- A student is playing computer. Computer shows randomly 2002 positive numbers. Game's rules let do the following operations
- to take 2 numbers from these, to double first one, to add the second one and to save the sum.
- to take another 2 numbers from the remainder numbers, to double the first one, to add the second one, to multiply this sum with previous and to save the result.
- to repeat this procedure, until all the $2002$ numbers won't be used.
- Positive real numbers are arranged in the form
$ 1 \ \ \ 3 \ \ \ 6 \ \ \ 10 \ \ \ 15 ...$
$ 2 \ \ \ 5 \ \ \ 9 \ \ \ 14 ...$
$ 4 \ \ \ 8 \ \ \ 13 ...$
$ 7 \ \ \ 12 ...$
$ 11 ...$
Find the number of the line and column where the number 2002 stays. - Let $ a,b,c$ be positive real numbers such that $ abc=\frac{9}{4}$. Prove the inequality $$ a^3 + b^3 + c^3 > a\sqrt {b + c} + b\sqrt {c + a} + c\sqrt {a + b}.$$ Jury's variant: Prove the same, but with $ abc=2$
- Let $ a,b,c$ be positive real numbers. Prove the inequality $$ \frac {a^3}{b^2} + \frac {b^3}{c^2} + \frac {c^3}{a^2}\ge \frac {a^2}{b} + \frac {b^2}{c} + \frac {c^2}{a}.$$
- Let $ a_1,a_2,...,a_6$ be real numbers such that $$a_1 \not = 0,\, a_1a_6 + a_3 + a_4 = 2a_2a_5,\, a_1a_3 \ge a_2^2.$$ Prove that $ a_4a_6\le a_5^2$. When does equality holds?
- Consider integers $ a_i,i=\overline{1,2002}$ such that $$a_1^{ - 3} + a_2^{ - 3} + \ldots + a_{2002}^{ - 3} = \frac {1}{2}.$$ Prove that at least 3 of the numbers are equal.
- Let $ ABC$ be a triangle with centroid $ G$ and $ A_1$, $B_1$, $C_1$ midpoints of the sides $ BC$, $CA$, $AB$. A paralel through $ A_1$ to $ BB_1$ intersects $ B_1C_1$ at $ F$. Prove that triangles $ ABC$ and $ FA_1A$ are similar if and only if quadrilateral $ AB_1GC_1$ is cyclic.
- In triangle $ ABC$, $H$, $I$, $O$ are orthocenter, incenter and circumcenter, respectively. $ CI$ cuts circumcircle at $ L$. If $ AB=IL$ and $ AH=OH$, find angles of triangle $ ABC$.
- Let $ ABC$ be a triangle with area $ S$ and points $ D,E,F$ on the sides $ BC$, $CA$, $AB$. Perpendiculars at points $ D$, $E$, $F$ to the $ BC$, $CA$, $AB$ cut circumcircle of the triangle $ ABC$ at points $ (D_1,D_2)$, $(E_1,E_2)$, $(F_1,F_2)$. Prove that $$|D_1B\cdot D_1C - D_2B\cdot D_2C| + |E_1A\cdot E_1C - E_2A\cdot E_2C| + \\ + |F_1B\cdot F_1A - F_2B\cdot F_2A| > 4S$$
- Let $ ABC$ be an isosceles triangle with $ AB=AC$ and $ \angle A=20^\circ$. On the side $ AC$ consider point $ D$ such that $ AD=BC$. Find $ \angle BDC$.
- Let $ ABCD$ be a convex quadrilateral with $ AB=AD$ and $ BC=CD$. On the sides $ AB,BC,CD,DA$ we consider points $ K$, $L$, $L_1$, $K_1$ such that quadrilateral $ KLL_1K_1$ is rectangle. Then consider rectangles $ MNPQ$ inscribed in the triangle $ BLK$, where $ M\in KB,N\in BL,P,Q\in LK$ and $ M_1N_1P_1Q_1$ inscribed in triangle $ DK_1L_1$ where $ P_1$ and $ Q_1$ are situated on the $ L_1K_1$, $ M$ on the $ DK_1$ and $ N_1$ on the $ DL_1$. Let $ S$, $S_1$, $S_2$, $S_3$ be the areas of the $ ABCD$, $KLL_1K_1$, $MNPQ$, $M_1N_1P_1Q_1$ respectively. Find the maximum possible value of the expression $$\frac{S_1+S_2+S_3}{S}$$
- Let $ A_1,A_2,...,A_{2002}$ be arbitrary points in the plane. Prove that for every circle of radius $ 1$ and for every rectangle inscribed in this circle, there exist $3$ vertices $ M,N,P$ of the rectangle such that $$ MA_1 + MA_2 + \cdots + MA_{2002} + NA_1 + NA_2 + \cdots + NA_{2002} + \\ + PA_1 + PA_2 + \cdots + PA_{2002}\ge 6006.$$
