$hide=mobile

[Đáp Án] Đề Thi Tuyển Sinh Lớp 10 THPT TP HCM 2018-2019

  1. Cho Parabol $(P) : y = x^2$ và đường thẳng $(d) : y = 3x - 2$.
    a) Vẽ $(P)$ và $(d)$ trên cùng hệ trục tọa độ.
    b) Tìm tọa độ giao điểm của $(P)$ và $(d)$ bằng phép tính.
  2. Cho phương trình $3x^2 - x - 1 = 0$ có hai nghiệm $x_1$, $x_2$. Không giải phương trình, hãy tính giá trị của biểu thức $$A = x_1^2 + x_2^2.$$
  3. Mối quan hệ giữa thang đo nhiệt độ $F$ (Fahrenheit) và thang đo nhiệt độ $C$ (Celsius) được cho bởi công thức $T_F = 1, 8T_C + 32$, trong đó $T_C$ là nhiệt độ tính theo độ $C$ và $T_F$ là nhiệt độ tính theo độ $F$. Ví dụ $T_C = 0^\circ C$ tương ứng với $T_F = 32^\circ F$.
    a) Hỏi $25^\circ C$ ứng với bao nhiêu độ $F$?.
    b) Các nhà khoa học đã tìm ra mối liên hệ giữa $A$ là số tiếng kêu của một con dế trong một phút và $T_F$ là nhiệt độ cơ thể của nó bởi công thức $A = 5,6T_F - 275$, trong đó nhiệt độ $T_F$ tính theo độ $F$. Hỏi nếu con dế kêu $106$ tiếng trong một phút thì nhiệt độ của nó khoảng bao nhiêu độ $C$? (làm tròn đến hàng đơn vị)
  4. Kim tự tháp Kheops - Ai Cập có dạng hình chóp đều, đáy là hình vuông, các mặt bên là tam giác cân chung đỉnh. Mỗi cạnh bên của kim tự tháp dài $214m$, cạnh đáy của nó dài $230 m$.
    a) Tính theo mét chiều cao $h$ của kim tự tháp (làm tròn đến chữ số thập phân thứ bhất).
    b) Cho biết thể tích của hình chóp được tính theo công thức $V = \dfrac{1}{3}S\cdot h$, trong đó $S$ là diện tích mặt đáy, $h$ là chiều cao của hình chóp. Tính theo $m^3$ thể tích của kim tự tháp này (làm tròn đến hàng nghìn).
  5. Siêu thị $A$ thực hiện chương trình giảm giá cho khách hàng mua loại túi bột giặt $4kg$ như sau: Nếu mua $1$ túi thi được giảm $10 000$ đồng so với giá bán niêm yết. Nếu mua $2$ túi thì túi thứ nhất được giảm $10 000$ đồng và túi thứ hai được giảm $20 000$ đồng so với giá niêm yết. Nếu mua từ $3$ túi trở lên thì ngoài $2$ túi đầu được hưởng như chương trình giảm giá như trên, từ túi thứ ba trở đi, mỗi túi sẽ được giảm $20\%$ so với giá niêm yết.
