$hide=mobile

[Solutions] Sharygin Geometry Mathematical Olympiad 2015 (Correspondence Round)

  1. Tanya cut out a convex polygon from the paper, fold it several times and obtained a two-layers quadrilateral. Can the cutted polygon be a heptagon?
  2. Let $O$ and $H$ be the circumcenter and the orthocenter of a triangle $A B C .$ The line passing through the midpoint of $O H$ and parallel to $B C$ meets $A B$ and $A C$ at points $D$ and $E .$ It is known that $O$ is the incenter of triangle $A D E .$ Find the angles of $A B C$.
  3. The side $A D$ of a square $A B C D$ is the base of an obtuse-angled isosceles triangle $A E D$ with vertex $E$ lying inside the square. Let $A F$ be a diameter of the circumcircle of this triangle, and $G$ be a point on $C D$ such that $C G=D F$. Prove that angle $B G E$ is less than half of angle $A E D$.
  4. In a parallelogram $A B C D$ the trisectors of angles $A$ and $B$ are drawn. Let $O$ be the common points of the trisectors nearest to $A B .$ Let $A O$ meet the second trisector of angle $B$ at point $A_{1},$ and let $B O$ meet the second trisector of angle $A$ at point $B_{1} .$ Let $M$ be the midpoint of $A_{1} B_{1} .$ Line $M O$ meets $A B$ at point $N .$ Prove that triangle $A_{1} B_{1} N$ is equilateral.
  5. Let a triangle $A B C$ be given. Two circles passing through $A$ touch $B C$ at points $B$ and $C$ respectively. Let $D$ be the second common point of these circles $(A$ is closer to $B C$ than $D$ ). It is known that $B C=2 B D$. Prove that $\angle D A B=2 \angle A D B$.
  6. Let $A A^{\prime}, B B^{\prime}$ and $C C^{\prime}$ be the altitudes of an acute-angled triangle $A B C$. Points $C_{a}, C_{b}$ are symmetric to $C^{\prime}$ wrt $A A^{\prime}$ and $B B^{\prime} .$ Points $A_{b}, A_{c}, B_{c}, B_{a}$ are defined similarly. Prove that lines $A_{b} B_{a}, B_{c} C_{b}$ and $C_{a} A_{c}$ are parallel.
  7. The altitudes $A A_{1}$ and $C C_{1}$ of a triangle $A B C$ meet at point $H .$ Point $H_{A}$ is symmetric to $H$ about $A$. Line $H_{A} C_{1}$ meets $B C$ at point $C^{\prime} ;$ point $A^{\prime}$ is defined similarly. Prove that $A^{\prime} C^{\prime} \| A C$.
  8. Diagonals of an isosceles trapezoid $A B C D$ with bases $B C$ and $A D$ are perpendicular. Let $D E$ be the perpendicular from $D$ to $A B,$ and let $C F$ be the perpendicular from $C$ to $D E .$ Prove that angle $D B F$ is equal to half of angle $F C D .$
  9. Let $A B C$ be an acute-angled triangle. Construct points $A^{\prime}$, $B^{\prime},$ $C^{\prime}$ on its sides $B C$, $C A$, $A B$ such that $A^{\prime} B^{\prime} \| A B$, $C^{\prime} C$ is the bisector of angle $A^{\prime} C^{\prime} B^{\prime}$, $A^{\prime} C^{\prime}+B^{\prime} C^{\prime}=A B$.
  10. The diagonals of a convex quadrilateral divide it into four similar triangles. Prove that is possible to inscribe a circle into this quadrilateral.
  11. Let $H$ be the orthocenter of an acute-angled triangle $A B C$. The perpendicular bisector to segment $B H$ meets $B A$ and $B C$ at points $A_{0}, C_{0}$ respectively. Prove that the perimeter of triangle $A_{0} O C_{0}(O$ is the circumcenter of $\triangle A B C)$ is equal to $A C$.
  12. Find the maximal number of discs which can be disposed on the plane so that each two of them have a common point and no three have it.
  13. Let $A H_{1}, B H_{2}$ and $C H_{3}$ be the altitudes of a triangle $A B C .$ Point $M$ is the midpoint of $H_{2} H_{3} .$ Line $A M$ meets $H_{2} H_{1}$ at point $K .$ Prove that $K$ lies on the medial line of $A B C$ parallel to $A C$.
