$hide=mobile$type=ticker$c=12$cols=3$l=0$sr=random$b=0

Dựng Hình Bằng Thước Kẻ Và Compa: Bài Toán Chia Ba Một Góc Và Các Bài Toán Cầu Phương Hình Tròn

Phép dựng hình bằng compa và thước kẻ là phép dựng các độ dài, góc, và các hình hình học khác bằng cách chỉ sử dụng một thước kẻ thẳng lý tưởng và compa. Ba bài toán dựng hình bằng thước kẻ và compa nổi tiếng nhất là
  1. Bài toán chia 1 góc thành 3 phần bằng nhau.
  2. Bài toán cầu phương hình tròn
  3. Bài toán gấp đôi hình lập phương
Trong bài viết này ta tìm hiểu về bài toán chia 1 góc bất kỳ thành 3 phần bằng nhau. Chia đôi một góc đã cho bằng cách chỉ sử dụng một cặp com-pa và một cạnh thẳng là một việc dễ dàng. Thế nhưng, chia ba góc-tức chia nó thành ba phần bằng nhau, trong nhiều trường hợp điều đó không thể nào làm được.

Chia đôi một góc

Nếu chúng ta có 2 đường thẳng cắt nhau tại điểm $O$ và chúng ta muốn chia đôi góc tạo bởi hai đường thẳng đó, dưới đây là cách làm việc đó.

Đặt chân com-pa tại $O$ và vẽ một đường tròn (bán kính tùy thích). Đó chính là cung tròn màu xanh dương trong hình vẽ.Đường tròn sẽ cắt hai đường thẳng tại hai điểm: gọi chúng là $A$ và $B$.

Bây giờ thì hãy đặt chân com-pa tại $A$ và vẽ một đường tròn, như trong hình vẽ. Không thay đổi bán kính của com-pa, di chuyển nó sang $B$ và vẽ một cung tròn khác. Đó là những cung màu đỏ trong hình vẽ. Nối giao điểm của hai cung tròn với $O$ bằng cạnh thẳng (đường thẳng màu xanh lá trong hình vẽ), và ta có góc $POB$ chính bằng $1/2$ góc $AOB$. Nếu hai cung tròn không cắt nhau, tất nhiên bạn cần phải vẽ hai đường tròn lớn hơn.

Bạn có thể chứng minh rằng thủ thuật này đúng bằng cách sử dụng các hình tam giác bằng nhau không? Những người Hy Lạp cổ đại chắc chắn biết cách làm việc này.

Chia ba một góc

Việc chia ba một góc thì sao? Tại sao nó lại khó? Có một số trường hợp tam giác đặc biệt có thể làm được, ví dụ như góc $\pi/2$ ($90$ độ). Đối với trường hợp tổng quát, người Hy Lạp vẫn không thể nghĩ ra được cách làm mặc nhiều đã mất rất nhiều công sức để giải quyết vấn đề này.


Chia ba một góc tùy ý có thể thực hiện được nếu như bạn "ăn gian" bằng cách sử dụng thước đo thay vì một cạnh thẳng đơn giản (bạn có thể tiềm hiểu cách làm trong trang hỏi đáp sci.math), hoặc ngay cả khi bạn chỉ cần vẽ hai điểm nhỏ trên cạnh thẳng của bạn. Tuy nhiên để "chơi đúng luật", bạn không được để bất kì dấu vết nào trên cạnh thẳng - nó phải hoàn toàn trống.
Vấn đề liệu việc chia góc làm ba phần bằng nhau có thể được thực hiện trong trường hợp tổng quát hay không vẫn là một bí ẩn toán học trong hàng thiên niên kỉ - vào năm $1837$ điều đó được chứng minh là không thể bởi Pierre Wantzel, một nhà toán học người Pháp và chuyên gia về số học. Đây là một thành tựu tuyệt vời đôi với một người đàn ông $23$ tuổi, người mà sau đó qua đời khi còn rất trẻ ở tuổi $33$.

Vậy tại sao lại không thể? Pierre cho thấy rằng hai vấn đề chia một góc làm ba phần bằng nhau và giải quyết một phương trình bậc ba là như nhau. Hơn nữa, ông cho thấy rằng chỉ có một số ít phương trình bậc ba có thể giải quyết được bằng phương pháp cạnh thẳng - com-pa, hầu hết đều không thể. Do đó ông đã suy luận rằng hầu hết các góc đều không thể chia làm ba được.

Tuy nhiên, việc chia ba một góc một cách gần đúng được mô tả bởi Steinhaus trong cuốn Mathematical Snapshots, 3rd ed. New York: Dover, $1999$. (trước đó nó được môt tả bởi Wazewski $1945$; và Peterson, G. "Approximation to an Angle Trisection." Two-Year Coll. Math. J. 14, 166-167, $1983$.).
 

Bí ẩn thật sự

Mặc dù thực tế rằng chứng minh của Wantzel có nghĩa bây giờ chúng ta biết rằng không thể chia ba một góc tổng quát, thế nhưng mọi người vẫn tiếp tục cố gắng. Viện Toán học trụ sở của tờ PASS Maths đã nhận được những lá thư khá nghiêm trọng từ các cá nhân những người nghĩ rằng họ đã giải mã được vấn đề, cung cấp cho những người nổi tiếng trong viện cơ hội để "mua" các "bằng chứng" (đôi khi bằng một số tiền lớn). Một bức thư thậm chí bỏ một vài trang bằng chứng trên cơ sở đảm bảo quyền tác giả của người viết.

Không cần phải nói, tất cả các cái gọi là bằng chứng trên chứa nhiều sai sót và vô giá trị. Nếu những người này muốn thuyết phục bất kì ai rằng có thể chia một góc làm ba phần bằng nhau thì thời gian đó tốt hơn họ dành để cố gắng tìm kiếm một lỗi sai trong chứng minh của Wantzel. Bí ẩn thực sự ở đây là tại sao mọi người lại tiếp tục cố gắng giải quyết vấn đề của một bằng chứng bất khả thi. Bạn trả lời điều đó thế nào?

Cầu phương hình tròn

Bài toán cầu phương hình tròn được phát biểu rằng
  • [message]
    • Chỉ dùng thước thẳng và compa, có thể dựng được một hình vuông có diện tích bằng diện tích một hình tròn cho trước hay không?
Đôi khi nó còn được gọi là bài toán biến tròn thành vuông (hóa viên vi phương).

Những cố gắng thời cổ đại

Người nghiên cứu bài toán này sớm nhất là nhà học giả Anaxagaras (khoảng $499$ – $427$ trước Công nguyên) người Hi Lạp cổ đại. Lúc đó tệ mê tín rất thịnh hành nhưng ông lại không tin vào thần thánh. Trong thần thoại Hi Lạp thì Apolo là vị thần Mặt Trời, nhưng Anaxagaras lại cho rằng Mặt Trời không phải là thần, mà chỉ là một quả cầu lửa. Do vậy, ông đã bị gán cho tội “bất kính thần thánh” và bị bắt giam.

Trong nhà ngục, một tayAnaxagaras cầm cây gỗ, một tay cầm đây, đo tới đo lui. Nhà ngục đã hạn chế hành động của ông nhưng không thể buộc ông ngừng suy nghĩ. Ông tìm cách vẽ được hình vuông mà diện tích của nó đúng bằng diện tích của một hình tròn cho trước. Tuy vậy, những gì ông đã nghiên cứu được thì ngày nay vẫn chưa ai biết được. Chỉ biết rằng, cho đến khi tạ thế, Anaxagaras vẫn không giải được bài toán cầu phương hình tròn.

Sau khi Anaxagaras không còn nữa, bài toán “biến tròn thành vuông” được lan truyền rộng rãi hơn và hấp dẫn nhiều nhà nghiên cứu, đến mức ở Hi Lạp cổ đại đã xuất hiện một chuyên đề với tên Hiến thân cho bài toán cầu phương hình tròn.
Hippocrâtes ở Chios đã thành công trong việc cầu phương một số những Mặt trăng đặc biệt hoặc những hình vẽ có dạng Mặt Trăng được giới hạn bởi hai cung tròn, có lẽ với hi vọng rằng việc nghiên cứu đó có thể dẫn đến cách cầu phương hình tròn. Hippocrates đã khẳng định phần được tô đậm (gọi là hình trăng khuyết) có diện tích bằng diện tích tam giác ABC.

Không chỉ có Anaxagaras bị thất bại, mà không biết bao nhiêu người trong suốt hơn 1000 năm sau đó cũng chưa giải được bài toán này, có cả Leonardo de Vinci người Italia.

Từ số pi đến tính không giải được...

Số π là một hằng số toán học có giá trị bằng tỷ số chu vi đường tròn chia cho đường kính của đường tròn đó. Từ xa xưa, người ta đã nhận thấy tỉ số này nhỉnh hơn 3 một chút và ngày nay, học sinh thường dùng trị số 3,1416. Người thợ mộc, thợ rừng xưa chỉ cần lấy một sợi dây, đánh vòng quanh thân cây hoặc một cái cột rồi chia làm 3 là có được trị số gần đúng của đường kính của cái cây hay cái cột. Thế nhưng, trị số đúng của số đó là bao nhiều?


Suốt hơn 2000 năm khoa học vẫn còn đang tính tiếp những con số lẻ của nó. Đó là vì trước hết số pi gồm một dãy số lẻ dài vô tận và không tuần hoàn. Một phân số như 1/3 cũng cho ta thấy một dãy số lẻ đến vô hạn nhưng tuần hoàn với một dẫy số 3 liên tiếp: 1/3= 0,(3). Phân số 1/7 cho ta thấy rõ nét hơn một chút chu kỳ tuần hoàn gồm 6 con số khác nhau: 1/7= 0, 142857 142857 142857.... Nhưng số Pi là một dãy số lẻ vô hạn và không tuần hoàn. Sau đây là trị số của pi với 25 số lẻ đầu tiên: pi = 3, 14159 26535 89793 23846 26344...

Người ta có thể hỏi, trên đây mới chỉ là một ít số lẻ của pi, làm sao có thể biết rằng ở chuỗi số lẻ tiếp theo lại không thể đến một lúc nào đó sẽ gặp một chu kỳ tuần hoàn? Năm 1776, nhà toán học Pháp Jean Henri Lambert (1728- 1777) đã chứng minh rằng Pi là một số vô tỉ, nghĩa là π sẽ gồm một chuỗi số lẻ thập phân vô hạn và không tuần hoàn.

Mặc dù vậy, người ta vẫn muốn nhìn tận mắt thấy dãy số lẻ đó như thế nào. Năm 1874, nhà toán học Anh William Shanks đã tính được π với 707 số lẻ. Đó là một kỷ lục thời đó, đến nay vẫn chưa ai phá nổi với cách tính bằng tay, không nhờ sự trợ giúp nào của máy tính. Và 707 số lẻ này, người ta không thấy một sự tuần hoàn nào và các con số xuất hiện một cách ngẫu nhiên, không theo một quy tắc nào. Con số π với dãy sỗ lẻ đó đã được trưng bày thành bốn vòng số ở lâu đài Phát minh ở Paris (Pháp). Còn ngày nay, máy tính đã cho phép tính tới 51 tỷ số lẻ của pi.

