Tuyển Sinh 2022-2023

Kĩ Thuật Phân Tích Bình Phương Cho Bất Đẳng Thức Hoán Vị

[full_width]
Bất đẳng thức hoán vị là những bài toán rất đẹp bới sự phát biểu đơn giản nhẹ nhàng của chúng. Tuy nhiên, việc giải chúng thì ngược lại, việc tìm một lời giải cho chúng vô cùng vất vả và khó khăn. Và đối với những bài toán có 2 đẳng thức trở lên thì mọi việc lại càng trở nên khó khăn hơn. Sau một thời gian học hỏi kinh nghiệm và tìm tòi, tôi đã tìm được một kĩ thuật để đánh giá cho những bất đẳng thức hoán vị đơn giản. Do độ khó của các bài toán nên đôi khi một số lời giải có đôi chút dài, nhưng bù lại là ta có thể làm chặt cho một số bài toán (đây là một điều bất ngờ mà kĩ thuật này mang lại).

Cũng xin nói thêm rằng bất đẳng thức hiện đại rất phong phú với rất nhiều bài tập. Tuy nhiên với bất đẳng thức hoán vị vòng quanh thì khác, nó rất ít nên có thể coi là những bài toán hiếm. Việc tạo ra một bất đẳng thức đúng đã là khó mà để bất đẳng thức đó hay thì càng khó hơn, nên đối với bất đẳng thức hoán vị thì điều đó lại càng khó thực hiện. Vì thế kĩ thuật này chỉ là một công cụ nhỏ nhưng lại vô cùng hữu ích để các bạn có thêm một hướng giải quyết các bài toán bất đẳng thức hoán vị vòng quanh ba biến.

Cơ Sở Của Kĩ Thuật

Sẽ thật bất ngờ nếu tôi nói với các bạn rằng cơ sở của kĩ thuật này là phương pháp phân tích bình phương $S.O.S$: là đưa bất đẳng thức thuần nhất ba biến $a$, $b$, $c$ về dạng $$S_a (b - c)^2 + S_b (c - a)^2 + S_c (a - b)^2 \ge 0.$$ Đối với bất đẳng thức đối xứng ba biến thì việc quy về dạng chính tắc $S.O.S$ như trên là đơn giản giúp ta dễ dàng giải quyết bài toán. Tuy nhiên, đối với bất đẳng thức hoán vị vòng quanh thì cách quy trên đôi khi không thích hợp và tạo ra các hệ số $S_a$, $S_b$, $S_c$ rất cồng kềnh và khó xử lí. Trong trường hợp đó có một cách khác là quy về dạng (tạm gọi nó là phân tích bình phương hoán vị $S.O.C$) $$S_a (b - c)^2 + S_b (c - a)^2 + S_c (a - b)^2 \ge S(a - b)(b - c)(c - a).$$ Cách quy trên có gì lợi?:
  1. Đối với các dạng hoán vị vòng quanh thì nó tự nhiên và đơn giản hơn cách đưa về $S.O.S$ chính thống.
  2. Đối với bất đẳng thức hoán vị thì ta chỉ cần xét một trong hai khả năng sau
    • Một trong ba số là lớn nhất (giả sử $a = \max\{a,b,c\}$) thì ta xét hai trường hợp có thể xảy ra là $a \ge b \ge c$ và $a \ge c \ge b$.
    • Một trong ba ở giữa hai số kia (giả sử là $b$), thì ta xét hai trường hợp có thể xảy ra là $a \ge b \ge c$ và $c \ge b \ge a$.
Vì vậy, nếu vế trái và $S$ không âm thì ta chỉ xét trường hợp $c \ge b \ge a$ mà bỏ qua trường hợp $a \ge b \ge c$. Cuối cùng cũng xin lưu ý luôn là đối với các bài toán sau đây chúng ta cũng chỉ xét trường hợp $c \ge b \ge a$, khi đó $$(a - b)(b - c)(c - a) \ge 0 \Rightarrow a^2 b + b^2 c + c^2 a \le ab^2 + bc^2 + ca^2,$$ còn với trường hợp $a \ge b \ge c$ thì $S(a - b)(b - c)(c - a) \le 0$, và ta chỉ phải làm theo phương pháp truyền thống $S.O.S$ là chứng minh bất đẳng thức $$S_a (b - c)^2 + S_b (c - a)^2 + S_c (a - b)^2 \ge 0$$