  14. Let $A B C$ be an acute-angled, nonisosceles triangle. Point $A_{1}, A_{2}$ are symmetric to the feet of the internal and the external bisectors of angle $A$ wrt the midpoint of $B C$. Segment $A_{1} A_{2}$ is a diameter of a circle $\alpha .$ Circles $\beta$ and $\gamma$ are defined similarly. Prove that these three circles have two common points.
  15. The sidelengths of a triangle $A B C$ are not greater than $1 .$ Prove that $p(1-2 R r)$ is not greater than 1 , where $p$ is the semiperimeter, $R$ and $r$ are the circumradius and the inradius of $A B C$.
  16. The diagonals of a convex quadrilateral divide it into four triangles. Restore the quadrilateral by the circumcenters of two adjacent triangles and the incenters of two mutually opposite triangles.
  17. Let $O$ be the circumcenter of a triangle $A B C .$ The projections of points $D$ and $X$ to the sidelines of the triangle lie on lines $l$ and $L$ such that $l \| X O .$ Prove that the angles formed by $L$ and by the diagonals of quadrilateral $A B C D$ are equal.
  18. Let $A B C D E F$ be a cyclic hexagon, points $K, L, M, N$ be the common points of lines $A B$ and $C D, A C$ and $B D, A F$ and $D E, A E$ and $D F$ respectively. Prove that if three of these points are collinear then the fourth point lies on the same line.
  19. Let $L$ and $K$ be the feet of the internal and the external bisector of angle $A$ of a triangle $A B C .$ Let $P$ be the common point of the tangents to the circumcircle of the triangle at $B$ and $C .$ The perpendicular from $L$ to $B C$ meets $A P$ at point $Q .$ Prove that $Q$ lies on the medial line of triangle $L K P$.
  20. Given are a circle and an ellipse lying inside it with focus $C .$ Find the locus of the circumcenters of triangles $A B C,$ where $A B$ is a chord of the circle touching the ellipse.
  21. A quadrilateral $A B C D$ is inscribed into a circle $\omega$ with center $O .$ Let $M_{1}$ and $M_{2}$ be the midpoints of segments $A B$ and $C D$ respectively. Let $\Omega$ be the circumcircle of triangle $O M_{1} M_{2} .$ Let $X_{1}$ and $X_{2}$ be the common points of $\omega$ and $\Omega,$ and $Y_{1}$ and $Y_{2}$ the second common points of $\Omega$ with the circumcircles of triangles $C D M_{1}$ and $A B M_{2}$. Prove that $X_{1} X_{2} \| Y_{1} Y_{2}$
  22. The faces of an icosahedron are painted into 5 colors in such a way that two faces painted into the same color have no common points, even a vertices. Prove that for any point lying inside the icosahedron the sums of the distances from this point to the red faces and the blue faces are equal.
  23. A tetrahedron $A B C D$ is given. The incircles of triangles $A B C$ and $A B D$ with centers $O_{1}, O_{2},$ touch $A B$ at points $T_{1}, T_{2} .$ The plane $\pi_{A B}$ passing through the midpoint of $T_{1} T_{2}$ is perpendicular to $O_{1} O_{2} .$ The planes $\pi_{A C}, \pi_{B C}, \pi_{A D}, \pi_{B D}, \pi_{C D}$ are defined similarly. Prove that these six planes have a common point.
  24. The insphere of a tetrahedron $A B C D$ with center $O$ touches its faces at points $A_{1}, B_{1}, C_{1}$ и $D_{1}$.
    a) Let $P_{a}$ be a point such that its reflections in lines $O B, O C$ and $O D$ lie on plane $B C D$. Points $P_{b}, P_{c}$ and $P_{d}$ are defined similarly. Prove that lines $A_{1} P_{a}, B_{1} P_{b}, C_{1} P_{c}$ and $D_{1} P_{d}$ concur at some point $P$.
    b) Let $I$ be the incenter of $A_{1} B_{1} C_{1} D_{1}$ and $A_{2}$ the common point of line $A_{1} I$ with plane $B_{1} C_{1} D_{1} .$ Points $B_{2}, C_{2}, D_{2}$ are defined similarly. Prove that $P$ lies inside $A_{2} B_{2} C_{2} D_{2}$

