$hide=mobile

[Đáp Án] Đề Thi Chọn Học Sinh Giỏi Quốc Gia THPT 2018-2019

  1. Cho hàm số $f:\;\mathbb R\to\mathbb R^+$ liên tục và thỏa mãn\[\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = 0.\] a) Chứng minh rằng tồn tại giá trị lớn nhất của $f(x)$ trên $\mathbb R$.
    b) Chứng minh rằng tồn tại hai dãy số $\left(x_n\right)$ và $\left(y_n\right)$ sao cho $\displaystyle\lim_{n\to\infty} x_n = \lim_{n\to\infty} y_n$ và \[{x_n} < {y_n},\, f\left( {{x_n}} \right) = f\left( {{y_n}} \right),\, \forall n\in\mathbb N.\]
  2. Xét dãy số nguyên $\left( {{x_n}} \right)$ thỏa $0\le x_0<x_1\le 100$ và \[{x_{n + 2}} = 7{x_{n+1}} - {x_n} + 280,\,\forall n \in \mathbb N.\] a) Chứng minh rằng nếu $x_0=2$, $x_1=3$ thì tổng các ước số dương của $$x_{n}x_{n+1}+x_{n+1}x_{n+2}+x_{n+2}x_{n+3}+2018$$ là bội số của $24$.
    b) Tìm các cặp $\left(x_0,x_1\right)$ sao cho $x_nx_{n+1}+2019$ là số chính phương với vô số số tự nhiên $n$. 
  3. Với mỗi đa thức $f(x)=a_0+a_1x+a_2x^2+....+a_nx^n$, đặt $$\Gamma( f(x))=a_0^2+a_1^2+...+a_n^2.$$ Cho $P(x)=(x+1)(x+2)...(x+2020)$. Chứng minh rằng tồn tại ít nhất $2^{2019}$ đa thức đôi một khác nhau $Q_k(x)$ $(1\leq k \leq 2^{2019})$ với hệ số là các số thực dương sao cho $\deg Q_k(x)=2020$ và $\Gamma(Q_k(x)^n)=\Gamma(P(x)^n)$ với mọi số nguyên dương $n$. 
  4. Cho tam giác $ABC$ có trực tâm $H$ và tâm đường tròn nội tiếp $I$, trên các tia $AB$, $AC$, $BC$, $BA$, $CA$, $CB$ lần lượt lấy các điểm $A_1$, $A_2$, $B_1$, $B_2$, $C_1$, $C_2$ sao cho $AA_1=AA_2=BC$, $BB_1=BB_2=AC$, $CC_1=CC_2=AB$. Các cặp đường thẳng $\left(B_1B_2, C_1C_2 \right)$, $\left( C_1C_2, A_1A_2 \right)$, $\left( B_1B_2, A_1A_2 \right)$ lần lượt có giao điểm là $A'$, $B'$, $C'$.
    a) Chứng minh rằng diện tích tam giác $A'B'C'$ không vượt quá diện tích tam giác $ABC$.
    b) Gọi $J$ là tâm đường tròn ngoại tiếp tam giác $A'B'C'$. Các đường thẳng $AJ$, $BJ$, $CJ$ lần lượt cắt các đường thẳng $BC$, $CA$, $AB$ tại $R$, $S$, $T$ tương ứng. Các đường tròn ngoại tiếp các tam giác $AST$, $BTR$, $CRS$ cùng đi qua một điểm $K$. Chứng minh rằng nếu tam giác $ABC$ không cân thì $IHJK$ là hình bình hành. 
  5. Xét đa thức $f(x)=x^2-\alpha x+1$ $(\alpha\in\mathbb{R})$.
    a) Khi $\alpha = \dfrac{\sqrt{15}}{2}$, hãy viết $f(x)$ thành thương của hai đa thức với các hệ số không âm.
    b) Tìm tất cả các giá trị của $\alpha$ để $f(x)$ viết được thành thương của hai đa thức với các hệ số không âm.
  6. Cho tam giác $ABC$ nhọn và không cân, nội tiếp đường tròn $(O)$ và có trực tâm $(H)$. Gọi $M$, $N$, $P$ lần lượt là trung điểm các cạnh $BC$, $CA$, $AB$ và $D$, $E$, $F$ lần lượt là chân các đường cao tương ứng với các đỉnh $A$, $B$, $C$ của tam giác $ABC$. Gọi $K$ là điểm đối xứng của $H$ qua $BC$. Hai đường thẳng $DE$ và $MP$ cắt nhau tại $X$; hai đường thẳng $DF$ và $MN$ cắt nhau tại $Y$.
    a) Đường thẳng $XY$ cắt cung nhỏ $BC$ của $(O)$ tại $Z$. Chứng minh rằng bốn điểm $K$, $Z$, $E$, $F$ đồng viên.
    b) Hai đường thẳng $KE$, $KF$ lần lượt cắt $(O)$ tại các điểm thứ hai là $S$ và $T$ (khác $K$). Chứng minh rằng các đường thẳng $BS$, $CT$ và $XY$ đồng quy.
  7. Có một số mảnh giấy hình vuông có cùng kích thước, mỗi mảnh được chia caro thành $5\times 5$ ô vuông ở cả hai mặt. Ta dùng $n$ màu đẻ tô cho các mảnh giấy sao cho mỗi ô của mỗi mảnh giấy được tô cả hai mặt bởi cùng một màu. Hai mảnh giấy được coi là giống nhau nếu có thể xếp chúng khít lên nhau sao cho các cặp ô vuông ở cùng vị trí có cùng màu. Chứng minhh rằng không có quá $\dfrac{1}{8}\left( {{n^{25}} + 4{n^{15}} + {n^{13}} + 2{n^7}} \right)$ mảnh giấy đôi một không giống nhau.