    a) Bà Tư mua $5$ túi bột giặt loại $4kg$ ở siêu thị $A$ thì phải trả số tiền là bao nhiêu, biết rằng loại túi bột giặt bà Tư mua có giá niêm yết là $150 000$ đồng/túi.
    b) Siêu thị $B$ lại có hình thức giảm giá khác cho loại túi bột giặt nêu trên là: Nếu mua từ $3$ túi trở lên thì sẽ giảm giá $15\%$ cho mỗi túi. Nếu bà Tư mua $5$ túi bột giặt thì bà Tư nên mua ở siêu thị nào để số tiền phải trả là ít hơn? Biết rằng giá niêm yết của hai siêu thị là như nhau.
  6. Nhiệt độ sôi của nước không phải lúc nào cũng là $100^\circ C$ mà phụ thuộc vào độ cao của nơi đó so với mực nước biển. Chẳng hạn, Thành phố Hồ Chí Minh có độ cao xem như ngang mực nước biển $(x = 0m)$ thì nước sôi ở nhiệt độ là $y = 100^\circ C$, nhưng ở thủ đô La Paz của Bolivia, Nam Mỹ có độ cao $x = 3600m$ so với mực nước biển thì nhiệt độ sôi của nước là $y = 87^\circ C$. Ở độ cao trong khoảng vài $km$, ngườu ta thấy mối liên hệ giữa hai đại lượng này là một hàm số bậc nhất $y = ax + b$ trong đó $x$ là đại lượng biểu thị cho độ cao so với mực nước biển, $y$ là đại lượng biểu thị cho nhiệt độ sôi của nước.
    a) Xác định các hệ số $a$ và $b$.
    b) Thành phố Đà Lạt có độ cao $1500m$ so với mực nước biển. Hỏi nhiệt độ sôi của nước ở thành phố này là bao nhiêu?
  7. Năm học 2017-2018, Trường THCS Tiến Thành có ba lớp $9$ gồm $9A$, $9B$, $9C$ trong đó lớp $9A$ có $35$ học sinh và lớp $9B$ có $40$ học sinh. Tổng kết cuối năm học, lớp $9A$ có $15$ học sinh đạt danh hiệu học sinh giỏi, lớp $9B$ có $12$ học sinh đạt danh hiệu học sinh giỏi, lớp $9C$ có $20\%$ đạt danh hiệu học sinh giỏi và toàn khối $9$ có $30\%$ đạt danh hiệu học sinh giỏi. Hỏi lớp $9C$ có bao nhiêu học sinh?.
  8. Cho tam giác $ABC$ có $BC = 8cm$. Đường tròn tâm $O$ đường kính $BC$ cắt $AB$, $AC$ lần lượt tại $E$ và $D$. Hai đường thẳng $BD$ và $CE$ cắt nhau tại $H$.
    a) Chứng minh $AH$ vuông góc với $BC$.
    b) Gọi $K$ là trung điểm của $AH$. Chứng minh tứ giác $OEKD$ nội tiếp.
    c) Cho $\angle BAC = 60^\circ$. Tính độ dài đoạn $DE$ và tỉ số diện tích hai tam giác $AED$ và $ABC$.