$type=three$count=6$sr=random$t=oot$h=1$l=0$meta=hide$rm=hide$sn=0
- Ả-rập Xê-út
- Abel
- Albania
- AMM
- Amsterdam
- Ấn Độ
- An Giang
- Andrew Wiles
- Anh
- Áo
- APMO
- Ba Đình
- Ba Lan
- Bà Rịa Vũng Tàu
- Bắc Giang
- Bắc Kạn
- Bạc Liêu
- Bắc Ninh
- Bắc Trung Bộ
- Bài Toán Hay
- Balkan
- Baltic Way
- BAMO
- Bất Đẳng Thức
- Bến Tre
- Benelux
- Bình Định
- Bình Dương
- Bình Phước
- Bình Thuận
- Birch
- Booklet
- Bosnia Herzegovina
- BoxMath
- Brazil
- Bùi Đắc Hiên
- Bùi Thị Thiện Mỹ
- Bùi Văn Tuyên
- Bùi Xuân Diệu
- Bulgaria
- Buôn Ma Thuột
- BxMO
- Cà Mau
- Cần Thơ
- Canada
- Cao Bằng
- Cao Quang Minh
- Câu Chuyện Toán Học
- Caucasus
- CGMO
- China
- Chọn Đội Tuyển
- Chu Tuấn Anh
- Chuyên Đề
- Chuyên Sư Phạm
- Chuyên Trần Hưng Đạo
- Collection
- College Mathematic
- Concours
- Cono Sur
- Contest
- Correspondence
- Cosmin Poahata
- Crux
- Czech-Polish-Slovak
- Đà Nẵng
- Đa Thức
- Đại Số
- Đắk Lắk
- Đắk Nông
- Đan Phượng
- Danube
- Đào Thái Hiệp
- ĐBSCL
- Đề Thi HSG
- Đề Thi JMO
- Điện Biên
- Định Lý
- Định Lý Beaty
- Đỗ Hữu Đức Thịnh
- Do Thái
- Doãn Quang Tiến
- Đoàn Quỳnh
- Đoàn Văn Trung
- Đống Đa
- Đồng Nai
- Đồng Tháp
- Du Hiền Vinh
- Đức
- Duyên Hải Bắc Bộ
- E-Book
- EGMO
- ELMO
- EMC
- Epsilon
- Estonian
- Euler
- Evan Chen
- Fermat
- Finland
- Forum Of Geometry
- Furstenberg
- G. Polya
- Gặp Gỡ Toán Học
- Gauss
- GDTX
- Geometry
- Gia Lai
- Gia Viễn
- Giải Tích Hàm
- Giảng Võ
- Giới hạn
- Goldbach
- Hà Giang
- Hà Lan
- Hà Nam
- Hà Nội
- Hà Tĩnh
- Hà Trung Kiên
- Hải Dương
- Hải Phòng
- Hàn Quốc
- Hậu Giang
- Hậu Lộc
- Hilbert
- Hình Học
- HKUST
- Hòa Bình
- Hoài Nhơn
- Hoàng Bá Minh
- Hoàng Minh Quân
- Hodge
- Hojoo Lee
- HOMC
- HongKong
- HSG 10
- HSG 11
- HSG 12
- HSG 9
- HSG Cấp Trường
- HSG Quốc Gia
- HSG Quốc Tế
- Hứa Lâm Phong
- Hứa Thuần Phỏng
- Hùng Vương
- Hưng Yên
- Hương Sơn
- Huỳnh Kim Linh
- Hy Lạp
- IMC
- IMO
- India
- Inequality
- InMC
- International
- Iran
- Jakob
- JBMO
- Jewish
- Journal
- Junior
- K2pi
- Kazakhstan
- Khánh Hòa
- KHTN
- Kiên Giang
- Kim Liên
- Kon Tum
- Korea
- Kvant
- Kỷ Yếu
- Lai Châu
- Lâm Đồng
- Lạng Sơn
- Langlands
- Lào Cai
- Lê Hải Châu
- Lê Hải Khôi
- Lê Hoành Phò
- Lê Khánh Sỹ
- Lê Minh Cường
- Lê Phúc Lữ
- Lê Phương
- Lê Quý Đôn
- Lê Viết Hải
- Lê Việt Hưng
- Leibniz
- Long An
- Lớp 10
- Lớp 10 Chuyên
- Lớp 10 Không Chuyên
- Lớp 11
- Lục Ngạn
- Lượng giác
- Lương Tài
- Lưu Giang Nam
- Lý Thánh Tông
- Macedonian
- Malaysia
- Margulis
- Mark Levi
- Mathematical Excalibur
- Mathematical Reflections
- Mathematics Magazine
- Mathematics Today
- Mathley
- MathLinks
- MathProblems Journal
- Mathscope
- MathsVN
- MathVN
- MEMO
- Metropolises
- Mexico
- MIC
- Michael Guillen
- Mochizuki
- Moldova
- Moscow
- Mỹ
- MYTS
- Nam Định
- Nam Phi
- Nam Trung Bộ
- National
- Nesbitt
- Newton
- Nghệ An
- Ngô Bảo Châu
- Ngô Việt Hải
- Ngọc Huyền
- Nguyễn Anh Tuyến
- Nguyễn Bá Đang
- Nguyễn Đình Thi
- Nguyễn Đức Tấn
- Nguyễn Đức Thắng
- Nguyễn Duy Khương
- Nguyễn Duy Tùng
- Nguyễn Hữu Điển
- Nguyễn Mình Hà
- Nguyễn Minh Tuấn
- Nguyễn Phan Tài Vương
- Nguyễn Phú Khánh
- Nguyễn Phúc Tăng
- Nguyễn Quản Bá Hồng
- Nguyễn Quang Sơn
- Nguyễn Tài Chung
- Nguyễn Tăng Vũ
- Nguyễn Tất Thu
- Nguyễn Thúc Vũ Hoàng
- Nguyễn Trung Tuấn
- Nguyễn Tuấn Anh
