$hide=mobile

[Solutions] Baltic Way Mathematical Competition 2018

  1. A finite collection of positive real numbers (not necessarily distinct) is balanced if each number is less than the sum of the others. Find all $m \ge 3$ such that every balanced finite collection of $m$ numbers can be split into three parts with the property that the sum of the numbers in each part is less than the sum of the numbers in the two other parts. 
  2. A $100 \times 100$ table is given. For each $k, 1 \le k \le 100$, the $k$-th row of the table contains the numbers $1,2,\dotsc,k$ in increasing order (from left to right) but not necessarily in consecutive cells; the remaining $100-k$ cells are filled with zeroes. Prove that there exist two columns such that the sum of the numbers in one of the columns is at least $19$ times as large as the sum of the numbers in the other column. 
  3. Let $a,b,c,d$ be positive real numbers such that $abcd=1$. Prove the inequality \[\frac{1}{\sqrt{a+2b+3c+10}}+\frac{1}{\sqrt{b+2c+3d+10}}+\frac{1}{\sqrt{c+2d+3a+10}}+\frac{1}{\sqrt{d+2a+3b+10}} \le 1.\]
  4. Find all functions $f:[0, \infty) \to [0,\infty)$, such that for any positive integer $n$ and and for any non-negative real numbers $x_1,x_2,\dotsc,x_n$ \[f(x_1^2+\dotsc+x_n^2)=f(x_1)^2+\dots+f(x_n)^2.\]
  5. A polynomial $f(x)$ with real coefficients is called generating, if for each polynomial $\varphi(x)$ with real coefficients there exists a positive integer $k$ and polynomials $g_1(x),\dotsc,g_k(x)$ with real coefficients such that \[\varphi(x)=f(g_1(x))+\dotsc+f(g_k(x)).\]Find all generating polynomials. 
  6. Let $n$ be a positive integer. Elfie the Elf travels in $\mathbb{R}^3$. She starts at the origin: $(0,0,0)$. In each turn she can teleport to any point with integer coordinates which lies at distance exactly $\sqrt{n}$ from her current location. However, teleportation is a complicated procedure: Elfie starts off normal but she turns strange with her first teleportation. Next time she teleports she turns normal again, then strange again... etc. For which $n$ can Elfie travel to any point with integer coordinates and be normal when she gets there? 
  7. On a $16 \times 16$ torus as shown all $512$ edges are colored red or blue. A coloring is good if every vertex is an endpoint of an even number of red edges. A move consists of switching the color of each of the $4$ edges of an arbitrary cell. What is the largest number of good colorings so that none of them can be converted to another by a sequence of moves? 
  8. A graph has $N$ vertices. An invisible hare sits in one of the vertices. A group of hunters tries to kill the hare. In each move all of them shoot simultaneously: each hunter shoots at a single vertex, they choose the target vertices cooperatively. If the hare was in one of the target vertices during a shoot, the hunt is finished. Otherwise the hare can stay in its vertex or jump to one of the neighboring vertices. The hunters know an algorithm that allows them to kill the hare in at most $N!$ moves. Prove that then there exists an algorithm that allows them to kill the hare in at most $2^N$ moves. 
  9. Olga and Sasha play a game on an infinite hexagonal grid. They take turns in placing a stone on a free hexagon of their choice. Olga starts the game. Just before the $2018$th stone is placed, a new rule comes into play. A stone may now be placed only on those free hexagons having at least two occupied neighbors. A player loses when she or he either is unable to make a move, or makes a move such that a pattern of the rhomboid shape as shown (rotated in any possible way) appears. Determine which player, if any, possesses a winning strategy. 
