xy+4(x^2+y^2)+\dfrac{3}{(x+y)^2}&=\dfrac{85}{3}\\2x+ \dfrac{1}{x+y}&=\dfrac{13}{3}\end{cases}.$$
  83. Giải phương trình $$4\cos15x\cos5x\cos3x\cos x + \cos15x\cos5x + \cos3x\cos x = 0$$
  84. Gọi $L$ là tập các điểm nguyên trên mặt phẳng. Chứng minh rằng với mọi cặp $3$ điểm $A$, $B$, $C$ thuộc $L$ thì tồn tại điểm thứ tư $D$ sao cho phần trong của các đoạn thẳng (phần đoạn thẳng trừ đi hai đầu mút) $AD$, $BD$, $CD$ không chứa một điểm nào thuộc $L$.
  85. Từ một điểm $P$ ở ngoài đường tròn $(O)$, kẻ hai tiếp tuyến $PE,PF$ tới đường tròn ($E,F$ là hai tiếp điểm). Một cát tuyến thay đổi đi qua $P$, cắt đường tròn tại hai điểm $A,B$ ($A$ nằm giữa $P$ và $B$) và cắt $EF$ tại $Q$.
    a) Khi cát tuyến đi qua $O$, Chứng minh $$\dfrac{PA}{PB} = \dfrac{QA}{QB} \quad (1).$$ b) Đẳng thức $(1)$ có còn đúng không, khi cát tuyến trên không đi qua điểm $O$? Hãy chứng minh điều đó.
  86. Tính $$\int_0^1 \dfrac{x^{10}}{x^{10}+1} dx $$
  87. Tìm tất cả các số nguyên dương $n$ sao cho tồn tại $n$ số nguyên dương: $ a_1,...,a_n$ thỏa mãn $$\sum^n_{i=1}\dfrac{i}{a_i}=\dfrac{1}{n}\sum^n_{i=1}a_i$$
  88. Giải phương trình $$(x-1)^2\left [1+2x+3x^2+...+(n+1)x^n \right ]=1$$ trong đó $n$ là số nguyên dương.
  89. Cho tứ diện $SABC$ có $\widehat{ASB} = \alpha ; \widehat{BSC} = 45^0 $. Xác định giá trị góc $\alpha$ để góc nhị diện cạnh $SC$ bằng $60^0$
  90. Cho $k$ là số nguyên dương và $S_n=\left \{1,2,...,n \right \},(n \geq 3) $. Hàm $f:S_n^k \to S_k$ thỏa mãn: nếu $a,b \in S_n^k$ và chúng khác nhau ở tất cả các vị trí thì $f(a) \neq f(b)$. Chứng minh rằng có $i \in \left \{1,2,...,k \right \}$ sao cho $$f(a_1,a_2,...,a_k)=a_i ,\forall a=(a_1,a_2,...,a_k)\in S_n^k.$$
  91. Cho tứ giác $ABCD$, điểm $M$ di động trên đoạn $AB$. Hai đường tròn $(MAC)$, $(MBD)$ giao nhau tại $M,N$. Tìm quĩ tích điểm $N$.
  92. Trong một hình vuông có cạnh bằng $1$, đặt một hình $F$ mà khoảng cách giữa hai điểm bất kì của nó không bằng $0,0001$. Chứng minh rằng diện tích của hình đó không lớn hơn
    a) $0,34$.
    b) $0,287$.
  93. Các đường tròn $(O_1)$ và $(O_2)$ cắt nhau tại $A$ và $B$, $CD$ là đường thẳng qua $O_1$ cắt $(O_1)$ tại $D$ và tiếp xúc với $(O_2)$ tại $C$, $AC$ tiếp xúc với $(O_1)$ tại $A$. Kẻ $AE$ vuông góc $CD$ và $AE$ cắt $(O_1)$ tại $E$. Kẻ $AF$ vuông góc $DE$ và $AF$ cắt $DE$ tại $F$. Chứng minh rằng $BD$ chia đôi $AF$
  94. Cho dãy số $(u_n)$ xác định như sau $$u_1=1,\,u_2=2,\quad u_{n+1}=\dfrac{u_{n}^3 -1}{u_{n-1}}.$$ Tìm số hạng tổng quát của dãy?
  95. Cho hình vuông $ABCD$. Trên cạnh $BC$ lấy điểm $M$ bất kì, $AM$ cắt $CD$ tại $N$. Hai đường chéo hình vuông cắt nhau tại $O$, $OM$ cắt $BN$ tại $P$. Chứng minh rằng $CP$ vuông góc với $BN$.
  96. Tìm giới hạn $$P =\lim _{n \to +\infty } \int\limits_0^1 {\dfrac{{\sin ^n x}}{x}dx}$$
  97. Cho ba số thực $a, b,c \geq 0$ thỏa mãn $a+b+c = 2\sqrt3$ và $a^2$, $b^2$, $c^2$ là ba cạnh của một tam giác. Chứng minh rằng $$\sqrt{7(a^{3}+b^{3})+11ab}+\sqrt{7(b^{3}+c^{3})+11bc}+\sqrt{7(c^{3}+a^{3})+11ca} \geq 10\sqrt{3}$$
  98. Giải hệ sau với $a$, $b$, $c$ là các hằng số $$ \dfrac{xy}{ay+bx} = \dfrac{yz}{cz+by}= \dfrac{zx}{ax+cz}= \dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}$$
  99. Cho $P_1 P_2......P_7$ là bảy điểm trong không gian trong đó không có bốn điểm nào đồng phẳng. Tô màu mỗi đoạn $P_iP_j$ $(i<j)$ với một trong hai màu đỏ hoặc đen. Chứng minh rằng có hai tam giác đơn sắc không có chung cạnh. Điều này có đúng không nếu có $6$ điểm ?