- Nguyễn Văn Huyện
- Nguyễn Văn Mậu
- Nguyễn Văn Nho
- Nguyễn Văn Quý
- Nguyễn Văn Thông
- Nguyễn Việt Anh
- Nguyễn Vũ Lương
- Nhật Bản
- Nhóm $\LaTeX$
- Nhóm Toán
- Ninh Bình
- Ninh Thuận
- Nội Suy Lagrange
- Nội Suy Newton
- Nordic
- Olympiad Corner
- Olympiad Preliminary
- Olympic 10
- Olympic 10/3
- Olympic 11
- Olympic 12
- Olympic 24/3
- Olympic 27/4
- Olympic 30/4
- Olympic KHTN
- Olympic Sinh Viên
- Olympic Tháng 4
- Olympic Toán
- Olympic Toán Sơ Cấp
- PAMO
- Phạm Đình Đồng
- Phạm Đức Tài
- Phạm Huy Hoàng
- Pham Kim Hung
- Phạm Quốc Sang
- Phan Huy Khải
- Phan Thành Nam
- Pháp
- Philippines
- Phú Thọ
- Phú Yên
- Phùng Hồ Hải
- Phương Trình Hàm
- Phương Trình Pythagoras
- Pi
- Polish
- Problems
- PT-HPT
- PTNK
- Putnam
- Quảng Bình
- Quảng Nam
- Quảng Ngãi
- Quảng Ninh
- Quảng Trị
- Quỹ Tích
- Riemann
- RMM
- RMO
- Romania
- Romanian Mathematical
- Russia
- Sách Thường Thức Toán
- Sách Toán
- Sách Toán Cao Học
- Sách Toán THCS
- Saudi Arabia
- Scholze
- Serbia
- Sharygin
- Shortlists
- Simon Singh
- Singapore
- Số Học - Tổ Hợp
- Sóc Trăng
- Sơn La
- Spain
- Star Education
- Stars of Mathematics
- Swinnerton-Dyer
- Talent Search
- Tăng Hải Tuân
- Tạp Chí
- Tập San
- Tây Ban Nha
- Tây Ninh
- Thạch Hà
- Thái Bình
- Thái Nguyên
- Thái Vân
- Thanh Hóa
- THCS
- Thổ Nhĩ Kỳ
- Thomas J. Mildorf
- THPT Chuyên Lê Quý Đôn
- THPTQG
- THTT
- Thừa Thiên Huế
- Tiền Giang
- Tin Tức Toán Học
- Titu Andreescu
- Toán 12
- Toán Cao Cấp
- Toán Chuyên
- Toán Rời Rạc
- Toán Tuổi Thơ
- Tôn Ngọc Minh Quân
- TOT
- TPHCM
- Trà Vinh
- Trắc Nghiệm
- Trắc Nghiệm Toán
- Trại Hè
- Trại Hè Hùng Vương
- Trại Hè Phương Nam
- Trần Đăng Phúc
- Trần Minh Hiền
- Trần Nam Dũng
- Trần Phương
- Trần Quang Hùng
- Trần Quốc Anh
- Trần Quốc Luật
- Trần Quốc Nghĩa
- Trần Tiến Tự
- Trịnh Đào Chiến
- Trung Quốc
- Trường Đông
- Trường Hè
- Trường Thu
- Trường Xuân
- TST
- Tuyên Quang
- Tuyển Sinh
- Tuyển Tập
- Tuymaada
- Undergraduate
- USA
- USAJMO
- USATST
- Uzbekistan
- Vasile Cîrtoaje
- Vật Lý
- Viện Toán Học
- Vietnam
- Viktor Prasolov
- VIMF
- Vinh
- Vĩnh Long
- Vĩnh Phúc
- Virginia Tech
- VLTT
- VMEO
- VMF
- VMO
- VNTST
- Võ Anh Khoa
- Võ Quốc Bá Cẩn
- Võ Thành Văn
- Vojtěch Jarník
- Vũ Hữu Bình
- Vương Trung Dũng
- WFNMC Journal
- Wiles
- Yên Bái
- Yên Định
- Yên Thành
- Zhautykov
- Zhou Yuan Zhe

$hide=post$type=three$count=6$sr=random$t=oot$h=1$l=0$meta=hide$rm=hide$sn=0
- Ả-rập Xê-út
- Abel
- Albania
- AMM
- Amsterdam
- Ấn Độ
- An Giang
- Andrew Wiles
- Anh
- Áo
- APMO
- Ba Đình
- Ba Lan
- Bà Rịa Vũng Tàu
- Bắc Giang
- Bắc Kạn
- Bạc Liêu
- Bắc Ninh
- Bắc Trung Bộ
- Bài Toán Hay
- Balkan
- Baltic Way
- BAMO
- Bất Đẳng Thức
- Bến Tre
- Benelux
- Bình Định
- Bình Dương
- Bình Phước
- Bình Thuận
- Birch
- Booklet
- Bosnia Herzegovina
- BoxMath
- Brazil
- Bùi Đắc Hiên
- Bùi Thị Thiện Mỹ
- Bùi Văn Tuyên
- Bùi Xuân Diệu
- Bulgaria
- Buôn Ma Thuột
- BxMO
- Cà Mau
- Cần Thơ
- Canada
- Cao Bằng
- Cao Quang Minh
- Câu Chuyện Toán Học
- Caucasus
- CGMO
- China
- Chọn Đội Tuyển
- Chu Tuấn Anh
- Chuyên Đề
- Chuyên Sư Phạm
- Chuyên Trần Hưng Đạo
- Collection
- College Mathematic
- Concours
- Cono Sur
- Contest
- Correspondence
- Cosmin Poahata
- Crux
- Czech-Polish-Slovak
- Đà Nẵng
- Đa Thức
- Đại Số
- Đắk Lắk
- Đắk Nông
- Đan Phượng
- Danube
- Đào Thái Hiệp
- ĐBSCL
- Đề Thi HSG
- Đề Thi JMO
- Điện Biên