Phân Tích Cơ Sở

  1. $ab^2 + bc^2 + ca^2 - a^2 b - b^2 c - c^2 a = (a - b)(b - c)(c - a)$
  2. $ab^2 + bc^2 + ca^2 - 3abc = \dfrac{1}{2}\left( {(a - b)(b - c)(c - a) + a(b - c)^2 + b(c - a)^2 + c(a - b)^2 } \right)$
  3. $\dfrac{{a - b}}{{a + b}} + \dfrac{{b - c}}{{b + c}} + \dfrac{{c - a}}{{c + a}} = \dfrac{{ - (a - b)(b - c)(c - a)}}{{(a + b)(b + c)(c + a)}}$
  4. $\dfrac{a}{{a + b}} + \dfrac{b}{{b + c}} + \dfrac{c}{{c + a}} = \dfrac{1}{2}\left( {3 - \dfrac{{(a - b)(b - c)(c - a)}}{{(a + b)(b + c)(c + a)}}} \right)$
  5. $ab^3 + bc^3 + ca^3 - a^3 b - b^3 c - c^3 a = (a + b + c)(a - b)(b - c)(c - a)$
Bên cạnh các phân tích sơ sở này còn rất nhiều cách phân tích khác mà các bạn có thể tự tìm thấy trong quá trình giải toán.