Post a Comment


$hide=home

$type=three$count=6$sr=random$t=oot$h=1$l=0$meta=hide$rm=hide$sn=0

$hide=post$type=three$count=6$sr=random$t=oot$h=1$l=0$meta=hide$rm=hide$sn=0

$hide=home

Kỷ Yếu$cl=violet$type=three$count=6$sr=random$t=oot$h=1$l=0$meta=hide$rm=hide$sn=0

Journals$cl=green$type=three$count=6$sr=random$t=oot$h=1$l=0$meta=hide$rm=hide$sn=0

Name

Ả-rập Xê-út,1,Abel,5,Albania,2,AMM,2,Amsterdam,5,Ấn Độ,1,An Giang,21,Andrew Wiles,1,Anh,2,Áo,1,APMO,19,Ba Đình,2,Ba Lan,1,Bà Rịa Vũng Tàu,51,Bắc Giang,49,Bắc Kạn,1,Bạc Liêu,9,Bắc Ninh,46,Bắc Trung Bộ,7,Bài Toán Hay,5,Balkan,37,Baltic Way,30,BAMO,1,Bất Đẳng Thức,66,Bến Tre,46,Benelux,13,Bình Định,43,Bình Dương,21,Bình Phước,38,Bình Thuận,34,Birch,1,Booklet,11,Bosnia Herzegovina,3,BoxMath,3,Brazil,2,Bùi Đắc Hiên,1,Bùi Thị Thiện Mỹ,1,Bùi Văn Tuyên,1,Bùi Xuân Diệu,1,Bulgaria,5,Buôn Ma Thuột,1,BxMO,12,Cà Mau,13,Cần Thơ,14,Canada,39,Cao Bằng,6,Cao Quang Minh,1,Câu Chuyện Toán Học,36,Caucasus,2,CGMO,10,China,10,Chọn Đội Tuyển,347,Chu Tuấn Anh,1,Chuyên Đề,124,Chuyên Sư Phạm,31,Chuyên Trần Hưng Đạo,3,Collection,8,College Mathematic,1,Concours,1,Cono Sur,1,Contest,610,Correspondence,1,Cosmin Poahata,1,Crux,2,Czech-Polish-Slovak,25,Đà Nẵng,38,Đa Thức,2,Đại Số,20,Đắk Lắk,54,Đắk Nông,7,Đan Phượng,1,Danube,7,Đào Thái Hiệp,1,ĐBSCL,2,Đề Thi HSG,1632,Đề Thi JMO,1,Điện Biên,8,Định Lý,1,Định Lý Beaty,1,Đỗ Hữu Đức Thịnh,1,Do Thái,3,Doãn Quang Tiến,4,Đoàn Quỳnh,1,Đoàn Văn Trung,1,Đống Đa,4,Đồng Nai,49,Đồng Tháp,51,Du Hiền Vinh,1,Đức,1,Duyên Hải Bắc Bộ,25,E-Book,33,EGMO,16,ELMO,19,EMC,8,Epsilon,1,Estonian,5,Euler,1,Evan Chen,1,Fermat,3,Finland,4,Forum Of Geometry,2,Furstenberg,1,G. Polya,3,Gặp Gỡ Toán Học,26,Gauss,1,GDTX,3,Geometry,12,Gia Lai,25,Gia Viễn,2,Giải Tích Hàm,1,Giảng Võ,1,Giới hạn,2,Goldbach,1,Hà Giang,2,Hà Lan,1,Hà Nam,28,Hà Nội,231,Hà Tĩnh,72,Hà Trung Kiên,1,Hải Dương,49,Hải Phòng,42,Hàn Quốc,5,Hậu Giang,4,Hậu Lộc,1,Hilbert,1,Hình Học,33,HKUST,7,Hòa Bình,13,Hoài Nhơn,1,Hoàng Bá Minh,1,Hoàng Minh Quân,1,Hodge,1,Hojoo Lee,2,HOMC,5,HongKong,8,HSG 10,100,HSG 11,84,HSG 12,580,HSG 9,398,HSG Cấp Trường,78,HSG Quốc Gia,98,HSG Quốc Tế,16,Hứa Lâm Phong,1,Hứa Thuần Phỏng,1,Hùng Vương,2,Hưng Yên,31,Hương Sơn,2,Huỳnh Kim Linh,1,Hy Lạp,1,IMC,25,IMO,54,India,45,Inequality,13,InMC,1,International,307,Iran,11,Jakob,1,JBMO,41,Jewish,1,Journal,20,Junior,38,K2pi,1,Kazakhstan,1,Khánh Hòa,16,KHTN,53,Kiên Giang,63,Kim Liên,1,Kon