- Định Lý
- Định Lý Beaty
- Đỗ Hữu Đức Thịnh
- Do Thái
- Doãn Quang Tiến
- Đoàn Quỳnh
- Đoàn Văn Trung
- Đống Đa
- Đồng Nai
- Đồng Tháp
- Du Hiền Vinh
- Đức
- Duyên Hải Bắc Bộ
- E-Book
- EGMO
- ELMO
- EMC
- Epsilon
- Estonian
- Euler
- Evan Chen
- Fermat
- Finland
- Forum Of Geometry
- Furstenberg
- G. Polya
- Gặp Gỡ Toán Học
- Gauss
- GDTX
- Geometry
- Gia Lai
- Gia Viễn
- Giải Tích Hàm
- Giảng Võ
- Giới hạn
- Goldbach
- Hà Giang
- Hà Lan
- Hà Nam
- Hà Nội
- Hà Tĩnh
- Hà Trung Kiên
- Hải Dương
- Hải Phòng
- Hàn Quốc
- Hậu Giang
- Hậu Lộc
- Hilbert
- Hình Học
- HKUST
- Hòa Bình
- Hoài Nhơn
- Hoàng Bá Minh
- Hoàng Minh Quân
- Hodge
- Hojoo Lee
- HOMC
- HongKong
- HSG 10
- HSG 11
- HSG 12
- HSG 9
- HSG Cấp Trường
- HSG Quốc Gia
- HSG Quốc Tế
- Hứa Lâm Phong
- Hứa Thuần Phỏng
- Hùng Vương
- Hưng Yên
- Hương Sơn
- Huỳnh Kim Linh
- Hy Lạp
- IMC
- IMO
- India
- Inequality
- InMC
- International
- Iran
- Jakob
- JBMO
- Jewish
- Journal
- Junior
- K2pi
- Kazakhstan
- Khánh Hòa
- KHTN
- Kiên Giang
- Kim Liên
- Kon Tum
- Korea
- Kvant
- Kỷ Yếu
- Lai Châu
- Lâm Đồng
- Lạng Sơn
- Langlands
- Lào Cai
- Lê Hải Châu
- Lê Hải Khôi
- Lê Hoành Phò
- Lê Khánh Sỹ
- Lê Minh Cường
- Lê Phúc Lữ
- Lê Phương
- Lê Quý Đôn
- Lê Viết Hải
- Lê Việt Hưng
- Leibniz
- Long An
- Lớp 10
- Lớp 10 Chuyên
- Lớp 10 Không Chuyên
- Lớp 11
- Lục Ngạn
- Lượng giác
- Lương Tài
- Lưu Giang Nam
- Lý Thánh Tông
- Macedonian
- Malaysia
- Margulis
- Mark Levi
- Mathematical Excalibur
- Mathematical Reflections
- Mathematics Magazine
- Mathematics Today
- Mathley
- MathLinks
- MathProblems Journal
- Mathscope
- MathsVN
- MathVN
- MEMO
- Metropolises
- Mexico
- MIC
- Michael Guillen
- Mochizuki
- Moldova
- Moscow
- Mỹ
- MYTS
- Nam Định
- Nam Phi
- Nam Trung Bộ
- National
- Nesbitt
- Newton
- Nghệ An
- Ngô Bảo Châu
- Ngô Việt Hải
- Ngọc Huyền
- Nguyễn Anh Tuyến
- Nguyễn Bá Đang
- Nguyễn Đình Thi
- Nguyễn Đức Tấn
- Nguyễn Đức Thắng
- Nguyễn Duy Khương
- Nguyễn Duy Tùng
- Nguyễn Hữu Điển
- Nguyễn Mình Hà
- Nguyễn Minh Tuấn
- Nguyễn Phan Tài Vương
- Nguyễn Phú Khánh
- Nguyễn Phúc Tăng
- Nguyễn Quản Bá Hồng
- Nguyễn Quang Sơn
- Nguyễn Tài Chung
- Nguyễn Tăng Vũ
- Nguyễn Tất Thu
- Nguyễn Thúc Vũ Hoàng
- Nguyễn Trung Tuấn
- Nguyễn Tuấn Anh
- Nguyễn Văn Huyện
- Nguyễn Văn Mậu
- Nguyễn Văn Nho
- Nguyễn Văn Quý
- Nguyễn Văn Thông
- Nguyễn Việt Anh
- Nguyễn Vũ Lương
- Nhật Bản
- Nhóm $\LaTeX$
- Nhóm Toán
- Ninh Bình
- Ninh Thuận
- Nội Suy Lagrange
- Nội Suy Newton
- Nordic
- Olympiad Corner
- Olympiad Preliminary
- Olympic 10
- Olympic 10/3
- Olympic 11
- Olympic 12
- Olympic 24/3
- Olympic 27/4
- Olympic 30/4
- Olympic KHTN
- Olympic Sinh Viên
- Olympic Tháng 4
- Olympic Toán
- Olympic Toán Sơ Cấp
- PAMO
- Phạm Đình Đồng
- Phạm Đức Tài
- Phạm Huy Hoàng
- Pham Kim Hung
- Phạm Quốc Sang
- Phan Huy Khải
- Phan Thành Nam
- Pháp
- Philippines
- Phú Thọ
- Phú Yên
- Phùng Hồ Hải
- Phương Trình Hàm
- Phương Trình Pythagoras
- Pi
- Polish
- Problems
- PT-HPT
- PTNK
- Putnam
- Quảng Bình
- Quảng Nam
- Quảng Ngãi
- Quảng Ninh
- Quảng Trị
- Quỹ Tích
- Riemann
- RMM
- RMO
- Romania
- Romanian Mathematical
- Russia
- Sách Thường Thức Toán
- Sách Toán
- Sách Toán Cao Học
- Sách Toán THCS
- Saudi Arabia
- Scholze
- Serbia
- Sharygin
- Shortlists
- Simon Singh
- Singapore
- Số Học - Tổ Hợp
- Sóc Trăng
- Sơn La
- Spain
- Star Education