Xây Dựng Định Lý

Chúng ta sẽ xây dựng định lí, đưa ra các tiêu chuẩn từ cách phân tích $$S_a (b - c)^2 + S_b (c - a)^2 + S_c (a - b)^2 \ge S(a - b)(b - c)(c - a).$$ Chú ý ở đây ta chỉ xét đến trường hợp $c \ge b \ge a$. Như thế thì $(a - b)(b - c) \ge 0$ nên $$\begin{align}&S_a (b - c)^2 + S_b (c - a)^2 + S_c (a - b)^2 \\ = &S_a (b - c)^2 + S_b (a - b + b - c)^2 + S_c  (a - b)^2 \\ = &\left( {S_b + S_c } \right)(a - b)^2 + \left( {S_a + S_b } \right)(b - c)^2 + 2S_b (a - b)(b - c) \\ \ge & 2\sqrt {\left( {S_a + S_b } \right)\left( {S_b + S_c } \right)} (a - b)(b - c) + 2S_b (a - b)(b - c)\end{align}$$ Do đó bất đẳng thức sẽ được chứng minh nếu ta chứng minh được $$2\sqrt {\left( {S_a + S_b } \right)\left( {S_b + S_c } \right)} + 2S_b - S \ge 0.$$ Xây dựng tương tự như trên bằng cách tách $a - b = c - b - (c - a)$ và $b - c = b - a - (c - a)$, ta cũng được thêm hai tiêu chuẩn nữa. Tiếp tục xây dựng ta có $$S_b (c - a)^2 = S_b (c - b + b - a)^2 \mathop \ge \limits_{AM - GM} 4S_b (c - b)(b - a)$$ và $$S_a (b - c)^2 + S_c (a - b)^2 \ge 2\sqrt {S_a .S_c } .(b - a)(c - b).$$ Do đó bất đẳng thức sẽ được chứng minh nếu ta chứng minh được $$4S_b + 2\sqrt {S_a .S_c } \ge S(c - a).$$ Ngoài ra ta còn có $$S_a (b - c)^2 + S_b (c - a)^2 + S_c (a - b)^2 \ge 3\sqrt[3]{{S_a S_b S_c (b - c)^2 (c - a)^2 (a - b)^2 }}.$$ Nên bất đẳng thức sẽ được chứng minh nếu ta chứng minh được $$27 S_a S_b S_c \ge S^3 (a - b)(b - c)(c - a).$$ Hệ thống các kết quả trên ta có các tiêu chuẩn sau
  1. $S_a + S_b \ge 0,S_b + S_c \ge 0,2\sqrt {\left( {S_a + S_b } \right)\left( {S_b + S_c } \right)} + 2S_b - S(c - a) \ge 0$
  2. $S_a + S_b \ge 0,S_a + S_c \ge 0,2\sqrt {\left( {S_a + S_b } \right)\left( {S_a + S_c } \right)} - 2S_a - S(c - b) \ge 0$
  3. $S_c + S_a \ge 0,S_c + S_b \ge 0,2\sqrt {\left( {S_c + S_a } \right)\left( {S_c + S_b } \right)} - 2S_c - S(b - a) \ge 0$
  4. $S_a \ge 0,S_c \ge 0,2\sqrt {S_a .S_c } + 4S_b - S(c - a) \ge 0$
  5. $S_a \ge 0,S_b \ge 0,S_c \ge 0,2\sqrt {S_b S_c } - S(c - b) \ge 0$
  6. $S_a \ge 0,S_b \ge 0,S_c \ge 0,2\sqrt {S_a S_b } - S(b - a) \ge 0$
  7. $S_a \ge 0,S_b \ge 0,S_c \ge 0,27S_a S_b S_c - S^3 (a - b)(b - c)(c - a) \ge 0$
Các tiêu chuẩn trên rất tiện để xử lí những bài toán có các hệ số $S_a$, $S_b$, $S_c$ cồng kềnh (đặc biệt là tiêu chuẩn 1 rất mạnh). Tuy nhiên nếu ta gặp những bài toán rất chặt đến nỗi không thể áp dụng được tiêu chí nào thì có một cách khác là đặt $c = a + x + y$ và $b = a + x$ $(x,y \ge 0)$. Cách làm này giúp ta có thể loại đi $a$ một cách nhanh chóng nhờ cách phân tích trên (bởi $c - a = x + y$, $b - a = x$). Hơn nữa ta lại còn có thể làm chặt cho bất đẳng thức nhờ các biến còn thừa lại. Các bài toán áp dụng sau để làm sáng tỏ thêm cho điều này. Ngoài ra, ta còn có thể chia nhỏ nhiều trường hợp nữa trong $c \ge b \ge a$ để dễ dàng giải quyết bài toán.

