$hide=mobile

[Solutions] Sharygin Geometry Mathematical Olympiad 2016 (Correspondence Round)

  1. A trapezoid $A B C D$ with bases $A D$ and $B C$ is such that $A B=B D$. Let $M$ be the midpoint of $D C .$ Prove that $\angle M B C=\angle B C A$.
  2. Mark three nodes on a cellular paper so that the semiperimeter of the obtained triangle would be equal to the sum of its two smallest medians.
  3. Let $A H_{1}, B H_{2}$ be two altitudes of an acute-angled triangle $A B C, D$ be the projection of $H_{1}$ to $A C, E$ be the projection of $D$ to $A B, F$ be the common point of $E D$ and $A H_{1}$ Prove that $H_{2} F \| B C$.
  4. In quadrilateral $A B C D \angle B=\angle D=90^{\circ}$ and $A C=B C+D C$. Point $P$ of ray $B D$ is such that $B P=A D$. Prove that line $C P$ is parallel to the bisector of angle $A B D$.
  5. In quadrilateral $A B C D A B=C D, M$ and $K$ are the midpoints of $B C$ and $A D$. Prove that the angle between $M K$ and $A C$ is equal to the half-sum of angles $B A C$ and $D C A$
  6. Let $M$ be the midpoint of side $A C$ of triangle $A B C, M D$ and $M E$ be the perpendiculars from $M$ to $A B$ and $B C$ respectively. Prove that the distance between the circumcenters of triangles $A B E$ and $B C D$ is equal to $A C / 4$
  7. Let all distances between the vertices of a convex $n$ -gon $(n>3)$ be different.
    a) A vertex is called uninteresting if the closest vertex is adjacent to it. What is the minimal possible number of uninteresting vertices (for a given $n$ )?
    b) A vertex is called unusual if the farthest vertex is adjacent to it. What is the maximal possible number of unusual vertices (for a given $n$ )?
  8. Let $A B C D E$ be an inscribed pentagon such that $\angle B+\angle E=\angle C+\angle D$. Prove that $\angle C A D<\pi / 3<\angle A$
  9. Let $A B C$ be a right-angled triangle and $C H$ be the altitude from its right angle $C .$ Points $O_{1}$ and $O_{2}$ are the incenters of triangles $A C H$ and $B C H$ respectively; $P_{1}$ and $P_{2}$ are the touching points of their incircles with $A C$ and $B C$. Prove that lines $O_{1} P_{1}$ and $O_{2} P_{2}$ meet on $A B$
  10. Point $X$ moves along side $A B$ of triangle $A B C,$ and point $Y$ moves along its circumcircle in such a way that line $X Y$ passes through the midpoint of arc $A B .$ Find the locus of the circumcenters of triangles $I X Y$, where $I$ is the incenter of $A B C$.
  11. Restore a triangle $A B C$ by vertex $B$, the centroid and the common point of the symmedian from $B$ with the circumcircle.
  12. Let $B B_{1}$ be the symmedian of a nonisosceles acute-angled triangle $A B C$. Ray $B B_{1}$ meets the circumcircle of $A B C$ for the second time at point $L .$ Let $A H_{A}, B H_{B}, C H_{C}$ be the altitudes of triangle $A B C .$ Ray $B H_{B}$ meets the circumcircle of $A B C$ for the second time at point $T$. Prove that $H_{A}, H_{C}, T, L$ are concyclic.
  13. Given are a triangle $A B C$ and a line $\ell$ meeting $B C, A C, A B$ at points $L_{a}, L_{b}$ $L_{c}$ respectively. The perpendicular from $L_{a}$ to $B C$ meets $A B$ and $A C$ at points $A_{B}$ and $A_{C}$ respectively. Point $O_{a}$ is the circumcenter of triangle $A A_{b} A_{c} .$ Points $O_{b}$ and $O_{c}$ are defined similarly. Prove that $O_{a}, O_{b}$ and $O_{c}$ are collinear.
  14. Let a triangle $A B C$ be given. Consider the circle touching its circumcircle at $A$ and touching externally its incircle at some point $A_{1} .$ Points $B_{1}$ and $C_{1}$ are defined similarly.