Post a Comment


$hide=home

$type=three$count=6$sr=random$t=oot$h=1$l=0$meta=hide$rm=hide$sn=0

$hide=post$type=three$count=6$sr=random$t=oot$h=1$l=0$meta=hide$rm=hide$sn=0

$hide=home

Kỷ Yếu$cl=violet$type=three$count=6$sr=random$t=oot$h=1$l=0$meta=hide$rm=hide$sn=0

Journals$cl=green$type=three$count=6$sr=random$t=oot$h=1$l=0$meta=hide$rm=hide$sn=0

Name

Ả-rập Xê-út,1,Abel,5,Albania,2,AMM,2,Amsterdam,5,Ấn Độ,1,An Giang,21,Andrew Wiles,1,Anh,2,Áo,1,APMO,19,Ba Đình,2,Ba Lan,1,Bà Rịa Vũng Tàu,51,Bắc Giang,49,Bắc Kạn,1,Bạc Liêu,9,Bắc Ninh,46,Bắc Trung Bộ,7,Bài Toán Hay,5,Balkan,37,Baltic Way,30,BAMO,1,Bất Đẳng Thức,66,Bến Tre,46,Benelux,13,Bình Định,43,Bình Dương,21,Bình Phước,38,Bình Thuận,34,Birch,1,Booklet,11,Bosnia Herzegovina,3,BoxMath,3,Brazil,2,Bùi Đắc Hiên,1,Bùi Thị Thiện Mỹ,1,Bùi Văn Tuyên,1,Bùi Xuân Diệu,1,Bulgaria,5,Buôn Ma Thuột,1,BxMO,12,Cà Mau,13,Cần Thơ,14,Canada,39,Cao Bằng,6,Cao Quang Minh,1,Câu Chuyện Toán Học,36,Caucasus,2,CGMO,10,China,10,Chọn Đội Tuyển,347,Chu Tuấn Anh,1,Chuyên Đề,124,Chuyên Sư Phạm,31,Chuyên Trần Hưng Đạo,3,Collection,8,College Mathematic,1,Concours,1,Cono Sur,1,Contest,610,Correspondence,1,Cosmin Poahata,1,Crux,2,Czech-Polish-Slovak,25,Đà Nẵng,39,Đa Thức,2,Đại Số,20,Đắk Lắk,54,Đắk Nông,7,Đan Phượng,1,Danube,7,Đào Thái Hiệp,1,ĐBSCL,2,Đề Thi HSG,1637,Đề Thi JMO,1,Điện Biên,8,Định Lý,1,Định Lý Beaty,1,Đỗ Hữu Đức Thịnh,1,Do Thái,3,Doãn Quang Tiến,4,Đoàn Quỳnh,1,Đoàn Văn Trung,1,Đống Đa,4,Đồng Nai,49,Đồng Tháp,51,Du Hiền Vinh,1,Đức,1,Duyên Hải Bắc Bộ,25,E-Book,33,EGMO,16,ELMO,19,EMC,8,Epsilon,1,Estonian,5,Euler,1,Evan Chen,1,Fermat,3,Finland,4,Forum Of Geometry,2,Furstenberg,1,G. Polya,3,Gặp Gỡ Toán Học,26,Gauss,1,GDTX,3,Geometry,12,Gia Lai,25,Gia Viễn,2,Giải Tích Hàm,1,Giảng Võ,1,Giới hạn,2,Goldbach,1,Hà Giang,2,Hà Lan,1,Hà Nam,28,Hà Nội,231,Hà Tĩnh,72,Hà Trung Kiên,1,Hải Dương,49,Hải Phòng,42,Hàn Quốc,5,Hậu Giang,4,Hậu Lộc,1,Hilbert,1,Hình Học,33,HKUST,7,Hòa Bình,13,Hoài Nhơn,1,Hoàng Bá Minh,1,Hoàng Minh Quân,1,Hodge,1,Hojoo Lee,2,HOMC,5,HongKong,8,HSG 10,100,HSG 11,84,HSG 12,580,HSG 9,401,HSG Cấp Trường,78,HSG Quốc Gia,99,HSG Quốc Tế,16,Hứa Lâm Phong,1,Hứa Thuần Phỏng,1,Hùng Vương,2,Hưng Yên,32,Hương Sơn,2,Huỳnh Kim Linh,1,Hy Lạp,1,IMC,25,IMO,54,India,45,Inequality,13,InMC,1,International,307,Iran,11,Jakob,1,JBMO,41,Jewish,1,Journal,20,Junior,38,K2pi,1,Kazakhstan,1,Khánh Hòa,16,KHTN,53,Kiên Giang,63,Kim Liên,1,Kon