Tum,18,Korea,5,Kvant,2,Kỷ Yếu,42,Lai Châu,4,Lâm Đồng,33,Lạng Sơn,21,Langlands,1,Lào Cai,16,Lê Hải Châu,1,Lê Hải Khôi,1,Lê Hoành Phò,4,Lê Khánh Sỹ,3,Lê Minh Cường,1,Lê Phúc Lữ,1,Lê Phương,1,Lê Quý Đôn,1,Lê Viết Hải,1,Lê Việt Hưng,1,Leibniz,1,Long An,42,Lớp 10,10,Lớp 10 Chuyên,452,Lớp 10 Không Chuyên,229,Lớp 11,1,Lục Ngạn,1,Lượng giác,1,Lương Tài,1,Lưu Giang Nam,2,Lý Thánh Tông,1,Macedonian,1,Malaysia,1,Margulis,2,Mark Levi,1,Mathematical Excalibur,1,Mathematical Reflections,1,Mathematics Magazine,1,Mathematics Today,1,Mathley,1,MathLinks,1,MathProblems Journal,1,Mathscope,8,MathsVN,5,MathVN,1,MEMO,10,Metropolises,4,Mexico,1,MIC,1,Michael Guillen,1,Mochizuki,1,Moldova,1,Moscow,1,Mỹ,9,MYTS,4,Nam Định,32,Nam Phi,1,Nam Trung Bộ,1,National,249,Nesbitt,1,Newton,4,Nghệ An,50,Ngô Bảo Châu,2,Ngô Việt Hải,1,Ngọc Huyền,2,Nguyễn Anh Tuyến,1,Nguyễn Bá Đang,1,Nguyễn Đình Thi,1,Nguyễn Đức Tấn,1,Nguyễn Đức Thắng,1,Nguyễn Duy Khương,1,Nguyễn Duy Tùng,1,Nguyễn Hữu Điển,3,Nguyễn Mình Hà,1,Nguyễn Minh Tuấn,8,Nguyễn Phan Tài Vương,1,Nguyễn Phú Khánh,1,Nguyễn Phúc Tăng,1,Nguyễn Quản Bá Hồng,1,Nguyễn Quang Sơn,1,Nguyễn Tài Chung,5,Nguyễn Tăng Vũ,1,Nguyễn Tất Thu,1,Nguyễn Thúc Vũ Hoàng,1,Nguyễn Trung Tuấn,8,Nguyễn Tuấn Anh,2,Nguyễn Văn Huyện,3,Nguyễn Văn Mậu,25,Nguyễn Văn Nho,1,Nguyễn Văn Quý,2,Nguyễn Văn Thông,1,Nguyễn Việt Anh,1,Nguyễn Vũ Lương,2,Nhật Bản,3,Nhóm $\LaTeX$,4,Nhóm Toán,1,Ninh Bình,41,Ninh Thuận,15,Nội Suy Lagrange,2,Nội Suy Newton,1,Nordic,19,Olympiad Corner,1,Olympiad Preliminary,2,Olympic 10,96,Olympic 10/3,5,Olympic 11,88,Olympic 12,30,Olympic 24/3,6,Olympic 27/4,19,Olympic 30/4,64,Olympic KHTN,6,Olympic Sinh Viên,73,Olympic Tháng 4,10,Olympic Toán,297,Olympic Toán Sơ Cấp,3,PAMO,1,Phạm Đình Đồng,1,Phạm Đức Tài,1,Phạm Huy Hoàng,1,Pham Kim Hung,3,Phạm Quốc Sang,2,Phan Huy Khải,1,Phan Thành Nam,1,Pháp,2,Philippines,8,Phú Thọ,30,Phú Yên,26,Phùng Hồ Hải,1,Phương Trình Hàm,11,Phương Trình Pythagoras,1,Pi,1,Polish,32,Problems,1,PT-HPT,14,PTNK,44,Putnam,25,Quảng Bình,44,Quảng Nam,31,Quảng Ngãi,33,Quảng Ninh,43,Quảng Trị,26,Quỹ Tích,1,Riemann,1,RMM,12,RMO,24,Romania,36,Romanian Mathematical,1,Russia,1,Sách Thường Thức Toán,7,Sách Toán,69,Sách Toán Cao Học,1,Sách Toán THCS,7,Saudi Arabia,7,Scholze,1,Serbia,17,Sharygin,24,Shortlists,56,Simon Singh,1,Singapore,1,Số Học - Tổ Hợp,27,Sóc Trăng,28,Sơn La,11,Spain,8,Star Education,5,Stars of Mathematics,11,Swinnerton-Dyer,1,Talent Search,1,Tăng