  10. The integers from $1$ to $n$ are written, one on each of $n$ cards. The first player removes one card. Then the second player removes two cards with consecutive integers. After that the first player removes three cards with consecutive integers. Finally, the second player removes four cards with consecutive integers. What is the smallest value of $n$ for which the second player can ensure that he competes both his moves? 
  11. The points $A$, $B$, $C$, $D$ lie, in this order, on a circle $\omega$, where $AD$ is a diameter of $\omega$. Furthermore, $AB=BC=a$ and $CD=c$ for some relatively prime integers $a$ and $c$. Show that if the diameter $d$ of $\omega$ is also an integer, then either $d$ or $2d$ is a perfect square. 
  12. The altitudes $BB_1$ and $CC_1$ of an acute triangle $ABC$ intersect in point $H$. Let $B_2$ and $C_2$ be points on the segments $BH$ and $CH$, respectively, such that $BB_2=B_1H$ and $CC_2=C_1H$. The circumcircle of the triangle $B_2HC_2$ intersects the circumcircle of the triangle $ABC$ in points $D$ and $E$. Prove that the triangle $DEH$ is right-angled. 
  13. The bisector of the angle $A$ of a triangle $ABC$ intersects $BC$ in a point $D$ and intersects the circumcircle of the triangle $ABC$ in a point $E$. Let $K,L,M$ and $N$ be the midpoints of the segments $AB,BD,CD$ and $AC$, respectively. Let $P$ be the circumcenter of the triangle $EKL$, and $Q$ be the circumcenter of the triangle $EMN$. Prove that $\angle PEQ=\angle BAC$. 
  14. A quadrilateral $ABCD$ is circumscribed about a circle $\omega$. The intersection point of $\omega$ and the diagonal $AC$, closest to $A$, is $E$. The point $F$ is diametrally opposite to the point $E$ on the circle $\omega$. The tangent to $\omega$ at the point $F$ intersects lines $AB$ and $BC$ in points $A_1$ and $C_1$, and lines $AD$ and $CD$ in points $A_2$ and $C_2$, respectively. Prove that $A_1C_1=A_2C_2$. 
  15. Two circles in the plane do not intersect and do not lie inside each other. We choose diameters $A_1B_1$ and $A_2B_2$ of these circles such that the segments $A_1A_2$ and $B_1B_2'$ intersect. Let $A$ and $B$ be the midpoints of the segments $A_1A_2$ and $B_1B_2$, and $C$ be the intersection point of these segments. Prove that the orthocenter of the triangle $ABC$ belongs to a fixed line that does not depend on the choice of diameters. 
  16. Let $p$ be an odd prime. Find all positive integers $n$ for which $\sqrt{n^2-np}$ is a positive integer. 
  17. Prove that for any positive integers $p,q$ such that $\sqrt{11}>\frac{p}{q}$, the following inequality holds \[\sqrt{11}-\frac{p}{q}>\frac{1}{2pq}.\]
  18. Let $n \ge 3$ be an integer such that $4n+1$ is a prime number. Prove that $4n+1$ divides $n^{2n}-1$. 
  19. An infinite set $B$ consisting of positive integers has the following property. For each $a,b \in B$ with $a>b$ the number $\frac{a-b}{(a,b)}$ belongs to $B$. Prove that $B$ contains all positive integers. Here, $(a,b)$ is the greatest common divisor of numbers $a$ and $b$. 
  20. Find all the triples of positive integers $(a,b,c)$ for which the number \[\frac{(a+b)^4}{c}+\frac{(b+c)^4}{a}+\frac{(c+a)^4}{b}\]is an integer and $a+b+c$ is a prime.