- Stars of Mathematics
- Swinnerton-Dyer
- Talent Search
- Tăng Hải Tuân
- Tạp Chí
- Tập San
- Tây Ban Nha
- Tây Ninh
- Thạch Hà
- Thái Bình
- Thái Nguyên
- Thái Vân
- Thanh Hóa
- THCS
- Thổ Nhĩ Kỳ
- Thomas J. Mildorf
- THPT Chuyên Lê Quý Đôn
- THPTQG
- THTT
- Thừa Thiên Huế
- Tiền Giang
- Tin Tức Toán Học
- Titu Andreescu
- Toán 12
- Toán Cao Cấp
- Toán Chuyên
- Toán Rời Rạc
- Toán Tuổi Thơ
- Tôn Ngọc Minh Quân
- TOT
- TPHCM
- Trà Vinh
- Trắc Nghiệm
- Trắc Nghiệm Toán
- Trại Hè
- Trại Hè Hùng Vương
- Trại Hè Phương Nam
- Trần Đăng Phúc
- Trần Minh Hiền
- Trần Nam Dũng
- Trần Phương
- Trần Quang Hùng
- Trần Quốc Anh
- Trần Quốc Luật
- Trần Quốc Nghĩa
- Trần Tiến Tự
- Trịnh Đào Chiến
- Trung Quốc
- Trường Đông
- Trường Hè
- Trường Thu
- Trường Xuân
- TST
- Tuyên Quang
- Tuyển Sinh
- Tuyển Tập
- Tuymaada
- Undergraduate
- USA
- USAJMO
- USATST
- Uzbekistan
- Vasile Cîrtoaje
- Vật Lý
- Viện Toán Học
- Vietnam
- Viktor Prasolov
- VIMF
- Vinh
- Vĩnh Long
- Vĩnh Phúc
- Virginia Tech
- VLTT
- VMEO
- VMF
- VMO
- VNTST
- Võ Anh Khoa
- Võ Quốc Bá Cẩn
- Võ Thành Văn
- Vojtěch Jarník
- Vũ Hữu Bình
- Vương Trung Dũng
- WFNMC Journal
- Wiles
- Yên Bái
- Yên Định
- Yên Thành
- Zhautykov
- Zhou Yuan Zhe

Kỷ Yếu$cl=violet$type=three$count=6$sr=random$t=oot$h=1$l=0$meta=hide$rm=hide$sn=0
Journals$cl=green$type=three$count=6$sr=random$t=oot$h=1$l=0$meta=hide$rm=hide$sn=0
$type=list$sr=random$t=oot$h=1$l=0$meta=hide$rm=hide$sn=0$show=home
- [Đáp Án] Đề Thi Olympic Tháng 4 TP HCM 2018-2019 (Khối 10)
- [Đáp Án] Đề Thi Olympic Tháng 4 TP HCM 2016-2017 (Khối 11)
- Đề Thi Olympic 27/4 Tỉnh Bà Rịa Vũng Tàu 2016-2017 (Khối 11)
- [Đáp Án] Đề Thi Olympic 24/3 Tỉnh Quảng Nam 2015-2016 (Khối 11)
- Toán Học Tuổi Trẻ
- [Solutions] Sharygin Geometry Mathematical Olympiad 2020 (Correspondence Round)

/fa-fire/ POPULAR$type=list-tab$hide=home
- [Đáp Án] Đề Thi Olympic Tháng 4 TP HCM 2018-2019 (Khối 10)
- [Đáp Án] Đề Thi Olympic Tháng 4 TP HCM 2016-2017 (Khối 11)
- Đề Thi Olympic 27/4 Tỉnh Bà Rịa Vũng Tàu 2016-2017 (Khối 11)
- [Đáp Án] Đề Thi Olympic 24/3 Tỉnh Quảng Nam 2015-2016 (Khối 11)
- Toán Học Tuổi Trẻ
- [Solutions] Sharygin Geometry Mathematical Olympiad 2020 (Correspondence Round)

/fa-comment/ COMMENT$type=list-tab$c=6$com=0$d=0$src=recent-comments$hide=home
- Ả-rập Xê-út
- Abel
- Albania
- AMM
- Amsterdam
- Ấn Độ
- An Giang
- Andrew Wiles
- Anh
- Áo
- APMO
- Ba Đình
- Ba Lan
- Bà Rịa Vũng Tàu
- Bắc Giang
- Bắc Kạn
- Bạc Liêu
- Bắc Ninh
- Bắc Trung Bộ
- Bài Toán Hay
- Balkan
- Baltic Way
- BAMO
- Bất Đẳng Thức
- Bến Tre
- Benelux
- Bình Định
- Bình Dương
- Bình Phước
- Bình Thuận
- Birch
- Booklet
- Bosnia Herzegovina
- BoxMath
- Brazil
- Bùi Đắc Hiên
- Bùi Thị Thiện Mỹ
- Bùi Văn Tuyên
- Bùi Xuân Diệu
- Bulgaria
- Buôn Ma Thuột
- BxMO
- Cà Mau
- Cần Thơ
- Canada
- Cao Bằng
- Cao Quang Minh
- Câu Chuyện Toán Học
- Caucasus
- CGMO
- China
- Chọn Đội Tuyển
- Chu Tuấn Anh
- Chuyên Đề
- Chuyên Sư Phạm
- Chuyên Trần Hưng Đạo
- Collection
- College Mathematic
- Concours
- Cono Sur
- Contest
- Correspondence
- Cosmin Poahata
- Crux
- Czech-Polish-Slovak
- Đà Nẵng
- Đa Thức
- Đại Số
- Đắk Lắk
- Đắk Nông
- Đan Phượng
- Danube
- Đào Thái Hiệp
- ĐBSCL
- Đề Thi HSG
- Đề Thi JMO
- Điện Biên
- Định Lý
- Định Lý Beaty
- Đỗ Hữu Đức Thịnh
- Do Thái
- Doãn Quang Tiến
- Đoàn Quỳnh
- Đoàn Văn Trung
- Đống Đa