    a) Prove that lines $A A_{1}, B B_{1}$ и $C C_{1}$ concur.
    b) Let $A_{2}$ be the touching point of the incircle with $B C .$ Prove that lines $A A_{1}$ and $A A_{2}$ are symmetric about the bisector of angle $A$.
  15. Let $O, M, N$ be the circumcenter, the centroid and the Nagel point of a triangle. Prove that angle $M O N$ is right if and only if one of the triangle's angles is equal to $60^{\circ} .$
  16. Let $B B_{1}$ and $C C_{1}$ be altitudes of triangle $A B C$. The tangents to the circumcircle of $A B_{1} C_{1}$ at $B_{1}$ and $C_{1}$ meet $A B$ and $A C$ at points $M$ and $N$ respectively. Prove that the common point of circles $A M N$ and $A B_{1} C_{1}$ distinct from $A$ lies on the Euler line of $A B C$
  17. Let $D$ be an arbitrary point on side $B C$ of triangle $A B C .$ Circles $\omega_{1}$ and $\omega_{2}$ pass through $A$ and $D$ in such a way that $B A$ touches $\omega_{1}$ and $C A$ touches $\omega_{2}$. Let $B X$ be the second tangent from $B$ to $\omega_{1},$ and $C Y$ be the second tangent from $C$ to $\omega_{2} .$ Prove that the circumcircle of triangle $X D Y$ touches $B C$.
  18. Let $A B C$ be a triangle with $\angle C=90^{\circ},$ and $K, L$ be the midpoints of the minor $\operatorname{arcs} A C$ and $B C$ of its circumcircle. Segment $K L$ meets $A C$ at point $N .$ Find angle $N I C$ where $I$ is the incenter of $A B C$.
  19. Let $A B C D E F$ be a regular hexagon. Points $P$ and $Q$ on tangents to its circumcircle at $A$ and $D$ respectively are such that $P Q$ touches the minor arc $E F$ of this circle. Find the angle between $P B$ and $Q C$.
  20. The incircle $\omega$ of a triangle $A B C$ touches $B C, A C$ and $A B$ at points $A_{0}, B_{0}$ and $C_{0}$ respectively. The bisectors of angles $B$ and $C$ meet the perpendicular bisector to segment $A A_{0}$ at points $Q$ and $P$ respectively. Prove that $P C_{0}$ and $Q B_{0}$ meet on $\omega$.
  21. The areas of rectangles $P$ and $Q$ are equal, but the diagonal of $P$ is greater. Rectangle $Q$ can be covered by two copies of $P .$ Prove that $P$ can be covered by two copies of $Q$
  22. Let $M_{A}, M_{B}, M_{C}$ be the midpoints of the sides of a nonisosceles triangle $A B C$. Points $H_{A}, H_{B}, H_{C}$ lying on the correspondent sides and distinct from $M_{A}, M_{B}, M_{C}$ are such that $M_{A} H_{B}=M_{A} H_{C}, M_{B} H_{A}=M_{B} H_{C}, M_{C} H_{A}=M_{C} H_{B} .$ Prove that $H_{A}, H_{B}, H_{C}$ are the bases of the altitudes of $A B C$.
  23. A sphere touches all edges of a tetrahedron. Let $a, b, c$ and $d$ be the segments of the tangents to the sphere from the vertices of the tetrahedron. Is it true that that some of these segments necessarily form a triangle? (It is not obligatory to use all segments. The side of the triangle can be formed by two segments)
  24. A sphere is inscribed into a prism $A B C A^{\prime} B^{\prime} C^{\prime}$ and touches its lateral faces $B C C^{\prime} B^{\prime}$ $C A A^{\prime} C^{\prime}, A B B^{\prime} A^{\prime}$ at points $A_{0}, B_{0}, C_{0}$ respectively. It is known that $$\angle A_{0} B B^{\prime}=\angle B_{0} C C^{\prime}=\angle C_{0} A A^{\prime}.$$ a) Find all possible values of these angles.
    b) Prove that segments $A A_{0}$, $B B_{0}$, $C C_{0}$ concur.
    c) Prove that the projections of the incenter to $A^{\prime} B^{\prime}, B^{\prime} C^{\prime}, C^{\prime} A^{\prime}$ are the vertices of a regular triangle.