Post a Comment


$hide=mobile

$hide=mobile

$hide=mobile

$show=post$type=three$count=6$sr=random$t=oot$h=1$l=0$meta=hide$rm=hide$sn=0

Kỷ Yếu$cl=violet$type=three$count=6$sr=random$t=oot$h=1$l=0$meta=hide$rm=hide$sn=0$hide=mobile

Journals$cl=green$type=three$count=6$sr=random$t=oot$h=1$l=0$meta=hide$rm=hide$sn=0$hide=mobile

Name

Ả-rập Xê-út,1,Abel,5,Albania,2,AMM,3,Amsterdam,5,Ấn Độ,2,An Giang,23,Andrew Wiles,1,Anh,2,Áo,1,APMO,19,Ba Đình,2,Ba Lan,1,Bà Rịa Vũng Tàu,52,Bắc Giang,50,Bắc Kạn,1,Bạc Liêu,9,Bắc Ninh,48,Bắc Trung Bộ,7,Bài Toán Hay,5,Balkan,38,Baltic Way,30,BAMO,1,Bất Đẳng Thức,66,Bến Tre,46,Benelux,14,Bình Định,45,Bình Dương,23,Bình Phước,38,Bình Thuận,34,Birch,1,Booklet,11,Bosnia Herzegovina,3,BoxMath,3,Brazil,2,Bùi Đắc Hiên,1,Bùi Thị Thiện Mỹ,1,Bùi Văn Tuyên,1,Bùi Xuân Diệu,1,Bulgaria,6,Buôn Ma Thuột,1,BxMO,13,Cà Mau,14,Cần Thơ,14,Canada,40,Cao Bằng,7,Cao Quang Minh,1,Câu Chuyện Toán Học,36,Caucasus,2,CGMO,10,China,10,Chọn Đội Tuyển,353,Chu Tuấn Anh,1,Chuyên Đề,124,Chuyên Sư Phạm,31,Chuyên Trần Hưng Đạo,3,Collection,8,College Mathematic,1,Concours,1,Cono Sur,1,Contest,618,Correspondence,1,Cosmin Poahata,1,Crux,2,Czech-Polish-Slovak,26,Đà Nẵng,39,Đa Thức,2,Đại Số,20,Đắk Lắk,56,Đắk Nông,7,Đan Phượng,1,Danube,7,Đào Thái Hiệp,1,ĐBSCL,2,Đề Thi,1,Đề Thi HSG,1770,Đề Thi JMO,1,Điện Biên,8,Định Lý,1,Định Lý Beaty,1,Đỗ Hữu Đức Thịnh,1,Do Thái,3,Doãn Quang Tiến,4,Đoàn Quỳnh,1,Đoàn Văn Trung,1,Đống Đa,4,Đồng Nai,49,Đồng Tháp,52,Du Hiền Vinh,1,Đức,1,Duyên Hải Bắc Bộ,25,E-Book,33,EGMO,17,ELMO,19,EMC,9,Epsilon,1,Estonian,5,Euler,1,Evan Chen,1,Fermat,3,Finland,4,Forum Of Geometry,2,Furstenberg,1,G. Polya,3,Gặp Gỡ Toán Học,26,Gauss,1,GDTX,3,Geometry,12,Gia Lai,26,Gia Viễn,2,Giải Tích Hàm,1,Giảng Võ,1,Giới hạn,2,Goldbach,1,Hà Giang,2,Hà Lan,1,Hà Nam,29,Hà Nội,232,Hà Tĩnh,73,Hà Trung Kiên,1,Hải Dương,50,Hải Phòng,42,Hàn Quốc,5,Hậu Giang,4,Hậu Lộc,1,Hilbert,1,Hình Học,33,HKUST,7,Hòa Bình,13,Hoài Nhơn,1,Hoàng Bá Minh,1,Hoàng Minh Quân,1,Hodge,1,Hojoo Lee,2,HOMC,5,HongKong,8,HSG 10,101,HSG 11,91,HSG 12,587,HSG 9,425,HSG Cấp Trường,78,HSG Quốc Gia,106,HSG Quốc Tế,16,Hứa Lâm Phong,1,Hứa Thuần Phỏng,1,Hùng Vương,2,Hưng Yên,33,Hương Sơn,2,Huỳnh Kim Linh,1,Hy Lạp,1,IMC,26,IMO,56,IMT,1,India,45,Inequality,13,InMC,1,International,315,Iran,11,Jakob,1,JBMO,41,Jewish,1,Journal,20,Junior,38,K2pi,1,Kazakhstan,1,Khánh Hòa,17,KHTN,54,Kiên Giang,64,Kim Liên,1,Kon Tum,18,Korea,5,Kvant,2,Kỷ Yếu,42,Lai