- Đồng Nai
- Đồng Tháp
- Du Hiền Vinh
- Đức
- Duyên Hải Bắc Bộ
- E-Book
- EGMO
- ELMO
- EMC
- Epsilon
- Estonian
- Euler
- Evan Chen
- Fermat
- Finland
- Forum Of Geometry
- Furstenberg
- G. Polya
- Gặp Gỡ Toán Học
- Gauss
- GDTX
- Geometry
- Gia Lai
- Gia Viễn
- Giải Tích Hàm
- Giảng Võ
- Giới hạn
- Goldbach
- Hà Giang
- Hà Lan
- Hà Nam
- Hà Nội
- Hà Tĩnh
- Hà Trung Kiên
- Hải Dương
- Hải Phòng
- Hàn Quốc
- Hậu Giang
- Hậu Lộc
- Hilbert
- Hình Học
- HKUST
- Hòa Bình
- Hoài Nhơn
- Hoàng Bá Minh
- Hoàng Minh Quân
- Hodge
- Hojoo Lee
- HOMC
- HongKong
- HSG 10
- HSG 11
- HSG 12
- HSG 9
- HSG Cấp Trường
- HSG Quốc Gia
- HSG Quốc Tế
- Hứa Lâm Phong
- Hứa Thuần Phỏng
- Hùng Vương
- Hưng Yên
- Hương Sơn
- Huỳnh Kim Linh
- Hy Lạp
- IMC
- IMO
- India
- Inequality
- InMC
- International
- Iran
- Jakob
- JBMO
- Jewish
- Journal
- Junior
- K2pi
- Kazakhstan
- Khánh Hòa
- KHTN
- Kiên Giang
- Kim Liên
- Kon Tum
- Korea
- Kvant
- Kỷ Yếu
- Lai Châu
- Lâm Đồng
- Lạng Sơn
- Langlands
- Lào Cai
- Lê Hải Châu
- Lê Hải Khôi
- Lê Hoành Phò
- Lê Khánh Sỹ
- Lê Minh Cường
- Lê Phúc Lữ
- Lê Phương
- Lê Quý Đôn
- Lê Viết Hải
- Lê Việt Hưng
- Leibniz
- Long An
- Lớp 10
- Lớp 10 Chuyên
- Lớp 10 Không Chuyên
- Lớp 11
- Lục Ngạn
- Lượng giác
- Lương Tài
- Lưu Giang Nam
- Lý Thánh Tông
- Macedonian
- Malaysia
- Margulis
- Mark Levi
- Mathematical Excalibur
- Mathematical Reflections
- Mathematics Magazine
- Mathematics Today
- Mathley
- MathLinks
- MathProblems Journal
- Mathscope
- MathsVN
- MathVN
- MEMO
- Metropolises
- Mexico
- MIC
- Michael Guillen
- Mochizuki
- Moldova
- Moscow
- Mỹ
- MYTS
- Nam Định
- Nam Phi
- Nam Trung Bộ
- National
- Nesbitt
- Newton
- Nghệ An
- Ngô Bảo Châu
- Ngô Việt Hải
- Ngọc Huyền
- Nguyễn Anh Tuyến
- Nguyễn Bá Đang
- Nguyễn Đình Thi
- Nguyễn Đức Tấn
- Nguyễn Đức Thắng
- Nguyễn Duy Khương
- Nguyễn Duy Tùng
- Nguyễn Hữu Điển
- Nguyễn Mình Hà
- Nguyễn Minh Tuấn
- Nguyễn Phan Tài Vương
- Nguyễn Phú Khánh
- Nguyễn Phúc Tăng
- Nguyễn Quản Bá Hồng
- Nguyễn Quang Sơn
- Nguyễn Tài Chung
- Nguyễn Tăng Vũ
- Nguyễn Tất Thu
- Nguyễn Thúc Vũ Hoàng
- Nguyễn Trung Tuấn
- Nguyễn Tuấn Anh
- Nguyễn Văn Huyện
- Nguyễn Văn Mậu
- Nguyễn Văn Nho
- Nguyễn Văn Quý
- Nguyễn Văn Thông
- Nguyễn Việt Anh
- Nguyễn Vũ Lương
- Nhật Bản
- Nhóm $\LaTeX$
- Nhóm Toán
- Ninh Bình
- Ninh Thuận
- Nội Suy Lagrange
- Nội Suy Newton
- Nordic
- Olympiad Corner
- Olympiad Preliminary
- Olympic 10
- Olympic 10/3
- Olympic 11
- Olympic 12
- Olympic 24/3
- Olympic 27/4
- Olympic 30/4
- Olympic KHTN
- Olympic Sinh Viên
- Olympic Tháng 4
- Olympic Toán
- Olympic Toán Sơ Cấp
- PAMO
- Phạm Đình Đồng
- Phạm Đức Tài
- Phạm Huy Hoàng
- Pham Kim Hung
- Phạm Quốc Sang
- Phan Huy Khải
- Phan Thành Nam
- Pháp
- Philippines
- Phú Thọ
- Phú Yên
- Phùng Hồ Hải
- Phương Trình Hàm
- Phương Trình Pythagoras
- Pi
- Polish
- Problems
- PT-HPT
- PTNK
- Putnam
- Quảng Bình
- Quảng Nam
- Quảng Ngãi
- Quảng Ninh
- Quảng Trị
- Quỹ Tích
- Riemann
- RMM
- RMO
- Romania
- Romanian Mathematical
- Russia
- Sách Thường Thức Toán
- Sách Toán
- Sách Toán Cao Học
- Sách Toán THCS
- Saudi Arabia
- Scholze
- Serbia
- Sharygin
- Shortlists
- Simon Singh
- Singapore
- Số Học - Tổ Hợp
- Sóc Trăng
- Sơn La
- Spain
- Star Education
- Stars of Mathematics
- Swinnerton-Dyer
- Talent Search
- Tăng Hải Tuân
- Tạp Chí
- Tập San
- Tây Ban Nha