Post a Comment


$hide=mobile

$hide=mobile

$hide=mobile

$show=post$type=three$count=6$sr=random$t=oot$h=1$l=0$meta=hide$rm=hide$sn=0

Kỷ Yếu$cl=violet$type=three$count=6$sr=random$t=oot$h=1$l=0$meta=hide$rm=hide$sn=0$hide=mobile

Journals$cl=green$type=three$count=6$sr=random$t=oot$h=1$l=0$meta=hide$rm=hide$sn=0$hide=mobile

Name

Ả-rập Xê-út,1,Abel,5,Albania,2,AMM,3,Amsterdam,5,Ấn Độ,2,An Giang,23,Andrew Wiles,1,Anh,2,Áo,1,APMO,19,Ba Đình,2,Ba Lan,1,Bà Rịa Vũng Tàu,52,Bắc Giang,50,Bắc Kạn,1,Bạc Liêu,9,Bắc Ninh,48,Bắc Trung Bộ,7,Bài Toán Hay,5,Balkan,38,Baltic Way,30,BAMO,1,Bất Đẳng Thức,66,Bến Tre,46,Benelux,14,Bình Định,45,Bình Dương,23,Bình Phước,38,Bình Thuận,34,Birch,1,Booklet,11,Bosnia Herzegovina,3,BoxMath,3,Brazil,2,Bùi Đắc Hiên,1,Bùi Thị Thiện Mỹ,1,Bùi Văn Tuyên,1,Bùi Xuân Diệu,1,Bulgaria,6,Buôn Ma Thuột,1,BxMO,13,Cà Mau,14,Cần Thơ,14,Canada,40,Cao Bằng,7,Cao Quang Minh,1,Câu Chuyện Toán Học,36,Caucasus,2,CGMO,10,China,10,Chọn Đội Tuyển,353,Chu Tuấn Anh,1,Chuyên Đề,124,Chuyên Sư Phạm,31,Chuyên Trần Hưng Đạo,3,Collection,8,College Mathematic,1,Concours,1,Cono Sur,1,Contest,618,Correspondence,1,Cosmin Poahata,1,Crux,2,Czech-Polish-Slovak,26,Đà Nẵng,39,Đa Thức,2,Đại Số,20,Đắk Lắk,56,Đắk Nông,7,Đan Phượng,1,Danube,7,Đào Thái Hiệp,1,ĐBSCL,2,Đề Thi,1,Đề Thi HSG,1770,Đề Thi JMO,1,Điện Biên,8,Định Lý,1,Định Lý Beaty,1,Đỗ Hữu Đức Thịnh,1,Do Thái,3,Doãn Quang Tiến,4,Đoàn Quỳnh,1,Đoàn Văn Trung,1,Đống Đa,4,Đồng Nai,49,Đồng Tháp,52,Du Hiền Vinh,1,Đức,1,Duyên Hải Bắc Bộ,25,E-Book,33,EGMO,17,ELMO,19,EMC,9,Epsilon,1,Estonian,5,Euler,1,Evan Chen,1,Fermat,3,Finland,4,Forum Of Geometry,2,Furstenberg,1,G. Polya,3,Gặp Gỡ Toán Học,26,Gauss,1,GDTX,3,Geometry,12,Gia Lai,26,Gia Viễn,2,Giải Tích Hàm,1,Giảng Võ,1,Giới hạn,2,Goldbach,1,Hà Giang,2,Hà Lan,1,Hà Nam,29,Hà Nội,232,Hà Tĩnh,73,Hà Trung Kiên,1,Hải Dương,50,Hải Phòng,42,Hàn Quốc,5,Hậu Giang,4,Hậu Lộc,1,Hilbert,1,Hình Học,33,HKUST,7,Hòa Bình,13,Hoài Nhơn,1,Hoàng Bá Minh,1,Hoàng Minh Quân,1,Hodge,1,Hojoo Lee,2,HOMC,5,HongKong,8,HSG 10,101,HSG 11,91,HSG 12,587,HSG 9,425,HSG Cấp Trường,78,HSG Quốc Gia,106,HSG Quốc Tế,16,Hứa Lâm Phong,1,Hứa Thuần Phỏng,1,Hùng Vương,2,Hưng Yên,33,Hương Sơn,2,Huỳnh Kim Linh,1,Hy Lạp,1,IMC,26,IMO,56,IMT,1,India,45,Inequality,13,InMC,1,International,315,Iran,11,Jakob,1,JBMO,41,Jewish,1,Journal,20,Junior,38,K2pi,1,Kazakhstan,1,Khánh Hòa,17,KHTN,54,Kiên Giang,64,Kim Liên,1,Kon Tum,18,Korea,5,Kvant,2,Kỷ Yếu,42,Lai Châu,4,Lâm Đồng,33,Lạng Sơn,21,Langlands,1,Lào