Post a Comment


$hide=home

$type=three$count=6$sr=random$t=oot$h=1$l=0$meta=hide$rm=hide$sn=0

$hide=post$type=three$count=6$sr=random$t=oot$h=1$l=0$meta=hide$rm=hide$sn=0

$hide=home

Kỷ Yếu$cl=violet$type=three$count=6$sr=random$t=oot$h=1$l=0$meta=hide$rm=hide$sn=0

Journals$cl=green$type=three$count=6$sr=random$t=oot$h=1$l=0$meta=hide$rm=hide$sn=0

Name

Ả-rập Xê-út,1,Abel,5,Albania,2,AMM,2,Amsterdam,5,Ấn Độ,1,An Giang,21,Andrew Wiles,1,Anh,2,Áo,1,APMO,19,Ba Đình,2,Ba Lan,1,Bà Rịa Vũng Tàu,51,Bắc Giang,49,Bắc Kạn,1,Bạc Liêu,9,Bắc Ninh,46,Bắc Trung Bộ,7,Bài Toán Hay,5,Balkan,37,Baltic Way,30,BAMO,1,Bất Đẳng Thức,66,Bến Tre,45,Benelux,13,Bình Định,43,Bình Dương,21,Bình Phước,38,Bình Thuận,34,Birch,1,Booklet,11,Bosnia Herzegovina,3,BoxMath,3,Brazil,2,Bùi Đắc Hiên,1,Bùi Thị Thiện Mỹ,1,Bùi Văn Tuyên,1,Bùi Xuân Diệu,1,Bulgaria,5,Buôn Ma Thuột,1,BxMO,12,Cà Mau,13,Cần Thơ,14,Canada,39,Cao Bằng,6,Cao Quang Minh,1,Câu Chuyện Toán Học,36,Caucasus,2,CGMO,10,China,10,Chọn Đội Tuyển,347,Chu Tuấn Anh,1,Chuyên Đề,124,Chuyên Sư Phạm,31,Chuyên Trần Hưng Đạo,3,Collection,8,College Mathematic,1,Concours,1,Cono Sur,1,Contest,610,Correspondence,1,Cosmin Poahata,1,Crux,2,Czech-Polish-Slovak,25,Đà Nẵng,38,Đa Thức,2,Đại Số,20,Đắk Lắk,54,Đắk Nông,7,Đan Phượng,1,Danube,7,Đào Thái Hiệp,1,ĐBSCL,2,Đề Thi HSG,1627,Đề Thi JMO,1,Điện Biên,8,Định Lý,1,Định Lý Beaty,1,Đỗ Hữu Đức Thịnh,1,Do Thái,3,Doãn Quang Tiến,4,Đoàn Quỳnh,1,Đoàn Văn Trung,1,Đống Đa,4,Đồng Nai,48,Đồng Tháp,51,Du Hiền Vinh,1,Đức,1,Duyên Hải Bắc Bộ,25,E-Book,33,EGMO,16,ELMO,19,EMC,8,Epsilon,1,Estonian,5,Euler,1,Evan Chen,1,Fermat,3,Finland,4,Forum Of Geometry,2,Furstenberg,1,G. Polya,3,Gặp Gỡ Toán Học,26,Gauss,1,GDTX,3,Geometry,12,Gia Lai,25,Gia Viễn,2,Giải Tích Hàm,1,Giảng Võ,1,Giới hạn,2,Goldbach,1,Hà Giang,2,Hà Lan,1,Hà Nam,28,Hà Nội,231,Hà Tĩnh,72,Hà Trung Kiên,1,Hải Dương,49,Hải Phòng,42,Hàn Quốc,5,Hậu Giang,4,Hậu Lộc,1,Hilbert,1,Hình Học,33,HKUST,7,Hòa Bình,13,Hoài Nhơn,1,Hoàng Bá Minh,1,Hoàng Minh Quân,1,Hodge,1,Hojoo Lee,2,HOMC,5,HongKong,8,HSG 10,100,HSG 11,84,HSG 12,575,HSG 9,398,HSG Cấp Trường,78,HSG Quốc Gia,98,HSG Quốc Tế,16,Hứa Lâm Phong,1,Hứa Thuần Phỏng,1,Hùng Vương,2,Hưng Yên,30,Hương Sơn,2,Huỳnh Kim Linh,1,Hy Lạp,1,IMC,25,IMO,54,India,45,Inequality,13,InMC,1,International,307,Iran,11,Jakob,1,JBMO,41,Jewish,1,Journal,20,Junior,38,K2pi,1,Kazakhstan,1,Khánh Hòa,16,KHTN,53,Kiên Giang,63,Kim