- Tây Ninh
- Thạch Hà
- Thái Bình
- Thái Nguyên
- Thái Vân
- Thanh Hóa
- THCS
- Thổ Nhĩ Kỳ
- Thomas J. Mildorf
- THPT Chuyên Lê Quý Đôn
- THPTQG
- THTT
- Thừa Thiên Huế
- Tiền Giang
- Tin Tức Toán Học
- Titu Andreescu
- Toán 12
- Toán Cao Cấp
- Toán Chuyên
- Toán Rời Rạc
- Toán Tuổi Thơ
- Tôn Ngọc Minh Quân
- TOT
- TPHCM
- Trà Vinh
- Trắc Nghiệm
- Trắc Nghiệm Toán
- Trại Hè
- Trại Hè Hùng Vương
- Trại Hè Phương Nam
- Trần Đăng Phúc
- Trần Minh Hiền
- Trần Nam Dũng
- Trần Phương
- Trần Quang Hùng
- Trần Quốc Anh
- Trần Quốc Luật
- Trần Quốc Nghĩa
- Trần Tiến Tự
- Trịnh Đào Chiến
- Trung Quốc
- Trường Đông
- Trường Hè
- Trường Thu
- Trường Xuân
- TST
- Tuyên Quang
- Tuyển Sinh
- Tuyển Tập
- Tuymaada
- Undergraduate
- USA
- USAJMO
- USATST
- Uzbekistan
- Vasile Cîrtoaje
- Vật Lý
- Viện Toán Học
- Vietnam
- Viktor Prasolov
- VIMF
- Vinh
- Vĩnh Long
- Vĩnh Phúc
- Virginia Tech
- VLTT
- VMEO
- VMF
- VMO
- VNTST
- Võ Anh Khoa
- Võ Quốc Bá Cẩn
- Võ Thành Văn
- Vojtěch Jarník
- Vũ Hữu Bình
- Vương Trung Dũng
- WFNMC Journal
- Wiles
- Yên Bái
- Yên Định
- Yên Thành
- Zhautykov
- Zhou Yuan Zhe

$type=list$count=6$sr=random$t=oot$h=1$l=0$meta=hide$rm=hide$sn=0
- Ả-rập Xê-út
- Abel
- Albania
- AMM
- Amsterdam
- Ấn Độ
- An Giang
- Andrew Wiles
- Anh
- Áo
- APMO
- Ba Đình
- Ba Lan
- Bà Rịa Vũng Tàu
- Bắc Giang
- Bắc Kạn
- Bạc Liêu
- Bắc Ninh
- Bắc Trung Bộ
- Bài Toán Hay
- Balkan
- Baltic Way
- BAMO
- Bất Đẳng Thức
- Bến Tre
- Benelux
- Bình Định
- Bình Dương
- Bình Phước
- Bình Thuận
- Birch
- Booklet
- Bosnia Herzegovina
- BoxMath
- Brazil
- Bùi Đắc Hiên
- Bùi Thị Thiện Mỹ
- Bùi Văn Tuyên
- Bùi Xuân Diệu
- Bulgaria
- Buôn Ma Thuột
- BxMO
- Cà Mau
- Cần Thơ
- Canada
- Cao Bằng
- Cao Quang Minh
- Câu Chuyện Toán Học
- Caucasus
- CGMO
- China
- Chọn Đội Tuyển
- Chu Tuấn Anh
- Chuyên Đề
- Chuyên Sư Phạm
- Chuyên Trần Hưng Đạo
- Collection
- College Mathematic
- Concours
- Cono Sur
- Contest
- Correspondence
- Cosmin Poahata
- Crux
- Czech-Polish-Slovak
- Đà Nẵng
- Đa Thức
- Đại Số
- Đắk Lắk
- Đắk Nông
- Đan Phượng
- Danube
- Đào Thái Hiệp
- ĐBSCL
- Đề Thi HSG
- Đề Thi JMO
- Điện Biên
- Định Lý
- Định Lý Beaty
- Đỗ Hữu Đức Thịnh
- Do Thái
- Doãn Quang Tiến
- Đoàn Quỳnh
- Đoàn Văn Trung
- Đống Đa
- Đồng Nai
- Đồng Tháp
- Du Hiền Vinh
- Đức
- Duyên Hải Bắc Bộ
- E-Book
- EGMO
- ELMO
- EMC
- Epsilon
- Estonian
- Euler
- Evan Chen
- Fermat
- Finland
- Forum Of Geometry
- Furstenberg
- G. Polya
- Gặp Gỡ Toán Học
- Gauss
- GDTX
- Geometry
- Gia Lai
- Gia Viễn
- Giải Tích Hàm
- Giảng Võ
- Giới hạn
- Goldbach
- Hà Giang
- Hà Lan
- Hà Nam
- Hà Nội
- Hà Tĩnh
- Hà Trung Kiên
- Hải Dương
- Hải Phòng
- Hàn Quốc
- Hậu Giang
- Hậu Lộc
- Hilbert
- Hình Học
- HKUST
- Hòa Bình
- Hoài Nhơn
- Hoàng Bá Minh
- Hoàng Minh Quân
- Hodge
- Hojoo Lee
- HOMC
- HongKong
- HSG 10
- HSG 11
- HSG 12
- HSG 9
- HSG Cấp Trường
- HSG Quốc Gia
- HSG Quốc Tế
- Hứa Lâm Phong
- Hứa Thuần Phỏng
- Hùng Vương
- Hưng Yên
- Hương Sơn
- Huỳnh Kim Linh
- Hy Lạp
- IMC
- IMO
- India
- Inequality
- InMC
- International
- Iran
- Jakob
- JBMO
- Jewish
- Journal
- Junior
- K2pi
- Kazakhstan
- Khánh Hòa
- KHTN
- Kiên Giang
- Kim Liên
- Kon Tum
- Korea
- Kvant
- Kỷ Yếu
- Lai Châu
- Lâm Đồng
- Lạng Sơn
- Langlands
- Lào Cai
- Lê Hải Châu
- Lê Hải Khôi
- Lê Hoành Phò
- Lê Khánh Sỹ
- Lê Minh Cường
- Lê Phúc Lữ
- Lê Phương
- Lê Quý Đôn