Châu,4,Lâm Đồng,33,Lạng Sơn,21,Langlands,1,Lào Cai,17,Lê Hải Châu,1,Lê Hải Khôi,1,Lê Hoành Phò,4,Lê Khánh Sỹ,3,Lê Minh Cường,1,Lê Phúc Lữ,1,Lê Phương,1,Lê Quý Đôn,1,Lê Viết Hải,1,Lê Việt Hưng,1,Leibniz,1,Long An,42,Lớp 10,10,Lớp 10 Chuyên,455,Lớp 10 Không Chuyên,229,Lớp 11,1,Lục Ngạn,1,Lượng giác,1,Lương Tài,1,Lưu Giang Nam,2,Lý Thánh Tông,1,Macedonian,1,Malaysia,1,Margulis,2,Mark Levi,1,Mathematical Excalibur,1,Mathematical Reflections,1,Mathematics Magazine,1,Mathematics Today,1,Mathley,1,MathLinks,1,MathProblems Journal,1,Mathscope,8,MathsVN,5,MathVN,1,MEMO,11,Metropolises,4,Mexico,1,MIC,1,Michael Guillen,1,Mochizuki,1,Moldova,1,Moscow,1,Mỹ,10,MYM,227,MYTS,4,Nam Định,33,Nam Phi,1,Nam Trung Bộ,1,National,249,Nesbitt,1,Newton,4,Nghệ An,52,Ngô Bảo Châu,2,Ngô Việt Hải,1,Ngọc Huyền,2,Nguyễn Anh Tuyến,1,Nguyễn Bá Đang,1,Nguyễn Đình Thi,1,Nguyễn Đức Tấn,1,Nguyễn Đức Thắng,1,Nguyễn Duy Khương,1,Nguyễn Duy Tùng,1,Nguyễn Hữu Điển,3,Nguyễn Mình Hà,1,Nguyễn Minh Tuấn,8,Nguyễn Phan Tài Vương,1,Nguyễn Phú Khánh,1,Nguyễn Phúc Tăng,1,Nguyễn Quản Bá Hồng,1,Nguyễn Quang Sơn,1,Nguyễn Tài Chung,5,Nguyễn Tăng Vũ,1,Nguyễn Tất Thu,1,Nguyễn Thúc Vũ Hoàng,1,Nguyễn Trung Tuấn,8,Nguyễn Tuấn Anh,2,Nguyễn Văn Huyện,3,Nguyễn Văn Mậu,25,Nguyễn Văn Nho,1,Nguyễn Văn Quý,2,Nguyễn Văn Thông,1,Nguyễn Việt Anh,1,Nguyễn Vũ Lương,2,Nhật Bản,4,Nhóm $\LaTeX$,4,Nhóm Toán,1,Ninh Bình,43,Ninh Thuận,15,Nội Suy Lagrange,2,Nội Suy Newton,1,Nordic,19,Olympiad Corner,1,Olympiad Preliminary,2,Olympic 10,99,Olympic 10/3,5,Olympic 11,92,Olympic 12,30,Olympic 24/3,7,Olympic 27/4,20,Olympic 30/4,69,Olympic KHTN,6,Olympic Sinh Viên,73,Olympic Tháng 4,12,Olympic Toán,304,Olympic Toán Sơ Cấp,3,PAMO,1,Phạm Đình Đồng,1,Phạm Đức Tài,1,Phạm Huy Hoàng,1,Pham Kim Hung,3,Phạm Quốc Sang,2,Phan Huy Khải,1,Phan Thành Nam,1,Pháp,2,Philippines,8,Phú Thọ,30,Phú Yên,29,Phùng Hồ Hải,1,Phương Trình Hàm,11,Phương Trình Pythagoras,1,Pi,1,Polish,32,Problems,1,PT-HPT,14,PTNK,45,Putnam,25,Quảng Bình,44,Quảng Nam,32,Quảng Ngãi,34,Quảng Ninh,43,Quảng Trị,27,Quỹ Tích,1,Riemann,1,RMM,12,RMO,24,Romania,36,Romanian Mathematical,1,Russia,1,Sách Thường Thức Toán,7,Sách Toán,69,Sách Toán Cao Học,1,Sách Toán THCS,7,Saudi Arabia,7,Scholze,1,Serbia,17,Sharygin,24,Shortlists,56,Simon Singh,1,Singapore,1,Số Học - Tổ Hợp,27,Sóc Trăng,28,Sơn La,12,Spain,8,Star Education,5,Stars of Mathematics,11,Swinnerton-Dyer,1,Talent Search,1,Tăng Hải Tuân,2,Tạp Chí,14,Tập San,6,Tây