Liên,1,Kon Tum,18,Korea,5,Kvant,2,Kỷ Yếu,42,Lai Châu,4,Lâm Đồng,33,Lạng Sơn,21,Langlands,1,Lào Cai,15,Lê Hải Châu,1,Lê Hải Khôi,1,Lê Hoành Phò,4,Lê Khánh Sỹ,3,Lê Minh Cường,1,Lê Phúc Lữ,1,Lê Phương,1,Lê Quý Đôn,1,Lê Viết Hải,1,Lê Việt Hưng,1,Leibniz,1,Long An,42,Lớp 10,10,Lớp 10 Chuyên,452,Lớp 10 Không Chuyên,229,Lớp 11,1,Lục Ngạn,1,Lượng giác,1,Lương Tài,1,Lưu Giang Nam,2,Lý Thánh Tông,1,Macedonian,1,Malaysia,1,Margulis,2,Mark Levi,1,Mathematical Excalibur,1,Mathematical Reflections,1,Mathematics Magazine,1,Mathematics Today,1,Mathley,1,MathLinks,1,MathProblems Journal,1,Mathscope,8,MathsVN,5,MathVN,1,MEMO,10,Metropolises,4,Mexico,1,MIC,1,Michael Guillen,1,Mochizuki,1,Moldova,1,Moscow,1,Mỹ,9,MYTS,4,Nam Định,32,Nam Phi,1,Nam Trung Bộ,1,National,249,Nesbitt,1,Newton,4,Nghệ An,50,Ngô Bảo Châu,2,Ngô Việt Hải,1,Ngọc Huyền,2,Nguyễn Anh Tuyến,1,Nguyễn Bá Đang,1,Nguyễn Đình Thi,1,Nguyễn Đức Tấn,1,Nguyễn Đức Thắng,1,Nguyễn Duy Khương,1,Nguyễn Duy Tùng,1,Nguyễn Hữu Điển,3,Nguyễn Mình Hà,1,Nguyễn Minh Tuấn,8,Nguyễn Phan Tài Vương,1,Nguyễn Phú Khánh,1,Nguyễn Phúc Tăng,1,Nguyễn Quản Bá Hồng,1,Nguyễn Quang Sơn,1,Nguyễn Tài Chung,5,Nguyễn Tăng Vũ,1,Nguyễn Tất Thu,1,Nguyễn Thúc Vũ Hoàng,1,Nguyễn Trung Tuấn,8,Nguyễn Tuấn Anh,2,Nguyễn Văn Huyện,3,Nguyễn Văn Mậu,25,Nguyễn Văn Nho,1,Nguyễn Văn Quý,2,Nguyễn Văn Thông,1,Nguyễn Việt Anh,1,Nguyễn Vũ Lương,2,Nhật Bản,3,Nhóm $\LaTeX$,4,Nhóm Toán,1,Ninh Bình,41,Ninh Thuận,15,Nội Suy Lagrange,2,Nội Suy Newton,1,Nordic,19,Olympiad Corner,1,Olympiad Preliminary,2,Olympic 10,96,Olympic 10/3,5,Olympic 11,88,Olympic 12,30,Olympic 24/3,6,Olympic 27/4,19,Olympic 30/4,64,Olympic KHTN,6,Olympic Sinh Viên,73,Olympic Tháng 4,10,Olympic Toán,297,Olympic Toán Sơ Cấp,3,PAMO,1,Phạm Đình Đồng,1,Phạm Đức Tài,1,Phạm Huy Hoàng,1,Pham Kim Hung,3,Phạm Quốc Sang,2,Phan Huy Khải,1,Phan Thành Nam,1,Pháp,2,Philippines,8,Phú Thọ,30,Phú Yên,26,Phùng Hồ Hải,1,Phương Trình Hàm,11,Phương Trình Pythagoras,1,Pi,1,Polish,32,Problems,1,PT-HPT,14,PTNK,44,Putnam,25,Quảng Bình,44,Quảng Nam,31,Quảng Ngãi,33,Quảng Ninh,43,Quảng Trị,26,Quỹ Tích,1,Riemann,1,RMM,12,RMO,24,Romania,36,Romanian Mathematical,1,Russia,1,Sách Thường Thức Toán,7,Sách Toán,69,Sách Toán Cao Học,1,Sách Toán THCS,7,Saudi Arabia,7,Scholze,1,Serbia,17,Sharygin,24,Shortlists,56,Simon Singh,1,Singapore,1,Số Học - Tổ Hợp,27,Sóc Trăng,28,Sơn La,11,Spain,8,Star Education,5,Stars of