Như vậy, ta sẽ không thể tìm một trị số chính xác cho diện tích vòng tròn là πr^2, từ đó không thể tính được cạnh hình vuông có diện tích bằng đúng diện tích hình tròn đã cho. Nhưng với một thủ thuật khéo léo (bằng thước và compa), liệu có thể làm được điều đó không?. Năm 1882, nhà toán học Ferdinand Lindemann ($1852-1919$) đã chứng minh $\pi$ cũng như số $e$ $(~ 2,718...)$ là một số siêu việt, tức là số không thể là nghiệm của một phương trình đại số với hệ số nguyên nào cả. Và điều đó đồng nghĩa với việc không thể dựng được hình vuông trong bài toán cầu phương hình tròn.

... và các bài toán dạng cầu phương mở rộng

Người Hi Lạp cổ đại cũng xét một bài toán tương tự là dùng thước kẻ và compa chia một đa giác cho trước ra thành các phần rời nhau sao cho có thể ghép các phần này lại thành một hình vuông. Tuy nhiên bài toán này cũng không thể giải được với mọi đa giác, thí dụ như một đa giác đều bảy cạnh. Nếu ta bỏ điều kiện dùng thước kẻ và compa thì sao? Điều này có nghĩa là ta có thể dùng mọi công cụ toán học để xác định các phần cần chia. Với giả thiết này, năm $1807$ Wallace đã chứng minh được rằng có thể chia mọi đa giác này thành hình vuông. Kết quả này ngày nay được gọi là định lí Wallace-Bolyai-Gerwien.
Xuất phát từ kết quả trên năm 1925 Tarski đã phát biểu lại bài toán cầu phương hình tròn như sau
  • [message]
    • Hãy chia môt hình tròn cho trước thành các tập hợp điểm khác nhau sao cho có thể ghép các tập hợp điểm này thành một hình vuông mà vẫn giữ nguyên khoảng cách giữa các điểm của mỗi tập hợp.
Các tập hợp điểm ở đây không nhất thiết là phải hữu hạn và liên thông với nhau. Giả thiết mới của bài toán yếu hơn rất nhiều so với việc chia hình bằng thước và compa hay dùng kéo một cách đơn thuần, tuy rằng nó đã vượt ra ngoài phạm vi toán học phổ thông. Lúc đầu ai cũng nghĩ bài toán này đơn giản thôi. Nhưng cũng phải hơn $60$ năm sau ($1989$) nhà toán học Hungari Laczcovich mới tìm được lời giải qua việc sử dụng nhiều kết quả của nhiều lĩnh vực khác nhau như: lí thuyết tập hợp, lí thuyết đồ thị, lí thuyết độ đo và số học.

Vẫn còn tồn tại nhiều vấn đề lạ lùng liên quan đến việc cầu phương hình tròn chưa được giải quyết. Thí dụ như hình vuông cầu phương hình tròn theo kiểu Tarski có cùng diện tích của hình tròn không? Vấn đề là ở chỗ một tập hợp điểm có thể không có diện tích nhưng khi ghép nhiều tập hợp điểm như vậy với nhau có thể cho ta một tập hợp mới có diện tích. Do đó phép chia và ghép các tập hợp không nhất thiết giữ nguyên diện tích. Một vấn đề khác cũng chưa giải quyết được là liệu có thể chia một tập hợp mở trong mặt phẳng ra thành các tập hợp con khác sao cho có thể ghép chúng lại thành một đường thẳng. Toán học thật kì diệu.