Post a Comment


$hide=mobile

$hide=mobile

$hide=mobile

$show=post$type=three$count=6$sr=random$t=oot$h=1$l=0$meta=hide$rm=hide$sn=0

Kỷ Yếu$cl=violet$type=three$count=6$sr=random$t=oot$h=1$l=0$meta=hide$rm=hide$sn=0$hide=mobile

Journals$cl=green$type=three$count=6$sr=random$t=oot$h=1$l=0$meta=hide$rm=hide$sn=0$hide=mobile

Name

Ả-rập Xê-út,1,Abel,5,Albania,2,AMM,3,Amsterdam,5,Ấn Độ,2,An Giang,23,Andrew Wiles,1,Anh,2,Áo,1,APMO,19,Ba Đình,2,Ba Lan,1,Bà Rịa Vũng Tàu,52,Bắc Giang,50,Bắc Kạn,1,Bạc Liêu,9,Bắc Ninh,48,Bắc Trung Bộ,7,Bài Toán Hay,5,Balkan,38,Baltic Way,30,BAMO,1,Bất Đẳng Thức,66,Bến Tre,46,Benelux,14,Bình Định,45,Bình Dương,23,Bình Phước,38,Bình Thuận,34,Birch,1,Booklet,11,Bosnia Herzegovina,3,BoxMath,3,Brazil,2,Bùi Đắc Hiên,1,Bùi Thị Thiện Mỹ,1,Bùi Văn Tuyên,1,Bùi Xuân Diệu,1,Bulgaria,6,Buôn Ma Thuột,1,BxMO,13,Cà Mau,14,Cần Thơ,14,Canada,40,Cao Bằng,7,Cao Quang Minh,1,Câu Chuyện Toán Học,36,Caucasus,2,CGMO,10,China,10,Chọn Đội Tuyển,353,Chu Tuấn Anh,1,Chuyên Đề,124,Chuyên Sư Phạm,31,Chuyên Trần Hưng Đạo,3,Collection,8,College Mathematic,1,Concours,1,Cono Sur,1,Contest,618,Correspondence,1,Cosmin Poahata,1,Crux,2,Czech-Polish-Slovak,26,Đà Nẵng,39,Đa Thức,2,Đại Số,20,Đắk Lắk,56,Đắk Nông,7,Đan Phượng,1,Danube,7,Đào Thái Hiệp,1,ĐBSCL,2,Đề Thi,1,Đề Thi HSG,1769,Đề Thi JMO,1,Điện Biên,8,Định Lý,1,Định Lý Beaty,1,Đỗ Hữu Đức Thịnh,1,Do Thái,3,Doãn Quang Tiến,4,Đoàn Quỳnh,1,Đoàn Văn Trung,1,Đống Đa,4,Đồng Nai,49,Đồng Tháp,52,Du Hiền Vinh,1,Đức,1,Duyên Hải Bắc Bộ,25,E-Book,33,EGMO,17,ELMO,19,EMC,9,Epsilon,1,Estonian,5,Euler,1,Evan Chen,1,Fermat,3,Finland,4,Forum Of Geometry,2,Furstenberg,1,G. Polya,3,Gặp Gỡ Toán Học,26,Gauss,1,GDTX,3,Geometry,12,Gia Lai,26,Gia Viễn,2,Giải Tích Hàm,1,Giảng Võ,1,Giới hạn,2,Goldbach,1,Hà Giang,2,Hà Lan,1,Hà Nam,29,Hà Nội,232,Hà Tĩnh,73,Hà Trung Kiên,1,Hải Dương,50,Hải Phòng,42,Hàn Quốc,5,Hậu Giang,4,Hậu Lộc,1,Hilbert,1,Hình Học,33,HKUST,7,Hòa Bình,13,Hoài Nhơn,1,Hoàng Bá Minh,1,Hoàng Minh Quân,1,Hodge,1,Hojoo Lee,2,HOMC,5,HongKong,8,HSG 10,101,HSG 11,91,HSG 12,586,HSG 9,425,HSG Cấp Trường,78,HSG Quốc Gia,106,HSG Quốc Tế,16,Hứa Lâm Phong,1,Hứa Thuần Phỏng,1,Hùng Vương,2,Hưng Yên,33,Hương Sơn,2,Huỳnh Kim Linh,1,Hy Lạp,1,IMC,26,IMO,56,IMT,1,India,45,Inequality,13,InMC,1,International,315,Iran,11,Jakob,1,JBMO,41,Jewish,1,Journal,20,Junior,38,K2pi,1,Kazakhstan,1,Khánh Hòa,17,KHTN,54,Kiên Giang,64,Kim Liên,1,Kon Tum,18,Korea,5,Kvant,2,Kỷ Yếu,42,Lai Châu,4,Lâm Đồng,34,Lạng Sơn,21,Langlands,1,Lào Cai,17,Lê Hải Châu,1,Lê Hải Khôi,1,Lê Hoành Phò,4,Lê Khánh Sỹ,3,Lê Minh Cường,1,Lê Phúc Lữ,1,Lê Phương,1,Lê Quý Đôn,1,Lê Viết Hải,1,Lê Việt Hưng,1,Leibniz,1,Long An,42,Lớp 10,10,Lớp 10 Chuyên,455,Lớp 10 Không Chuyên,229,Lớp 11,1,Lục Ngạn,1,Lượng giác,1,Lương Tài,1,Lưu Giang Nam,2,Lý Thánh Tông,1,Macedonian,1,Malaysia,1,Margulis,2,Mark Levi,1,Mathematical Excalibur,1,Mathematical Reflections,1,Mathematics Magazine,1,Mathematics Today,1,Mathley,1,MathLinks,1,MathProblems Journal,1,Mathscope,8,MathsVN,5,MathVN,1,MEMO,11,Metropolises,4,Mexico,1,MIC,1,Michael Guillen,1,Mochizuki,1,Moldova,1,Moscow,1,Mỹ,10,MYM,227,MYTS,4,Nam Định,33,Nam Phi,1,Nam Trung Bộ,1,National,249,Nesbitt,1,Newton,4,Nghệ An,52,Ngô Bảo Châu,2,Ngô Việt Hải,1,Ngọc Huyền,2,Nguyễn Anh Tuyến,1,Nguyễn Bá Đang,1,Nguyễn Đình Thi,1,Nguyễn Đức Tấn,1,Nguyễn Đức Thắng,1,Nguyễn Duy Khương,1,Nguyễn Duy Tùng,1,Nguyễn Hữu Điển,3,Nguyễn Mình Hà,1,Nguyễn Minh Tuấn,8,Nguyễn Phan Tài Vương,1,Nguyễn Phú Khánh,1,Nguyễn Phúc Tăng,1,Nguyễn Quản Bá Hồng,1,Nguyễn Quang Sơn,1,Nguyễn Tài Chung,5,Nguyễn Tăng Vũ,1,Nguyễn Tất Thu,1,Nguyễn Thúc Vũ Hoàng,1,Nguyễn Trung Tuấn,8,Nguyễn Tuấn Anh,2,Nguyễn Văn Huyện,3,Nguyễn Văn Mậu,25,Nguyễn Văn Nho,1,Nguyễn Văn Quý,2,Nguyễn Văn Thông,1,Nguyễn Việt Anh,1,Nguyễn Vũ Lương,2,Nhật Bản,4,Nhóm $\LaTeX$,4,Nhóm Toán,1,Ninh Bình,43,Ninh Thuận,15,Nội Suy Lagrange,2,Nội Suy Newton,1,Nordic,19,Olympiad Corner,1,Olympiad Preliminary,2,Olympic 10,99,Olympic 10/3,5,Olympic 11,92,Olympic 12,30,Olympic 24/3,7,Olympic 27/4,20,Olympic 30/4,69,Olympic KHTN,6,Olympic Sinh Viên,73,Olympic Tháng 4,12,Olympic Toán,304,Olympic Toán Sơ Cấp,3,PAMO,1,Phạm Đình Đồng,1,Phạm Đức Tài,1,Phạm Huy Hoàng,1,Pham Kim Hung,3,Phạm Quốc Sang,2,Phan Huy Khải,1,Phan Thành Nam,1,Pháp,2,Philippines,8,Phú Thọ,30,Phú Yên,29,Phùng Hồ Hải,1,Phương Trình Hàm,11,Phương Trình Pythagoras,1,Pi,1,Polish,32,Problems,1,PT-HPT,14,PTNK,45,Putnam,25,Quảng Bình,44,Quảng Nam,32,Quảng Ngãi,34,Quảng Ninh,43,Quảng Trị,27,Quỹ Tích,1,Riemann,1,RMM,12,RMO,24,Romania,36,Romanian Mathematical,1,Russia,1,Sách Thường Thức Toán,7,Sách Toán,69,Sách Toán Cao Học,1,Sách Toán THCS,7,Saudi Arabia,7,Scholze,1,Serbia,17,Sharygin,24,Shortlists,56,Simon Singh,1,Singapore,1,Số Học - Tổ Hợp,27,Sóc Trăng,28,Sơn La,12,Spain,8,Star Education,5,Stars of Mathematics,11,Swinnerton-Dyer,1,Talent Search,1,Tăng