Ban Nha,1,Tây Ninh,29,Thạch Hà,1,Thái Bình,39,Thái Nguyên,49,Thái Vân,2,Thanh Hóa,62,THCS,2,Thổ Nhĩ Kỳ,5,Thomas J. Mildorf,1,THPT Chuyên Lê Quý Đôn,1,THPTQG,15,THTT,7,Thừa Thiên Huế,36,Tiền Giang,19,Tin Tức Toán Học,1,Titu Andreescu,2,Toán 12,7,Toán Cao Cấp,3,Toán Chuyên,2,Toán Rời Rạc,5,Toán Tuổi Thơ,3,Tôn Ngọc Minh Quân,2,TOT,1,TPHCM,126,Trà Vinh,6,Trắc Nghiệm,1,Trắc Nghiệm Toán,2,Trại Hè,34,Trại Hè Hùng Vương,25,Trại Hè Phương Nam,5,Trần Đăng Phúc,1,Trần Minh Hiền,2,Trần Nam Dũng,9,Trần Phương,1,Trần Quang Hùng,1,Trần Quốc Anh,2,Trần Quốc Luật,1,Trần Quốc Nghĩa,1,Trần Tiến Tự,1,Trịnh Đào Chiến,2,Trung Quốc,14,Trường Đông,19,Trường Hè,7,Trường Thu,1,Trường Xuân,2,TST,56,Tuyên Quang,6,Tuyển Sinh,3,Tuyển Sinh 10,680,Tuyển Tập,44,Tuymaada,4,Undergraduate,67,USA,44,USAJMO,10,USATST,7,Uzbekistan,1,Vasile Cîrtoaje,4,Vật Lý,1,Viện Toán Học,2,Vietnam,4,Viktor Prasolov,1,VIMF,1,Vinh,27,Vĩnh Long,21,Vĩnh Phúc,64,Virginia Tech,1,VLTT,1,VMEO,4,VMF,12,VMO,47,VNTST,22,Võ Anh Khoa,1,Võ Quốc Bá Cẩn,26,Võ Thành Văn,1,Vojtěch Jarník,6,Vũ Hữu Bình,7,Vương Trung Dũng,1,WFNMC Journal,1,Wiles,1,Yên Bái,20,Yên Định,1,Yên Thành,1,Zhautykov,11,Zhou Yuan Zhe,1,
ltr
item
MOlympiad: [Solutions] Sharygin Geometry Mathematical Olympiad 2015 (Correspondence Round)
[Solutions] Sharygin Geometry Mathematical Olympiad 2015 (Correspondence Round)
MOlympiad
https://www.molympiad.net/2018/08/sharygin-geometry-mathematical-olympiad-2015-correspondence.html
https://www.molympiad.net/
https://www.molympiad.net/
https://www.molympiad.net/2018/08/sharygin-geometry-mathematical-olympiad-2015-correspondence.html
true
2506595080985176441
UTF-8
Loaded All Posts Not found any posts VIEW ALL Readmore Reply Cancel reply Delete By Home PAGES POSTS View All RECOMMENDED FOR YOU LABEL ARCHIVE SEARCH ALL POSTS Not found any post match with your request Back Home Sunday Monday Tuesday Wednesday Thursday Friday Saturday Sun Mon Tue Wed Thu Fri Sat January February March April May June July August September October November December Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec just now 1 minute ago $$1$$ minutes ago 1 hour ago $$1$$ hours ago Yesterday $$1$$ days ago $$1$$ weeks ago more than 5 weeks ago Followers Follow THIS PREMIUM CONTENT IS LOCKED Please share to unlock Copy All Code Select All Code All codes were copied to your clipboard Can not copy the codes / texts, please press [CTRL]+[C] (or CMD+C with Mac) to copy