$hide=mobile$type=ticker$c=36$cols=2$l=0$sr=random$b=0

$hide=mobile

Name

Abel,5,Albania,2,AMM,2,Amsterdam,5,An Giang,40,Andrew Wiles,1,Anh,2,APMO,21,Austria (Áo),1,Ba Đình,2,Ba Lan,1,Bà Rịa Vũng Tàu,72,Bắc Bộ,2,Bắc Giang,59,Bắc Kạn,3,Bạc Liêu,15,Bắc Ninh,58,Bắc Trung Bộ,3,Bài Toán Hay,5,Balkan,40,Baltic Way,32,BAMO,1,Bất Đẳng Thức,69,Bến Tre,69,Benelux,15,Bình Định,62,Bình Dương,36,Bình Phước,48,Bình Thuận,42,Birch,1,BMO,40,Booklet,12,Bosnia Herzegovina,3,BoxMath,3,Brazil,2,British,16,Bùi Đắc Hiên,1,Bùi Thị Thiện Mỹ,1,Bùi Văn Tuyên,1,Bùi Xuân Diệu,1,Bulgaria,6,Buôn Ma Thuột,2,BxMO,14,Cà Mau,21,Cần Thơ,25,Canada,40,Cao Bằng,11,Cao Quang Minh,1,Câu Chuyện Toán Học,43,Caucasus,3,CGMO,11,China - Trung Quốc,25,Chọn Đội Tuyển,491,Chu Tuấn Anh,1,Chuyên Đề,125,Chuyên SPHCM,7,Chuyên SPHN,26,Chuyên Trần Hưng Đạo,3,Collection,8,College Mathematic,1,Concours,1,Cono Sur,1,Contest,666,Correspondence,1,Cosmin Poahata,1,Crux,2,Czech-Polish-Slovak,26,Đà Nẵng,48,Đa Thức,2,Đại Số,20,Đắk Lắk,72,Đắk Nông,13,Đan Phượng,1,Danube,7,Đào Thái Hiệp,1,ĐBSCL,2,Đề Thi,1,Đề Thi HSG,2138,Đề Thi JMO,1,DHBB,28,Điện Biên,12,Định Lý,1,Định Lý Beaty,1,Đỗ Hữu Đức Thịnh,1,Do Thái,3,Doãn Quang Tiến,5,Đoàn Quỳnh,1,Đoàn Văn Trung,1,Đống Đa,4,Đồng Nai,62,Đồng Tháp,62,Du Hiền Vinh,1,Đức,1,Dương Quỳnh Châu,1,Dương Tú,1,Duyên Hải Bắc Bộ,28,E-Book,31,EGMO,29,ELMO,19,EMC,10,Epsilon,1,Estonian,5,Euler,1,Evan Chen,1,Fermat,3,Finland,4,Forum Of Geometry,2,Furstenberg,1,G. Polya,3,Gặp Gỡ Toán Học,30,Gauss,1,GDTX,3,Geometry,14,GGTH,30,Gia Lai,38,Gia Viễn,2,Giải Tích Hàm,1,Giảng Võ,1,Giới hạn,2,Goldbach,1,Hà Giang,4,Hà Lan,1,Hà Nam,38,Hà Nội,259,Hà Tĩnh,88,Hà Trung Kiên,1,Hải Dương,64,Hải Phòng,55,Hậu Giang,11,Hậu Lộc,1,Hélènne Esnault,1,Hilbert,2,Hình Học,33,HKUST,7,Hòa Bình,31,Hoài Nhơn,1,Hoàng Bá Minh,1,Hoàng Minh Quân,1,Hodge,1,Hojoo Lee,2,HOMC,5,HongKong,8,HSG 10,118,HSG 10 2010-2011,4,HSG 10 2011-2012,6,HSG 10 2012-2013,5,HSG 10 20122-2023,1,HSG 10 2013-2014,4,HSG 10 2014-2015,5,HSG 10 2015-2016,2,HSG 10 2016-2017,5,HSG 10 2017-2018,3,HSG 10 2018-2019,3,HSG 10 2019-2020,8,HSG 10 2020-2021,2,HSG 10 2021-2022,2,HSG 10 2022-2023,4,HSG 10 Bà Rịa Vũng Tàu,2,HSG 10 Bắc Giang,1,HSG 10 Bạc Liêu,2,HSG 10 Bắc Ninh,3,HSG 10 Bình Định,1,HSG 10 Bình Dương,1,HSG 10 Bình Thuận,4,HSG 10 Chuyên SPHN,5,HSG 10 Đắk Lắk,2,HSG 10 Đồng Nai,4,HSG 10 Gia Lai,2,HSG 10 Hà Nam,3,HSG 10 Hà Tĩnh,13,HSG 10 Hải Dương,9,HSG 10 KHTN,9,HSG 10 Kon Tum,1,HSG 10 Nghệ An,1,HSG 10 Ninh Thuận,1,HSG 10 Phú Yên,2,HSG 10 PTNK,5,HSG 10 Quảng Trị,2,HSG 10 Thái Nguyên,8,HSG 10 Thanh Hóa,1,HSG 10 Trà Vinh,5,HSG 10 Vĩnh Phúc,14,HSG 1015-2016,3,HSG 11,117,HSG 11 2010-2011,4,HSG 11 2011-2012,5,HSG 11 2012-2013,7,HSG 11 2013-2014,4,HSG 11 2014-2015,8,HSG 11 2015-2016,2,HSG 11 2016-2017,5,HSG 11 2017-2018,4,HSG 11 2018-2019,5,HSG 11 2019-2020,5,HSG 11 2020-2021,5,HSG 11 2021-2022,1,HSG 11 An Giang,1,HSG 11 Bà Rịa Vũng Tàu,1,HSG 11 Bắc Giang,4,HSG 11 Bạc Liêu,2,HSG 11 Bắc Ninh,4,HSG 11 Bình Định,11,HSG 11 Bình Dương,3,HSG 11 Bình Thuận,1,HSG 11 Cà Mau,1,HSG 11 Đà Nẵng,9,HSG 11 Đồng Nai,1,HSG 11 Hà Nam,1,HSG 11 Hà Tĩnh,10,HSG 11 