Tum,18,Korea,5,Kvant,2,Kỷ Yếu,42,Lai Châu,4,Lâm Đồng,33,Lạng Sơn,21,Langlands,1,Lào Cai,16,Lê Hải Châu,1,Lê Hải Khôi,1,Lê Hoành Phò,4,Lê Khánh Sỹ,3,Lê Minh Cường,1,Lê Phúc Lữ,1,Lê Phương,1,Lê Quý Đôn,1,Lê Viết Hải,1,Lê Việt Hưng,1,Leibniz,1,Long An,42,Lớp 10,10,Lớp 10 Chuyên,452,Lớp 10 Không Chuyên,229,Lớp 11,1,Lục Ngạn,1,Lượng giác,1,Lương Tài,1,Lưu Giang Nam,2,Lý Thánh Tông,1,Macedonian,1,Malaysia,1,Margulis,2,Mark Levi,1,Mathematical Excalibur,1,Mathematical Reflections,1,Mathematics Magazine,1,Mathematics Today,1,Mathley,1,MathLinks,1,MathProblems Journal,1,Mathscope,8,MathsVN,5,MathVN,1,MEMO,10,Metropolises,4,Mexico,1,MIC,1,Michael Guillen,1,Mochizuki,1,Moldova,1,Moscow,1,Mỹ,9,MYTS,4,Nam Định,32,Nam Phi,1,Nam Trung Bộ,1,National,249,Nesbitt,1,Newton,4,Nghệ An,50,Ngô Bảo Châu,2,Ngô Việt Hải,1,Ngọc Huyền,2,Nguyễn Anh Tuyến,1,Nguyễn Bá Đang,1,Nguyễn Đình Thi,1,Nguyễn Đức Tấn,1,Nguyễn Đức Thắng,1,Nguyễn Duy Khương,1,Nguyễn Duy Tùng,1,Nguyễn Hữu Điển,3,Nguyễn Mình Hà,1,Nguyễn Minh Tuấn,8,Nguyễn Phan Tài Vương,1,Nguyễn Phú Khánh,1,Nguyễn Phúc Tăng,1,Nguyễn Quản Bá Hồng,1,Nguyễn Quang Sơn,1,Nguyễn Tài Chung,5,Nguyễn Tăng Vũ,1,Nguyễn Tất Thu,1,Nguyễn Thúc Vũ Hoàng,1,Nguyễn Trung Tuấn,8,Nguyễn Tuấn Anh,2,Nguyễn Văn Huyện,3,Nguyễn Văn Mậu,25,Nguyễn Văn Nho,1,Nguyễn Văn Quý,2,Nguyễn Văn Thông,1,Nguyễn Việt Anh,1,Nguyễn Vũ Lương,2,Nhật Bản,3,Nhóm $\LaTeX$,4,Nhóm Toán,1,Ninh Bình,41,Ninh Thuận,15,Nội Suy Lagrange,2,Nội Suy Newton,1,Nordic,19,Olympiad Corner,1,Olympiad Preliminary,2,Olympic 10,97,Olympic 10/3,5,Olympic 11,88,Olympic 12,30,Olympic 24/3,6,Olympic 27/4,19,Olympic 30/4,65,Olympic KHTN,6,Olympic Sinh Viên,73,Olympic Tháng 4,11,Olympic Toán,298,Olympic Toán Sơ Cấp,3,PAMO,1,Phạm Đình Đồng,1,Phạm Đức Tài,1,Phạm Huy Hoàng,1,Pham Kim Hung,3,Phạm Quốc Sang,2,Phan Huy Khải,1,Phan Thành Nam,1,Pháp,2,Philippines,8,Phú Thọ,30,Phú Yên,26,Phùng Hồ Hải,1,Phương Trình Hàm,11,Phương Trình Pythagoras,1,Pi,1,Polish,32,Problems,1,PT-HPT,14,PTNK,44,Putnam,25,Quảng Bình,44,Quảng Nam,31,Quảng Ngãi,33,Quảng Ninh,43,Quảng Trị,26,Quỹ Tích,1,Riemann,1,RMM,12,RMO,24,Romania,36,Romanian Mathematical,1,Russia,1,Sách Thường Thức Toán,7,Sách Toán,69,Sách Toán Cao Học,1,Sách Toán THCS,7,Saudi Arabia,7,Scholze,1,Serbia,17,Sharygin,24,Shortlists,56,Simon Singh,1,Singapore,1,Số Học - Tổ Hợp,27,Sóc Trăng,28,Sơn La,11,Spain,8,Star Education,5,Stars of Mathematics,11,Swinnerton-Dyer,1,Talent