Áp Dụng Vào Giải Toán

  1. Cho các số thực không âm $a$, $b$, $c$. Chứng minh bất đẳng thức $$a^3 + b^3 + c^3 + 3abc\dfrac{{a^2 b + b^2 c + c^2 a}}{{ab^2 + bc^2 + ca^2 }} \ge ab(a + b) + bc(b + c) + ca(c + a).$$
  2. Chứng minh rằng với $a,b,c>0$ thì $$\dfrac{{a^3 }}{{2a^2 + b^2 }} + \dfrac{{b^3 }}{{2b^2 + c^2 }} + \dfrac{{c^3 }}{{2c^2 + a^2 }} \ge \dfrac{{a + b + c}}{3}.$$
  3. Cho các số thực không âm $a$, $b$, $c$. Chứng minh $$\dfrac{{4a}}{{a + b}} + \dfrac{{4b}}{{b + c}} + \dfrac{{4c}}{{c + a}} + \dfrac{{ab^2 + bc{}^2 + ca^2 + abc}}{{a^2 b + b^2 c + c^2 a + abc}} \ge 7.$$
  4. Cho các số thực dương $a$, $b$, $c$ sao cho $abc=1$. Chứng minh rằng $$\dfrac{{a + 3}}{{(a + 1)^2 }} + \dfrac{{b + 3}}{{(b + 1)^2 }} + \dfrac{{c + 3}}{{(c + 1)^2 }} \ge 3.$$
  5. Cho các số thực không âm $a$, $b$, $c$. Chứng minh bất đẳng thức $$4(a + b + c)^3 \ge 27\left( {ab^2 + bc{}^2 + ca^2 + abc} \right).$$
  6. Cho các số thực không âm $a$, $b$, $c$. Chứng minh bất đẳng thức $$a^3 + b^3 + c^3 + 2(a^2 b + b^2 c + c^2 a) \ge 3(ab^2 + bc^2 + ca^2 ).$$
  7. Cho các số thực dương $a$, $b$, $c$. Chứng minh $$\dfrac{{a^2 + b^2 + c^2 }}{{ab + bc + ca}} + \dfrac{3}{2}.\dfrac{{2\left( {a^2 b + b^2 c + c^2 a} \right) - abc}}{{2\left( {ab^2 + bc{}^2 + ca^2 } \right) - abc}} \ge \dfrac{5}{2}.$$
  8. Cho các số thực không âm $a$, $b$, $c$. Chứng minh bất đẳng thức $$\dfrac{{a^3 + b^3 + c^3 }}{3} \ge abc + \dfrac{3}{4}|(a - b)(b - c)(c - a)|.$$