Hải Phòng,1,HSG 11 Kiên Giang,4,HSG 11 Lạng Sơn,11,HSG 11 Nghệ An,6,HSG 11 Ninh Bình,2,HSG 11 Quảng Bình,9,HSG 11 Quảng Ngãi,8,HSG 11 Quảng Trị,3,HSG 11 Sóc Trăng,1,HSG 11 Thái Nguyên,8,HSG 11 Thanh Hóa,4,HSG 11 Trà Vinh,1,HSG 11 Tuyên Quang,1,HSG 11 Vĩnh Long,2,HSG 11 Vĩnh Phúc,10,HSG 12,627,HSG 12 2009-2010,2,HSG 12 2010-2011,39,HSG 12 2011-2012,44,HSG 12 2012-2013,58,HSG 12 2013-2014,53,HSG 12 2014-2015,44,HSG 12 2015-2016,36,HSG 12 2016-2017,47,HSG 12 2017-2018,58,HSG 12 2018-2019,44,HSG 12 2019-2020,43,HSG 12 2020-2021,51,HSG 12 2021-2022,34,HSG 12 2022-2023,29,HSG 12 An Giang,7,HSG 12 Bà Rịa Vũng Tàu,11,HSG 12 Bắc Giang,17,HSG 12 Bạc Liêu,3,HSG 12 Bắc Ninh,13,HSG 12 Bến Tre,18,HSG 12 Bình Định,16,HSG 12 Bình Dương,8,HSG 12 Bình Phước,8,HSG 12 Bình Thuận,8,HSG 12 Cà Mau,8,HSG 12 Cần Thơ,7,HSG 12 Cao Bằng,5,HSG 12 Chuyên SPHN,9,HSG 12 Đà Nẵng,3,HSG 12 Đắk Lắk,20,HSG 12 Đắk Nông,1,HSG 12 Điện Biên,3,HSG 12 Đồng Nai,20,HSG 12 Đồng Tháp,18,HSG 12 Gia Lai,13,HSG 12 Hà Nam,4,HSG 12 Hà Nội,15,HSG 12 Hà Tĩnh,16,HSG 12 Hải Dương,14,HSG 12 Hải Phòng,20,HSG 12 Hậu Giang,3,HSG 12 Hòa Bình,10,HSG 12 Hưng Yên,9,HSG 12 Khánh Hòa,3,HSG 12 KHTN,26,HSG 12 Kiên Giang,11,HSG 12 Kon Tum,2,HSG 12 Lai Châu,4,HSG 12 Lâm Đồng,10,HSG 12 Lạng Sơn,8,HSG 12 Lào Cai,16,HSG 12 Long An,17,HSG 12 Nam Định,7,HSG 12 Nghệ An,12,HSG 12 Ninh Bình,11,HSG 12 Ninh Thuận,6,HSG 12 Phú Thọ,16,HSG 12 Phú Yên,12,HSG 12 Quảng Bình,13,HSG 12 Quảng Nam,9,HSG 12 Quảng Ngãi,5,HSG 12 Quảng Ninh,20,HSG 12 Quảng Trị,9,HSG 12 Sóc Trăng,4,HSG 12 Sơn La,5,HSG 12 Tây Ninh,6,HSG 12 Thái Bình,11,HSG 12 Thái Nguyên,13,HSG 12 Thanh Hóa,18,HSG 12 Thừa Thiên Huế,18,HSG 12 Tiền Giang,3,HSG 12 TPHCM,12,HSG 12 Tuyên Quang,2,HSG 12 Vĩnh Long,6,HSG 12 Vĩnh Phúc,22,HSG 12 Yên Bái,6,HSG 9,539,HSG 9 2009-2010,1,HSG 9 2010-2011,21,HSG 9 2011-2012,44,HSG 9 2012-2013,44,HSG 9 2013-2014,36,HSG 9 2014-2015,40,HSG 9 2015-2016,39,HSG 9 2016-2017,42,HSG 9 2017-2018,47,HSG 9 2018-2019,50,HSG 9 2019-2020,20,HSG 9 2020-2021,53,HSG 9 2021-2022,57,HSG 9 2022-2023,7,HSG 9 An Giang,8,HSG 9 Bà Rịa Vũng Tàu,7,HSG 9 Bắc Giang,12,HSG 9 Bạc Liêu,1,HSG 9 Bắc Ninh,12,HSG 9 Bến Tre,10,HSG 9 Bình Định,10,HSG 9 Bình Dương,6,HSG 9 Bình Phước,13,HSG 9 Bình Thuận,5,HSG 9 Cà Mau,1,HSG 9 Cần Thơ,4,HSG 9 Cao Bằng,1,HSG 9 Chuyên SPHN,2,HSG 9 Đà Nẵng,10,HSG 9 Đắk Lắk,11,HSG 9 Đắk Nông,2,HSG 9 Điện Biên,3,HSG 9 Đồng Nai,7,HSG 9 Đồng Tháp,10,HSG 9 Gia Lai,8,HSG 9 Hà Giang,3,HSG 9 Hà Nam,9,HSG 9 Hà Nội,26,HSG 9 Hà Tĩnh,16,HSG 9 Hải Dương,14,HSG 9 Hải Phòng,7,HSG 9 Hậu Giang,4,HSG 9 Hòa Bình,3,HSG 9 Hưng Yên,9,HSG 9 Khánh Hòa,5,HSG 9 Kiên Giang,15,HSG 9 Kon Tum,8,HSG 9 Lai Châu,1,HSG 9 Lâm Đồng,13,HSG 9 Lạng Sơn,9,HSG 9 Lào Cai,3,HSG 9 Long An,9,HSG 9 Nam Định,8,HSG 9 Nghệ An,19,HSG 9 Ninh Bình,13,HSG 9 Ninh Thuận,3,HSG 9 Phú Thọ,12,HSG 9 Phú Yên,8,HSG 9 Quảng Bình,14,HSG 9 Quảng Nam,11,HSG 9 Quảng Ngãi,12,HSG 9 Quảng Ninh,15,HSG 9 Quảng Trị,9,HSG 9 Sóc Trăng,8,HSG 9 Sơn La,4,HSG 9 Tây Ninh,16,HSG 9 Thái Bình,10,HSG 9 Thái Nguyên,5,HSG 9 Thanh Hóa,18,HSG 9 Thừa Thiên Huế,8,HSG 9 Tiền Giang,6,HSG 9 TPHCM,10,HSG 9 Trà Vinh,2,HSG 9 