Search,1,Tăng Hải Tuân,2,Tạp Chí,14,Tập San,6,Tây Ban Nha,1,Tây Ninh,29,Thạch Hà,1,Thái Bình,39,Thái Nguyên,49,Thái Vân,2,Thanh Hóa,57,THCS,2,Thổ Nhĩ Kỳ,5,Thomas J. Mildorf,1,THPT Chuyên Lê Quý Đôn,1,THPTQG,15,THTT,6,Thừa Thiên Huế,35,Tiền Giang,19,Tin Tức Toán Học,1,Titu Andreescu,2,Toán 12,7,Toán Cao Cấp,3,Toán Chuyên,2,Toán Rời Rạc,5,Toán Tuổi Thơ,3,Tôn Ngọc Minh Quân,2,TOT,1,TPHCM,124,Trà Vinh,5,Trắc Nghiệm,1,Trắc Nghiệm Toán,2,Trại Hè,34,Trại Hè Hùng Vương,25,Trại Hè Phương Nam,5,Trần Đăng Phúc,1,Trần Minh Hiền,2,Trần Nam Dũng,9,Trần Phương,1,Trần Quang Hùng,1,Trần Quốc Anh,2,Trần Quốc Luật,1,Trần Quốc Nghĩa,1,Trần Tiến Tự,1,Trịnh Đào Chiến,2,Trung Quốc,12,Trường Đông,19,Trường Hè,7,Trường Thu,1,Trường Xuân,2,TST,55,Tuyên Quang,6,Tuyển Sinh,3,Tuyển Tập,44,Tuymaada,4,Undergraduate,66,USA,44,USAJMO,10,USATST,7,Uzbekistan,1,Vasile Cîrtoaje,4,Vật Lý,1,Viện Toán Học,2,Vietnam,4,Viktor Prasolov,1,VIMF,1,Vinh,27,Vĩnh Long,20,Vĩnh Phúc,63,Virginia Tech,1,VLTT,1,VMEO,4,VMF,12,VMO,46,VNTST,22,Võ Anh Khoa,1,Võ Quốc Bá Cẩn,26,Võ Thành Văn,1,Vojtěch Jarník,6,Vũ Hữu Bình,7,Vương Trung Dũng,1,WFNMC Journal,1,Wiles,1,Yên Bái,17,Yên Định,1,Yên Thành,1,Zhautykov,11,Zhou Yuan Zhe,1,
ltr
item
MOlympiad: [Đáp Án] Đề Thi Tuyển Sinh Lớp 10 THPT TP HCM 2018-2019
[Đáp Án] Đề Thi Tuyển Sinh Lớp 10 THPT TP HCM 2018-2019
MOlympiad
https://www.molympiad.net/2018/06/de-thi-tuyen-sinh-lop-10-thpt-tp-hcm-2018-2019.html
https://www.molympiad.net/
https://www.molympiad.net/
https://www.molympiad.net/2018/06/de-thi-tuyen-sinh-lop-10-thpt-tp-hcm-2018-2019.html
true
2506595080985176441
UTF-8
Loaded All Posts Not found any posts VIEW ALL Readmore Reply Cancel reply Delete By Home PAGES POSTS View All RECOMMENDED FOR YOU LABEL ARCHIVE SEARCH ALL POSTS Not found any post match with your request Back Home Sunday Monday Tuesday Wednesday Thursday Friday Saturday Sun Mon Tue Wed Thu Fri Sat January February March April May June July August September October November December Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec just now 1 minute ago $$1$$ minutes ago 1 hour ago $$1$$ hours ago Yesterday $$1$$ days ago $$1$$ weeks ago more than 5 weeks ago Followers Follow THIS PREMIUM CONTENT IS LOCKED Please share to unlock Copy All Code Select All Code All codes were copied to your clipboard Can not copy the codes / texts, please press [CTRL]+[C] (or CMD+C with Mac) to copy