Lời Giải Tham Khảo

  1. Nếu $a \ge b \ge c$ thì $a^2 b + b^2 c + c^2 a \ge ab^2 + bc^2 + ca^2$, nên theo bất đẳng thức Schur thì $$a^3 + b^3 + c^3 + 3abc\dfrac{{a^2 b + b^2 c + c^2 a}}{{ab^2 + bc^2 + ca^2 }} \ge a^3 + b^3 + c^3 + 3abc \ge ab(a + b) + bc(b + c) + ca(c + a).$$ Nếu $c \ge b \ge a$ thì bất đẳng thức được viết lại như sau $$a^3 + b^3 + c^3 - 3abc + 3abc\left( {\dfrac{{a^2 b + b^2 c + c^2 a}}{{ab^2 + bc{}^2 + ca^2 }} - 1} \right) \ge ab(a + b) + bc(b + c) + ca(c + a) - 6abc$$ hay là $$\begin{align}&\dfrac{1}{2}(a + b + c)\left( {(a - b)^2 + (b - c)^2 + (c - a)^2 } \right) - \dfrac{{3abc(a - b)(b - c)(c - a)}}{{ab^2 + bc{}^2 + ca^2 }} \\ \ge & a(b - c)^2 + b(c - a)^2 + c(a - b)^2\end{align}$$ hay là $$\begin{align}&\dfrac{1}{2}(a + b - c)(a - b)^2 + \dfrac{1}{2}(b + c - a)(b - c)^2 + \dfrac{1}{2}(c + a - b)(c - a)^2 \\ \ge & \dfrac{{3abc(a - b)(b - c)(c - a)}}{{ab^2 + bc{}^2 + ca^2 }}.\end{align}$$ Theo tiêu chuẩn 1 thì ta chỉ cần chứng minh $$2\sqrt {ac} + c + a - b - \dfrac{{3abc(c - a)}}{{ab^2 + bc{}^2 + ca^2 }} \ge 0.$$ Quy đồng, rút gọn và nhóm các số hạng lại với nhau ta được bất đẳng thức tương đương là $$2bc^2 \left( {\sqrt {ac} - a} \right) + ab^2 (c - b) + bc^2 (c - b) + a^2 c^2 + a^2 b^2 + a^3 c + 2ab^2 \sqrt {ac} + 2ca^2 \sqrt {ac} + 2a^2 bc \ge 0.$$ Bất đẳng thức trên đúng do $c \ge b \ge a$. Vậy ta có ta có điều phải chứng minh. Đẳng thức xảy ra khi và chỉ khi ba biến bằng nhua hoặc một trong ba biến bằng $0$ và hai biến còn lại bằng nhau.
  2. Để cho gọn ta kí hiệu $\sum$ là tổng cyclic (mỗi tổng gồm ba số hạng). Bằng cách biến đổi tương đương ta có $$\begin{align}\sum\dfrac{a^{3}-ab^{2}}{2a^{2}+b^{2}}\ge0\Leftrightarrow&\sum(a^{3}-ab^{2})(2b^{2}+c^{2})(2c^{2}+a^{2})\ge0\\\Leftrightarrow&3\sum a^{3}b^{2}c^{2}+2\sum a^{3}c^{4}+2\sum a^{5}b^{2}+\sum a^{5}c{}^{2}\ge4\sum ab^{4}c^{2}+2\sum ab^{2}c^{4}+2\sum a^{3}b^{4}\\\Leftrightarrow&2\sum\left(a^{5}b^{2}+a^{3}b^{2}c^{2}-2a^{4}b^{2}c\right)+\sum\left(a^{5}c^{2}+a^{3}b^{2}c^{2}-2a^{4}bc^{2}\right)\ge2\left(\sum a^{3}b^{4}-a^{3}c^{4}\right)\\\Leftrightarrow&2\sum a^{3}b^{2}(a-c)^{2}+\sum a^{3}c^{2}(a-b)^{2}\ge2(a-b)(b-c)(c-a)\left(\sum a^{2}b^{2}+\sum a^{2}bc\right).\end{align}$$ Bây giờ giả sử $a = \max\{ a,b,c\}$. Nếu $c<b$ thì bất đẳng thức trên đúng nên ta chỉ phải xét khi $a \ge c \ge b$. Ta sẽ chứng minh $$2a^3 b^2 (a - c)^2 + 2a^2 c^3 (c - b)^2 + a^3 c^2 (a - b)^2 \ge 2(a - c)(c - b)\left( {a^3 c^2 + a^3 bc + a^3 b^2 } \right).$$ Xét hai trường hợp
    • Xét khi $c - b \le a - c$, ta có $$b^2 (a - c)^2 + a^3 c^2 (a - b)^2 \ge 2a^3 b^2 (a - c)(c - b) + 4a^3 c^2 (a - c)(c - b).$$ Vì $a^3 b^2 + 2a^3 c^2 \ge a^3\left( {c^2 + bc + b^2 } \right)$ nên suy ra điều phải chứng minh.