Hải Tuân,2,Tạp Chí,14,Tập San,6,Tây Ban Nha,1,Tây Ninh,29,Thạch Hà,1,Thái Bình,39,Thái Nguyên,49,Thái Vân,2,Thanh Hóa,62,THCS,2,Thổ Nhĩ Kỳ,5,Thomas J. Mildorf,1,THPT Chuyên Lê Quý Đôn,1,THPTQG,15,THTT,7,Thừa Thiên Huế,36,Tiền Giang,19,Tin Tức Toán Học,1,Titu Andreescu,2,Toán 12,7,Toán Cao Cấp,3,Toán Chuyên,2,Toán Rời Rạc,5,Toán Tuổi Thơ,3,Tôn Ngọc Minh Quân,2,TOT,1,TPHCM,126,Trà Vinh,6,Trắc Nghiệm,1,Trắc Nghiệm Toán,2,Trại Hè,34,Trại Hè Hùng Vương,25,Trại Hè Phương Nam,5,Trần Đăng Phúc,1,Trần Minh Hiền,2,Trần Nam Dũng,9,Trần Phương,1,Trần Quang Hùng,1,Trần Quốc Anh,2,Trần Quốc Luật,1,Trần Quốc Nghĩa,1,Trần Tiến Tự,1,Trịnh Đào Chiến,2,Trung Quốc,14,Trường Đông,19,Trường Hè,7,Trường Thu,1,Trường Xuân,2,TST,56,Tuyên Quang,6,Tuyển Sinh,3,Tuyển Sinh 10,680,Tuyển Tập,44,Tuymaada,4,Undergraduate,67,USA,44,USAJMO,10,USATST,7,Uzbekistan,1,Vasile Cîrtoaje,4,Vật Lý,1,Viện Toán Học,2,Vietnam,4,Viktor Prasolov,1,VIMF,1,Vinh,27,Vĩnh Long,21,Vĩnh Phúc,64,Virginia Tech,1,VLTT,1,VMEO,4,VMF,12,VMO,47,VNTST,22,Võ Anh Khoa,1,Võ Quốc Bá Cẩn,26,Võ Thành Văn,1,Vojtěch Jarník,6,Vũ Hữu Bình,7,Vương Trung Dũng,1,WFNMC Journal,1,Wiles,1,Yên Bái,18,Yên Định,1,Yên Thành,1,Zhautykov,11,Zhou Yuan Zhe,1,
ltr
item
MOlympiad: [Đáp Án] Đề Thi Chọn Học Sinh Giỏi Quốc Gia THPT 2018-2019
[Đáp Án] Đề Thi Chọn Học Sinh Giỏi Quốc Gia THPT 2018-2019
MOlympiad
https://www.molympiad.net/2019/01/de-thi-chon-hoc-sinh-gioi-quoc-gia-thpt-2018-2019.html
https://www.molympiad.net/
https://www.molympiad.net/
https://www.molympiad.net/2019/01/de-thi-chon-hoc-sinh-gioi-quoc-gia-thpt-2018-2019.html
true
2506595080985176441
UTF-8
Loaded All Posts Not found any posts VIEW ALL Readmore Reply Cancel reply Delete By Home PAGES POSTS View All RECOMMENDED FOR YOU LABEL ARCHIVE SEARCH ALL POSTS Not found any post match with your request Back Home Sunday Monday Tuesday Wednesday Thursday Friday Saturday Sun Mon Tue Wed Thu Fri Sat January February March April May June July August September October November December Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec just now 1 minute ago $$1$$ minutes ago 1 hour ago $$1$$ hours ago Yesterday $$1$$ days ago $$1$$ weeks ago more than 5 weeks ago Followers Follow THIS PREMIUM CONTENT IS LOCKED Please share to unlock Copy All Code Select All Code All codes were copied to your clipboard Can not copy the codes / texts, please press [CTRL]+[C] (or CMD+C with Mac) to copy