Tuyên Quang,5,HSG 9 Vĩnh Long,11,HSG 9 Vĩnh Phúc,12,HSG 9 Yên Bái,4,HSG Cấp Trường,90,HSG Quốc Gia,109,HSG Quốc Tế,16,HSG11 2021-2022,3,Hứa Lâm Phong,1,Hứa Thuần Phỏng,1,Hùng Vương,2,Hưng Yên,39,Hương Sơn,2,Huỳnh Kim Linh,1,Hy Lạp,1,IMC,26,IMO,57,IMT,2,IMU,2,India - Ấn Độ,47,Inequality,13,InMC,1,International,340,Iran,13,Jakob,1,JBMO,41,Jewish,1,Journal,30,Junior,38,K2pi,1,Kazakhstan,1,Khánh Hòa,28,KHTN,61,Kiên Giang,71,Kim Liên,1,Kon Tum,23,Korea - Hàn Quốc,5,Kvant,2,Kỷ Yếu,46,Lai Châu,10,Lâm Đồng,44,Lăng Hồng Nguyệt Anh,1,Lạng Sơn,35,Langlands,1,Lào Cai,33,Lê Hải Châu,1,Lê Hải Khôi,1,Lê Hoành Phò,4,Lê Hồng Phong,5,Lê Khánh Sỹ,3,Lê Minh Cường,1,Lê Phúc Lữ,1,Lê Phương,1,Lê Quý Đôn,1,Lê Viết Hải,1,Lê Việt Hưng,2,Leibniz,1,Long An,49,Lớp 10 Chuyên,666,Lớp 10 Không Chuyên,347,Lớp 11,1,Lục Ngạn,1,Lượng giác,1,Lương Tài,1,Lưu Giang Nam,2,Lưu Lý Tưởng,1,Lý Thánh Tông,1,Macedonian,1,Malaysia,1,Margulis,2,Mark Levi,1,Mathematical Excalibur,1,Mathematical Reflections,1,Mathematics Magazine,1,Mathematics Today,1,Mathley,1,MathLinks,1,MathProblems Journal,1,Mathscope,8,MathsVN,5,MathVN,1,MEMO,12,Menelaus,1,Metropolises,4,Mexico,1,MIC,1,Michael Atiyah,1,Michael Guillen,1,Mochizuki,1,Moldova,1,Moscow,1,MYM,25,MYTS,4,Nam Định,44,Nam Phi,1,National,276,Nesbitt,1,Newton,4,Nghệ An,69,Ngô Bảo Châu,2,Ngô Việt Hải,1,Ngọc Huyền,2,Nguyễn Anh Tuyến,1,Nguyễn Bá Đang,1,Nguyễn Đình Thi,1,Nguyễn Đức Tấn,1,Nguyễn Đức Thắng,1,Nguyễn Duy Khương,1,Nguyễn Duy Tùng,1,Nguyễn Hữu Điển,3,Nguyễn Minh Hà,1,Nguyễn Minh Tuấn,9,Nguyễn Nhất Huy,1,Nguyễn Phan Tài Vương,1,Nguyễn Phú Khánh,1,Nguyễn Phúc Tăng,2,Nguyễn Quản Bá Hồng,1,Nguyễn Quang Sơn,1,Nguyễn Song Thiên Long,1,Nguyễn Tài Chung,5,Nguyễn Tăng Vũ,1,Nguyễn Tất Thu,1,Nguyễn Thúc Vũ Hoàng,1,Nguyễn Trung Tuấn,8,Nguyễn Tuấn Anh,2,Nguyễn Văn Huyện,3,Nguyễn Văn Mậu,25,Nguyễn Văn Nho,1,Nguyễn Văn Quý,2,Nguyễn Văn Thông,1,Nguyễn Việt Anh,1,Nguyễn Vũ Lương,2,Nhật Bản,4,Nhóm $\LaTeX$,4,Nhóm Toán,1,Ninh Bình,58,Ninh Thuận,24,Nội Suy Lagrange,2,Nội Suy Newton,1,Nordic,21,Olympiad Corner,1,Olympiad Preliminary,2,Olympic 10,128,Olympic 10/3,6,Olympic 10/3 Đắk Lắk,6,Olympic 11,118,Olympic 12,50,Olympic 23/3,2,Olympic 24/3,10,Olympic 24/3 Quảng Nam,10,Olympic 27/4,23,Olympic 30/4,58,Olympic KHTN,7,Olympic Sinh Viên,76,Olympic Tháng 4,12,Olympic Toán,333,Olympic Toán Sơ Cấp,3,Ôn Thi 10,2,PAMO,1,Phạm Đình Đồng,1,Phạm Đức Tài,1,Phạm Huy Hoàng,1,Pham Kim Hung,3,Phạm Quốc Sang,2,Phan Huy Khải,1,Phan Quang Đạt,1,Phan Thành Nam,1,Pháp,2,Philippines,8,Phú Thọ,31,Phú Yên,39,Phùng Hồ Hải,1,Phương Trình Hàm,11,Phương Trình Pythagoras,1,Pi,1,Polish,32,Problems,1,PT-HPT,14,PTNK,56,Putnam,27,Quảng Bình,59,Quảng Nam,51,Quảng Ngãi,44,Quảng Ninh,56,Quảng Trị,38,Quỹ Tích,1,Riemann,1,RMM,13,RMO,24,Romania,37,Romanian Mathematical,1,Russia,1,Sách Thường Thức Toán,7,Sách Toán,70,Sách Toán Cao Học,1,Sách Toán THCS,7,Saudi Arabia - Ả Rập Xê Út,9,Scholze,1,Serbia,17,Sharygin,28,Shortlists,56,Simon Singh,1,Singapore,1,Số Học - Tổ Hợp,28,Sóc Trăng,32,Sơn La,21,Spain,8,Star Education,1,Stars of Mathematics,11,Swinnerton-Dyer,1,Talent Search,1,Tăng Hải Tuân,2,Tạp