- Lê Viết Hải
- Lê Việt Hưng
- Leibniz
- Long An
- Lớp 10
- Lớp 10 Chuyên
- Lớp 10 Không Chuyên
- Lớp 11
- Lục Ngạn
- Lượng giác
- Lương Tài
- Lưu Giang Nam
- Lý Thánh Tông
- Macedonian
- Malaysia
- Margulis
- Mark Levi
- Mathematical Excalibur
- Mathematical Reflections
- Mathematics Magazine
- Mathematics Today
- Mathley
- MathLinks
- MathProblems Journal
- Mathscope
- MathsVN
- MathVN
- MEMO
- Metropolises
- Mexico
- MIC
- Michael Guillen
- Mochizuki
- Moldova
- Moscow
- Mỹ
- MYTS
- Nam Định
- Nam Phi
- Nam Trung Bộ
- National
- Nesbitt
- Newton
- Nghệ An
- Ngô Bảo Châu
- Ngô Việt Hải
- Ngọc Huyền
- Nguyễn Anh Tuyến
- Nguyễn Bá Đang
- Nguyễn Đình Thi
- Nguyễn Đức Tấn
- Nguyễn Đức Thắng
- Nguyễn Duy Khương
- Nguyễn Duy Tùng
- Nguyễn Hữu Điển
- Nguyễn Mình Hà
- Nguyễn Minh Tuấn
- Nguyễn Phan Tài Vương
- Nguyễn Phú Khánh
- Nguyễn Phúc Tăng
- Nguyễn Quản Bá Hồng
- Nguyễn Quang Sơn
- Nguyễn Tài Chung
- Nguyễn Tăng Vũ
- Nguyễn Tất Thu
- Nguyễn Thúc Vũ Hoàng
- Nguyễn Trung Tuấn
- Nguyễn Tuấn Anh
- Nguyễn Văn Huyện
- Nguyễn Văn Mậu
- Nguyễn Văn Nho
- Nguyễn Văn Quý
- Nguyễn Văn Thông
- Nguyễn Việt Anh
- Nguyễn Vũ Lương
- Nhật Bản
- Nhóm $\LaTeX$
- Nhóm Toán
- Ninh Bình
- Ninh Thuận
- Nội Suy Lagrange
- Nội Suy Newton
- Nordic
- Olympiad Corner
- Olympiad Preliminary
- Olympic 10
- Olympic 10/3
- Olympic 11
- Olympic 12
- Olympic 24/3
- Olympic 27/4
- Olympic 30/4
- Olympic KHTN
- Olympic Sinh Viên
- Olympic Tháng 4
- Olympic Toán
- Olympic Toán Sơ Cấp
- PAMO
- Phạm Đình Đồng
- Phạm Đức Tài
- Phạm Huy Hoàng
- Pham Kim Hung
- Phạm Quốc Sang
- Phan Huy Khải
- Phan Thành Nam
- Pháp
- Philippines
- Phú Thọ
- Phú Yên
- Phùng Hồ Hải
- Phương Trình Hàm
- Phương Trình Pythagoras
- Pi
- Polish
- Problems
- PT-HPT
- PTNK
- Putnam
- Quảng Bình
- Quảng Nam
- Quảng Ngãi
- Quảng Ninh
- Quảng Trị
- Quỹ Tích
- Riemann
- RMM
- RMO
- Romania
- Romanian Mathematical
- Russia
- Sách Thường Thức Toán
- Sách Toán
- Sách Toán Cao Học
- Sách Toán THCS
- Saudi Arabia
- Scholze
- Serbia
- Sharygin
- Shortlists
- Simon Singh
- Singapore
- Số Học - Tổ Hợp
- Sóc Trăng
- Sơn La
- Spain
- Star Education
- Stars of Mathematics
- Swinnerton-Dyer
- Talent Search
- Tăng Hải Tuân
- Tạp Chí
- Tập San
- Tây Ban Nha
- Tây Ninh
- Thạch Hà
- Thái Bình
- Thái Nguyên
- Thái Vân
- Thanh Hóa
- THCS
- Thổ Nhĩ Kỳ
- Thomas J. Mildorf
- THPT Chuyên Lê Quý Đôn
- THPTQG
- THTT
- Thừa Thiên Huế
- Tiền Giang
- Tin Tức Toán Học
- Titu Andreescu
- Toán 12
- Toán Cao Cấp
- Toán Chuyên
- Toán Rời Rạc
- Toán Tuổi Thơ
- Tôn Ngọc Minh Quân
- TOT
- TPHCM
- Trà Vinh
- Trắc Nghiệm
- Trắc Nghiệm Toán
- Trại Hè
- Trại Hè Hùng Vương
- Trại Hè Phương Nam
- Trần Đăng Phúc
- Trần Minh Hiền
- Trần Nam Dũng
- Trần Phương
- Trần Quang Hùng
- Trần Quốc Anh
- Trần Quốc Luật
- Trần Quốc Nghĩa
- Trần Tiến Tự
- Trịnh Đào Chiến
- Trung Quốc
- Trường Đông
- Trường Hè
- Trường Thu
- Trường Xuân
- TST
- Tuyên Quang
- Tuyển Sinh
- Tuyển Tập
- Tuymaada
- Undergraduate
- USA
- USAJMO
- USATST
- Uzbekistan
- Vasile Cîrtoaje
- Vật Lý
- Viện Toán Học
- Vietnam
- Viktor Prasolov
- VIMF
- Vinh
- Vĩnh Long
- Vĩnh Phúc
- Virginia Tech
- VLTT
- VMEO
- VMF
- VMO
- VNTST
- Võ Anh Khoa
- Võ Quốc Bá Cẩn
- Võ Thành Văn
- Vojtěch Jarník
- Vũ Hữu Bình
- Vương Trung Dũng
- WFNMC Journal
- Wiles
- Yên Bái
- Yên Định
- Yên Thành
- Zhautykov
- Zhou Yuan Zhe

Post a Comment