Cai,17,Lê Hải Châu,1,Lê Hải Khôi,1,Lê Hoành Phò,4,Lê Khánh Sỹ,3,Lê Minh Cường,1,Lê Phúc Lữ,1,Lê Phương,1,Lê Quý Đôn,1,Lê Viết Hải,1,Lê Việt Hưng,1,Leibniz,1,Long An,42,Lớp 10,10,Lớp 10 Chuyên,455,Lớp 10 Không Chuyên,229,Lớp 11,1,Lục Ngạn,1,Lượng giác,1,Lương Tài,1,Lưu Giang Nam,2,Lý Thánh Tông,1,Macedonian,1,Malaysia,1,Margulis,2,Mark Levi,1,Mathematical Excalibur,1,Mathematical Reflections,1,Mathematics Magazine,1,Mathematics Today,1,Mathley,1,MathLinks,1,MathProblems Journal,1,Mathscope,8,MathsVN,5,MathVN,1,MEMO,11,Metropolises,4,Mexico,1,MIC,1,Michael Guillen,1,Mochizuki,1,Moldova,1,Moscow,1,Mỹ,10,MYM,227,MYTS,4,Nam Định,33,Nam Phi,1,Nam Trung Bộ,1,National,249,Nesbitt,1,Newton,4,Nghệ An,52,Ngô Bảo Châu,2,Ngô Việt Hải,1,Ngọc Huyền,2,Nguyễn Anh Tuyến,1,Nguyễn Bá Đang,1,Nguyễn Đình Thi,1,Nguyễn Đức Tấn,1,Nguyễn Đức Thắng,1,Nguyễn Duy Khương,1,Nguyễn Duy Tùng,1,Nguyễn Hữu Điển,3,Nguyễn Mình Hà,1,Nguyễn Minh Tuấn,8,Nguyễn Phan Tài Vương,1,Nguyễn Phú Khánh,1,Nguyễn Phúc Tăng,1,Nguyễn Quản Bá Hồng,1,Nguyễn Quang Sơn,1,Nguyễn Tài Chung,5,Nguyễn Tăng Vũ,1,Nguyễn Tất Thu,1,Nguyễn Thúc Vũ Hoàng,1,Nguyễn Trung Tuấn,8,Nguyễn Tuấn Anh,2,Nguyễn Văn Huyện,3,Nguyễn Văn Mậu,25,Nguyễn Văn Nho,1,Nguyễn Văn Quý,2,Nguyễn Văn Thông,1,Nguyễn Việt Anh,1,Nguyễn Vũ Lương,2,Nhật Bản,4,Nhóm $\LaTeX$,4,Nhóm Toán,1,Ninh Bình,43,Ninh Thuận,15,Nội Suy Lagrange,2,Nội Suy Newton,1,Nordic,19,Olympiad Corner,1,Olympiad Preliminary,2,Olympic 10,99,Olympic 10/3,5,Olympic 11,92,Olympic 12,30,Olympic 24/3,7,Olympic 27/4,20,Olympic 30/4,69,Olympic KHTN,6,Olympic Sinh Viên,73,Olympic Tháng 4,12,Olympic Toán,304,Olympic Toán Sơ Cấp,3,PAMO,1,Phạm Đình Đồng,1,Phạm Đức Tài,1,Phạm Huy Hoàng,1,Pham Kim Hung,3,Phạm Quốc Sang,2,Phan Huy Khải,1,Phan Thành Nam,1,Pháp,2,Philippines,8,Phú Thọ,30,Phú Yên,29,Phùng Hồ Hải,1,Phương Trình Hàm,11,Phương Trình Pythagoras,1,Pi,1,Polish,32,Problems,1,PT-HPT,14,PTNK,45,Putnam,25,Quảng Bình,44,Quảng Nam,32,Quảng Ngãi,34,Quảng Ninh,43,Quảng Trị,27,Quỹ Tích,1,Riemann,1,RMM,12,RMO,24,Romania,36,Romanian Mathematical,1,Russia,1,Sách Thường Thức Toán,7,Sách Toán,69,Sách Toán Cao Học,1,Sách Toán THCS,7,Saudi Arabia,7,Scholze,1,Serbia,17,Sharygin,24,Shortlists,56,Simon Singh,1,Singapore,1,Số Học - Tổ Hợp,27,Sóc Trăng,28,Sơn La,12,Spain,8,Star Education,5,Stars of Mathematics,11,Swinnerton-Dyer,1,Talent Search,1,Tăng Hải Tuân,2,Tạp Chí,14,Tập San,6,Tây Ban Nha,1,Tây Ninh,29,Thạch Hà,1,Thái Bình,39,Thái Nguyên,49,Thái Vân,2,Thanh