Chí,17,Tập San,3,Tây Ban Nha,1,Tây Ninh,36,Thạch Hà,1,Thái Bình,43,Thái Nguyên,58,Thái Vân,2,Thanh Hóa,75,THCS,2,Thổ Nhĩ Kỳ,5,Thomas J. Mildorf,1,Thông Tin Toán Học,43,THPT Chuyên Lê Quý Đôn,1,THPT Chuyên Nguyễn Du,9,THPTQG,16,THTT,31,Thừa Thiên Huế,52,Tiền Giang,28,Tin Tức Toán Học,1,Titu Andreescu,2,Toán 12,7,Toán Cao Cấp,3,Toán Rời Rạc,5,Toán Tuổi Thơ,3,Tôn Ngọc Minh Quân,2,TOT,1,TPHCM,148,Trà Vinh,9,Trắc Nghiệm,1,Trắc Nghiệm Toán,2,Trại Hè,37,Trại Hè Hùng Vương,28,Trại Hè Phương Nam,7,Trần Đăng Phúc,1,Trần Minh Hiền,2,Trần Nam Dũng,12,Trần Phương,1,Trần Quang Hùng,1,Trần Quốc Anh,2,Trần Quốc Luật,1,Trần Quốc Nghĩa,1,Trần Tiến Tự,1,Trịnh Đào Chiến,2,Trường Đông,21,Trường Hè,8,Trường Thu,1,Trường Xuân,2,TST,520,TST 2008-2009,1,TST 2010-2011,22,TST 2011-2012,23,TST 2012-2013,32,TST 2013-2014,29,TST 2014-2015,27,TST 2015-2016,26,TST 2016-2017,41,TST 2017-2018,42,TST 2018-2019,30,TST 2019-2020,36,TST 2020-2021,29,TST 2021-2022,36,TST 2022-2023,42,TST An Giang,7,TST Bà Rịa Vũng Tàu,11,TST Bắc Giang,5,TST Bắc Ninh,11,TST Bến Tre,8,TST Bình Định,5,TST Bình Dương,6,TST Bình Phước,8,TST Bình Thuận,9,TST Cà Mau,6,TST Cần Thơ,5,TST Cao Bằng,2,TST Đà Nẵng,8,TST Đắk Lắk,11,TST Đắk Nông,2,TST Điện Biên,2,TST Đồng Nai,12,TST Đồng Tháp,12,TST Gia Lai,4,TST Hà Nam,7,TST Hà Nội,11,TST Hà Tĩnh,14,TST Hải Dương,11,TST Hải Phòng,13,TST Hậu Giang,1,TST Hòa Bình,3,TST Hưng Yên,9,TST Khánh Hòa,8,TST Kiên Giang,10,TST Kon Tum,6,TST Lâm Đồng,11,TST Lạng Sơn,2,TST Lào Cai,5,TST Long An,6,TST Nam Định,8,TST Nghệ An,7,TST Ninh Bình,11,TST Ninh Thuận,4,TST Phú Thọ,13,TST Phú Yên,5,TST PTNK,14,TST Quảng Bình,12,TST Quảng Nam,6,TST Quảng Ngãi,7,TST Quảng Ninh,8,TST Quảng Trị,9,TST Sóc Trăng,4,TST Sơn La,7,TST Thái Bình,6,TST Thái Nguyên,8,TST Thanh Hóa,9,TST Thừa Thiên Huế,4,TST Tiền Giang,5,TST TPHCM,14,TST Trà Vinh,1,TST Tuyên Quang,1,TST Vĩnh Long,6,TST Vĩnh Phúc,7,TST Yên Bái,8,Tuyên Quang,12,Tuyển Sinh,4,Tuyển Sinh 10,1013,Tuyển Sinh 10 An Giang,17,Tuyển Sinh 10 Bà Rịa Vũng Tàu,21,Tuyển Sinh 10 Bắc Giang,19,Tuyển Sinh 10 Bạc Liêu,7,Tuyển Sinh 10 Bắc Ninh,15,Tuyển Sinh 10 Bến Tre,33,Tuyển Sinh 10 Bình Định,19,Tuyển Sinh 10 Bình Dương,12,Tuyển Sinh 10 Bình Phước,19,Tuyển Sinh 10 Bình Thuận,15,Tuyển Sinh 10 Cà Mau,5,Tuyển Sinh 10 Cần Thơ,9,Tuyển Sinh 10 Cao Bằng,2,Tuyển Sinh 10 Chuyên SPHN,15,Tuyển Sinh 10 Đà Nẵng,17,Tuyển Sinh 10 Đắk Lắk,20,Tuyển Sinh 10 Đắk Nông,6,Tuyển Sinh 10 Điện Biên,4,Tuyển Sinh 10 Đồng Nai,18,Tuyển Sinh 10 Đồng Tháp,22,Tuyển Sinh 10 Gia Lai,10,Tuyển Sinh 10 Hà Giang,1,Tuyển Sinh 10 Hà Nam,14,Tuyển Sinh 10 Hà Nội,80,Tuyển Sinh 10 Hà Tĩnh,18,Tuyển Sinh 10 Hải Dương,16,Tuyển Sinh 10 Hải Phòng,14,Tuyển Sinh 10 Hậu Giang,3,Tuyển Sinh 10 Hòa Bình,15,Tuyển Sinh 10 Hưng Yên,12,Tuyển Sinh 10 Khánh Hòa,12,Tuyển Sinh 10 KHTN,19,Tuyển Sinh 10 Kiên Giang,31,Tuyển Sinh 10 Kon Tum,6,Tuyển Sinh 10 Lai Châu,5,Tuyển Sinh 10 Lâm Đồng,10,Tuyển Sinh 10 Lạng Sơn,6,Tuyển Sinh 10 Lào Cai,9,Tuyển Sinh 10 Long An,17,Tuyển Sinh 10 Nam Định,21,Tuyển Sinh 10 Nghệ An,22,Tuyển Sinh 10 Ninh Bình,19,Tuyển Sinh 10 Ninh Thuận,10,Tuyển Sinh 10 Phú Thọ,17,Tuyển Sinh 