- Let $ABC$ be a triangle. Let $D, E, F$ be points respectively on the segments $BC, CA, AB$ such that $AD, BE, CF$ concur at the point $K$. Suppose $\frac{BD}{DC} = \frac {BF}{FA}$ and $\angle ADB = \angle AFC$. Prove that $\angle ABE = \angle CAD$.
- Let $(a_1,a_2,a_3,...,a_{2011})$ be a permutation of the numbers $1,2,3,...,2011$. Show that there exist two numbers $j,k$ such that $1\leq{j}<k\leq2011$ and $|a_j-j|=|a_k-k|$
- A natural number $n$ is chosen strictly between two consecutive perfect squares. The smaller of these two squares is obtained by subtracting $k$ from $n$ and the larger by adding $l$ to $n.$ Prove that $n-kl$ is a perfect square.
- Consider a $20$-sided convex polygon $K$, with vertices $A_1, A_2,...,A_{20}$ in that order. Find the number of ways in which three sides of $K$ can be chosen so that every pair among them has at least two sides of $K$ between them. (For example $(A_1A_2, A_4A_5, A_{11}A_{12})$ is an admissible triple while $(A_1A_2, A_4A_5, A_{19}A_{20})$ is not.)
- Let $ABC$ be a triangle and let $BB_1,CC_1$ be respectively the bisectors of $\angle{B}$, $\angle{C}$ with $B_1$ on $AC$ and $C_1$ on $AB$, Let $E,F$ be the feet of perpendiculars drawn from $A$ onto $BB_1$, $CC_1$ respectively. Suppose $D$ is the point at which the incircle of $ABC$ touches $AB$. Prove that $AD=EF$
- Find all pairs $(x,y)$ of real numbers such that \[16^{x^{2}+y} + 16^{x+y^{2}} = 1\]
- Let $ABC$ be an acute angled scalene triangle with circumcentre $O$ and orthocentre $H.$ If $M$ is the midpoint of $BC,$ then show that $AO$ and $HM$ intersect on the circumcircle of $ABC.$
- Let $n$ be a positive integer such that $2n+1$ and $3n+1$ are both perfect squares. Show that $5n+3$ is a composite number.
- Let $a,b,c>0.$ If $\frac 1a,\frac 1b,\frac 1c$ are in arithmetic progression, and if $a^2+b^2$, $b^2+c^2$, $c^2+a^2$ are in geometric progression, show that $a=b=c.$
- Find the number of 4-digit numbers with distinct digits chosen from the set $\{0,1,2,3,4,5\}$ in which no two adjacent digits are even.
- Let $ABCD$ be a convex quadrilateral. Let $E,F,G,H$ be the midpoints of $AB,BC,CD,DA$ respectively. If $AC,BD,EG,FH$ concur at a point $O,$ prove that $ABCD$ is a parallelogram.
- Find the largest real constant $\lambda$ such that \[\frac{\lambda abc}{a+b+c}\leq (a+b)^2+(a+b+4c)^2\] for all positive real numbers $a,b,c.$
[Solutions] India Regional Mathematical Olympiad 2011
Contest
India - Ấn Độ
National
RMO
MOlympiad.NET là dự án thu thập và phát hành các đề thi tuyển sinh và học sinh giỏi toán. Quý bạn đọc muốn giúp chúng tôi chỉnh sửa đề thi này, xin hãy để lại bình luận facebook (có thể đính kèm hình ảnh) hoặc google (có thể sử dụng $\LaTeX$) bên dưới. BBT rất mong bạn đọc ủng hộ UPLOAD đề thi và đáp án mới hoặc liên hệ Chúng tôi nhận tất cả các định dạng của tài liệu: $\TeX$, PDF, WORD, IMG,... | |