Hóa,62,THCS,2,Thổ Nhĩ Kỳ,5,Thomas J. Mildorf,1,THPT Chuyên Lê Quý Đôn,1,THPTQG,15,THTT,7,Thừa Thiên Huế,36,Tiền Giang,19,Tin Tức Toán Học,1,Titu Andreescu,2,Toán 12,7,Toán Cao Cấp,3,Toán Chuyên,2,Toán Rời Rạc,5,Toán Tuổi Thơ,3,Tôn Ngọc Minh Quân,2,TOT,1,TPHCM,126,Trà Vinh,6,Trắc Nghiệm,1,Trắc Nghiệm Toán,2,Trại Hè,34,Trại Hè Hùng Vương,25,Trại Hè Phương Nam,5,Trần Đăng Phúc,1,Trần Minh Hiền,2,Trần Nam Dũng,9,Trần Phương,1,Trần Quang Hùng,1,Trần Quốc Anh,2,Trần Quốc Luật,1,Trần Quốc Nghĩa,1,Trần Tiến Tự,1,Trịnh Đào Chiến,2,Trung Quốc,14,Trường Đông,19,Trường Hè,7,Trường Thu,1,Trường Xuân,2,TST,56,Tuyên Quang,6,Tuyển Sinh,3,Tuyển Sinh 10,680,Tuyển Tập,44,Tuymaada,4,Undergraduate,67,USA,44,USAJMO,10,USATST,7,Uzbekistan,1,Vasile Cîrtoaje,4,Vật Lý,1,Viện Toán Học,2,Vietnam,4,Viktor Prasolov,1,VIMF,1,Vinh,27,Vĩnh Long,21,Vĩnh Phúc,64,Virginia Tech,1,VLTT,1,VMEO,4,VMF,12,VMO,47,VNTST,22,Võ Anh Khoa,1,Võ Quốc Bá Cẩn,26,Võ Thành Văn,1,Vojtěch Jarník,6,Vũ Hữu Bình,7,Vương Trung Dũng,1,WFNMC Journal,1,Wiles,1,Yên Bái,20,Yên Định,1,Yên Thành,1,Zhautykov,11,Zhou Yuan Zhe,1,
ltr
item
MOlympiad: [Solutions] Sharygin Geometry Mathematical Olympiad 2016 (Correspondence Round)
[Solutions] Sharygin Geometry Mathematical Olympiad 2016 (Correspondence Round)
MOlympiad
https://www.molympiad.net/2018/08/sharygin-geometry-mathematical-olympiad-2016sharygin-geometry-mathematical-olympiad-2016-correspondence-correspondence.html
https://www.molympiad.net/
https://www.molympiad.net/
https://www.molympiad.net/2018/08/sharygin-geometry-mathematical-olympiad-2016sharygin-geometry-mathematical-olympiad-2016-correspondence-correspondence.html
true
2506595080985176441
UTF-8
Loaded All Posts Not found any posts VIEW ALL Readmore Reply Cancel reply Delete By Home PAGES POSTS View All RECOMMENDED FOR YOU LABEL ARCHIVE SEARCH ALL POSTS Not found any post match with your request Back Home Sunday Monday Tuesday Wednesday Thursday Friday Saturday Sun Mon Tue Wed Thu Fri Sat January February March April May June July August September October November December Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec just now 1 minute ago $$1$$ minutes ago 1 hour ago $$1$$ hours ago Yesterday $$1$$ days ago $$1$$ weeks ago more than 5 weeks ago Followers Follow THIS PREMIUM CONTENT IS LOCKED Please share to unlock Copy All Code Select All Code All codes were copied to your clipboard Can not copy the codes / texts, please press [CTRL]+[C] (or CMD+C with Mac) to copy