Hải Tuân,2,Tạp Chí,14,Tập San,6,Tây Ban Nha,1,Tây Ninh,29,Thạch Hà,1,Thái Bình,39,Thái Nguyên,49,Thái Vân,2,Thanh Hóa,57,THCS,2,Thổ Nhĩ Kỳ,5,Thomas J. Mildorf,1,THPT Chuyên Lê Quý Đôn,1,THPTQG,15,THTT,6,Thừa Thiên Huế,35,Tiền Giang,19,Tin Tức Toán Học,1,Titu Andreescu,2,Toán 12,7,Toán Cao Cấp,3,Toán Chuyên,2,Toán Rời Rạc,5,Toán Tuổi Thơ,3,Tôn Ngọc Minh Quân,2,TOT,1,TPHCM,123,Trà Vinh,5,Trắc Nghiệm,1,Trắc Nghiệm Toán,2,Trại Hè,34,Trại Hè Hùng Vương,25,Trại Hè Phương Nam,5,Trần Đăng Phúc,1,Trần Minh Hiền,2,Trần Nam Dũng,9,Trần Phương,1,Trần Quang Hùng,1,Trần Quốc Anh,2,Trần Quốc Luật,1,Trần Quốc Nghĩa,1,Trần Tiến Tự,1,Trịnh Đào Chiến,2,Trung Quốc,12,Trường Đông,19,Trường Hè,7,Trường Thu,1,Trường Xuân,2,TST,55,Tuyên Quang,6,Tuyển Sinh,3,Tuyển Tập,44,Tuymaada,4,Undergraduate,66,USA,44,USAJMO,10,USATST,7,Uzbekistan,1,Vasile Cîrtoaje,4,Vật Lý,1,Viện Toán Học,2,Vietnam,4,Viktor Prasolov,1,VIMF,1,Vinh,27,Vĩnh Long,19,Vĩnh Phúc,63,Virginia Tech,1,VLTT,1,VMEO,4,VMF,12,VMO,46,VNTST,21,Võ Anh Khoa,1,Võ Quốc Bá Cẩn,26,Võ Thành Văn,1,Vojtěch Jarník,6,Vũ Hữu Bình,7,Vương Trung Dũng,1,WFNMC Journal,1,Wiles,1,Yên Bái,17,Yên Định,1,Yên Thành,1,Zhautykov,11,Zhou Yuan Zhe,1,
ltr
item
MOlympiad: Tổng Hợp Các Bài Toán Hay Luyện Thi Olympic Toán (Phần 1)
Tổng Hợp Các Bài Toán Hay Luyện Thi Olympic Toán (Phần 1)
MOlympiad
https://www.molympiad.net/2019/05/tong-hop-hon-400-bai-toan-hay-luyen-thi-olympic-toan-phan-1.html
https://www.molympiad.net/
https://www.molympiad.net/
https://www.molympiad.net/2019/05/tong-hop-hon-400-bai-toan-hay-luyen-thi-olympic-toan-phan-1.html
true
2506595080985176441
UTF-8
Loaded All Posts Not found any posts VIEW ALL Readmore Reply Cancel reply Delete By Home PAGES POSTS View All RECOMMENDED FOR YOU LABEL ARCHIVE SEARCH ALL POSTS Not found any post match with your request Back Home Sunday Monday Tuesday Wednesday Thursday Friday Saturday Sun Mon Tue Wed Thu Fri Sat January February March April May June July August September October November December Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec just now 1 minute ago $$1$$ minutes ago 1 hour ago $$1$$ hours ago Yesterday $$1$$ days ago $$1$$ weeks ago more than 5 weeks ago Followers Follow THIS PREMIUM CONTENT IS LOCKED Please share to unlock Copy All Code Select All Code All codes were copied to your clipboard Can not copy the codes / texts, please press [CTRL]+[C] (or CMD+C with Mac) to copy