Mathematics,11,Swinnerton-Dyer,1,Talent Search,1,Tăng Hải Tuân,2,Tạp Chí,14,Tập San,6,Tây Ban Nha,1,Tây Ninh,29,Thạch Hà,1,Thái Bình,39,Thái Nguyên,49,Thái Vân,2,Thanh Hóa,57,THCS,2,Thổ Nhĩ Kỳ,5,Thomas J. Mildorf,1,THPT Chuyên Lê Quý Đôn,1,THPTQG,15,THTT,6,Thừa Thiên Huế,34,Tiền Giang,19,Tin Tức Toán Học,1,Titu Andreescu,2,Toán 12,7,Toán Cao Cấp,3,Toán Chuyên,2,Toán Rời Rạc,5,Toán Tuổi Thơ,3,Tôn Ngọc Minh Quân,2,TOT,1,TPHCM,123,Trà Vinh,5,Trắc Nghiệm,1,Trắc Nghiệm Toán,2,Trại Hè,34,Trại Hè Hùng Vương,25,Trại Hè Phương Nam,5,Trần Đăng Phúc,1,Trần Minh Hiền,2,Trần Nam Dũng,9,Trần Phương,1,Trần Quang Hùng,1,Trần Quốc Anh,2,Trần Quốc Luật,1,Trần Quốc Nghĩa,1,Trần Tiến Tự,1,Trịnh Đào Chiến,2,Trung Quốc,12,Trường Đông,19,Trường Hè,7,Trường Thu,1,Trường Xuân,2,TST,55,Tuyên Quang,6,Tuyển Sinh,3,Tuyển Tập,44,Tuymaada,4,Undergraduate,66,USA,44,USAJMO,10,USATST,7,Uzbekistan,1,Vasile Cîrtoaje,4,Vật Lý,1,Viện Toán Học,2,Vietnam,4,Viktor Prasolov,1,VIMF,1,Vinh,27,Vĩnh Long,19,Vĩnh Phúc,63,Virginia Tech,1,VLTT,1,VMEO,4,VMF,12,VMO,46,VNTST,21,Võ Anh Khoa,1,Võ Quốc Bá Cẩn,26,Võ Thành Văn,1,Vojtěch Jarník,6,Vũ Hữu Bình,7,Vương Trung Dũng,1,WFNMC Journal,1,Wiles,1,Yên Bái,17,Yên Định,1,Yên Thành,1,Zhautykov,11,Zhou Yuan Zhe,1,
ltr
item
MOlympiad: [Solutions] Baltic Way Mathematical Competition 2018
[Solutions] Baltic Way Mathematical Competition 2018
MOlympiad
https://www.molympiad.net/2018/12/baltic-way-mathematical-olympiad-2018.html
https://www.molympiad.net/
https://www.molympiad.net/
https://www.molympiad.net/2018/12/baltic-way-mathematical-olympiad-2018.html
true
2506595080985176441
UTF-8
Loaded All Posts Not found any posts VIEW ALL Readmore Reply Cancel reply Delete By Home PAGES POSTS View All RECOMMENDED FOR YOU LABEL ARCHIVE SEARCH ALL POSTS Not found any post match with your request Back Home Sunday Monday Tuesday Wednesday Thursday Friday Saturday Sun Mon Tue Wed Thu Fri Sat January February March April May June July August September October November December Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec just now 1 minute ago $$1$$ minutes ago 1 hour ago $$1$$ hours ago Yesterday $$1$$ days ago $$1$$ weeks ago more than 5 weeks ago Followers Follow THIS PREMIUM CONTENT IS LOCKED Please share to unlock Copy All Code Select All Code All codes were copied to your clipboard Can not copy the codes / texts, please press [CTRL]+[C] (or CMD+C with Mac) to copy