10 Phú Yên,11,Tuyển Sinh 10 PTNK,35,Tuyển Sinh 10 Quảng Bình,11,Tuyển Sinh 10 Quảng Nam,15,Tuyển Sinh 10 Quảng Ngãi,12,Tuyển Sinh 10 Quảng Ninh,11,Tuyển Sinh 10 Quảng Trị,6,Tuyển Sinh 10 Sóc Trăng,15,Tuyển Sinh 10 Sơn La,5,Tuyển Sinh 10 Tây Ninh,14,Tuyển Sinh 10 Thái Bình,16,Tuyển Sinh 10 Thái Nguyên,16,Tuyển Sinh 10 Thanh Hóa,24,Tuyển Sinh 10 Thừa Thiên Huế,22,Tuyển Sinh 10 Tiền Giang,14,Tuyển Sinh 10 TPHCM,23,Tuyển Sinh 10 Tuyên Quang,3,Tuyển Sinh 10 Vĩnh Long,12,Tuyển Sinh 10 Vĩnh Phúc,21,Tuyển Sinh 2008-2009,1,Tuyển Sinh 2009-2010,1,Tuyển Sinh 2010-2011,6,Tuyển Sinh 2011-2012,20,Tuyển Sinh 2012-2013,63,Tuyển Sinh 2013-2014,78,Tuyển Sinh 2014-2015,78,Tuyển Sinh 2015-2016,60,Tuyển Sinh 2016-2017,72,Tuyển Sinh 2017-2018,126,Tuyển Sinh 2018-2019,60,Tuyển Sinh 2019-2020,90,Tuyển Sinh 2020-2021,59,Tuyển Sinh 2021-202,1,Tuyển Sinh 2021-2022,70,Tuyển Sinh 2022-2023,114,Tuyển Sinh Chuyên SPHCM,7,Tuyển Sinh Yên Bái,6,Tuyển Tập,45,Tuymaada,6,UK - Anh,16,Undergraduate,69,USA - Mỹ,62,USA TSTST,6,USAJMO,12,USATST,8,USEMO,4,Uzbekistan,1,Vasile Cîrtoaje,4,Vật Lý,1,Viện Toán Học,4,Vietnam,4,Viktor Prasolov,1,VIMF,1,Vinh,31,Vĩnh Long,37,Vĩnh Phúc,86,Virginia Tech,1,VLTT,1,VMEO,4,VMF,12,VMO,53,VNTST,23,Võ Anh Khoa,1,Võ Quốc Bá Cẩn,26,Võ Thành Văn,1,Vojtěch Jarník,6,Vũ Hữu Bình,7,Vương Trung Dũng,1,WFNMC Journal,1,Wiles,1,Xác Suất,1,Yên Bái,24,Yên Định,1,Yên Thành,1,Zhautykov,13,Zhou Yuan Zhe,1,
ltr
item
MOlympiad.NET: Dựng Hình Bằng Thước Kẻ Và Compa: Bài Toán Chia Ba Một Góc Và Các Bài Toán Cầu Phương Hình Tròn
Dựng Hình Bằng Thước Kẻ Và Compa: Bài Toán Chia Ba Một Góc Và Các Bài Toán Cầu Phương Hình Tròn
https://1.bp.blogspot.com/-YN0Rrp7kGNk/VDKV_mtjwqI/AAAAAAAADkU/yddzRBuNLq0/s1600/Bisection_construction.gif
https://1.bp.blogspot.com/-YN0Rrp7kGNk/VDKV_mtjwqI/AAAAAAAADkU/yddzRBuNLq0/s72-c/Bisection_construction.gif
MOlympiad.NET
https://www.molympiad.net/2018/11/dung-hinh-bang-thuoc-ke-va-compa.html
https://www.molympiad.net/
https://www.molympiad.net/
https://www.molympiad.net/2018/11/dung-hinh-bang-thuoc-ke-va-compa.html
true
2506595080985176441
UTF-8
Loaded All Posts Not found any posts VIEW ALL Readmore Reply Cancel reply Delete By Home PAGES POSTS View All RECOMMENDED FOR YOU Tag ARCHIVE SEARCH ALL POSTS Not found any post match with your request Back Home Sunday Monday Tuesday Wednesday Thursday Friday Saturday Sun Mon Tue Wed Thu Fri Sat January February March April May June July August September October November December Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec just now 1 minute ago $$1$$ minutes ago 1 hour ago $$1$$ hours ago Yesterday $$1$$ days ago $$1$$ weeks ago more than 5 weeks ago Followers Follow THIS PREMIUM CONTENT IS LOCKED
NỘI DUNG CAO CẤP NÀY ĐÃ BỊ KHÓA
STEP 1: SHARE THIS ARTICLE TO A SOCIAL NETWORK
BƯỚC 1: CHIA SẺ BÀI VIẾT NÀY LÊN MẠNG XÃ HỘI
STEP 2: CLICK THE LINK ON YOUR SOCIAL NETWORK
BƯỚC 2: BẤM VÀO ĐƯỜNG DẪN TRÊN MẠNG XÃ HỘI CỦA BẠN
Copy All Code Select All Code All codes were copied to your clipboard Can not copy the codes / texts, please press [CTRL]+[C] (or CMD+C with Mac) to copy Table of Content