    • Xét khi $c - b > a – c$, tương tự như trên ta có $$2a^2 c^3 (c - b)^2 + a^3 c^2 (a - b)^2 \ge 2a^2 c^3 (a - c)(c - b) + 4a^3 c{}^2(a - c)(c - b).$$ Vì $$\begin{align}a^2 c^3 + 2a^3 c^2 - a^3 \left( {c^2 + bc + b^2 } \right) > &a^2 c^2 b + a^3 bc - a^3 \left( {bc + b^2 } \right) \\ = &a^3 b(c - b) + a^2 bc(c - a) \ge 0\end{align}$$ nên ta cũng có điều phải chứng minh. Vậy bất đẳng thức được chứng minh xong. Đẳng thức xảy ra khi và chỉ khi $a=b=c$.
  3. Theo cách phân tích cơ sở 4 thì bất đẳng thức được viết lại thành $$2\left( {3 - \dfrac{{(a - b)(b - c)(c - a)}}{{(a + b)(b + c)(c + a)}}} \right) + \left( {\dfrac{{ab^2 + bc{}^2 + ca^2 + abc}}{{a^2 b + b^2 c + c^2 a + abc}} - 1} \right) \ge 6$$ hay là $$\dfrac{{(a - b)(b - c)(c - a)}}{{a^2 b + b^2 c + c^2 a + abc}} - \dfrac{{2(a - b)(b - c)(c - a)}}{{(a + b)(b + c)(c + a)}} \ge 0 $$ hay là $$\dfrac{{(a - b)(b - c)(c - a)\left[ {(a + b)(b + c)(c + a) - 2\left( {a^2 b + b^2 c + c^2 a + abc} \right)} \right]}}{{\left( {a^2 b + b^2 c + c^2 a + abc} \right)(a + b)(b + c)(c + a)}} \ge 0$$ hay là $$\dfrac{{\left[ {(a - b)(b - c)(c - a)} \right]^2 }}{{\left( {a^2 b + b^2 c + c^2 a + abc} \right)(a + b)(b + c)(c + a)}} \ge 0.$$ Bất đẳng thức trên hiển nhiên đúng. Vậy ta có điều phải chứng minh. Đẳng thức xảy ra khi và chỉ khi $a=b=c$.
  4. Do $abc=1$ nên đặt $a = \dfrac{y}{x}$, $b = \dfrac{z}{y}$, $c = \dfrac{x}{z}$. Bất đẳng thức trên được viết lại như sau $$\dfrac{{3x^2 + xy}}{{(x + y)^2 }} + \dfrac{{3y^2 + yz}}{{(y + z)^2 }} + \dfrac{{3z^2 + zx}}{{(z + x)^2 }} \ge 3$$ hay là $$\begin{align}&\dfrac{3}{4}\left[ {\left( {\dfrac{{x - y}}{{x + y}} + 1} \right)^2 + \left( {\dfrac{{y - z}}{{y + z}} + 1} \right)^2 + \left( {\dfrac{{z - x}}{{z + x}} + 1} \right)^2 } \right] \\ + &\dfrac{1}{4}\left[ {\dfrac{{(x + y)^2 - (x - y)^2 }}{{(x + y)^2 }} + \dfrac{{(y + z)^2 - (y - z)^2 }}{{(y + z)^2 }} + \dfrac{{(z + x)^2 - (z - x)^2 }}{{(z + x)^2 }}} \right] \ge 3\end{align}$$ hay là $$\begin{align}\left( {\dfrac{{x - y}}{{x + y}}} \right)^2 + \left( {\dfrac{{y - z}}{{y + z}}} \right)^2 + \left( {\dfrac{{z - x}}{{z + x}}} \right)^2 \ge & - 3\left( {\dfrac{{x - y}}{{x + y}} + \dfrac{{y - z}}{{y + z}} + \dfrac{{z - x}}{{z + x}}} \right) \\ = &3\dfrac{{(x - y)(y - z)(z - x)}}{{(x + y)(y + z)(z + x)}}.\end{align}$$
    • Nếu $(x - y)(y - z)(z - x) \le 0$ thì bất đẳng thức trên hiển nhiên đúng.
    • Nếu $(x - y)(y - z)(z - x) \ge 0$ thì $$\left( {\dfrac{{x - y}}{{x + y}}} \right)^2 + \left( {\dfrac{{y - z}}{{y + z}}} \right)^2 + \left( {\dfrac{{z - x}}{{z + x}}} \right)^2 \mathop \ge \limits_{AM - GM} 3\sqrt[3]{{\left( {\dfrac{{(x - y)(y - z)(z - x)}}{{(x + y)(y + z)(z + x)}}} \right)^2 }}$$ nên ta chỉ cần chứng minh $$\dfrac{{(x - y)(y - z)(z - x)}}{{(x + y)(y + z)(z + x)}} \le 1$$ hay là $$2\left( {x^2 y + y^2 z + z^2 x} \right) \ge 0.$$ Bất đẳng thức trên luôn đúng. Vậy ta có điều phải chứng minh. Đẳng thức xảy ra khi và chỉ khi $a=b=c=1$.
  5. Xét hai trường hợp
    • Nếu $a \ge b \ge c$ thì $$ab^2 + bc^2 + ca^2 + abc \ge ab^2 + bc{}^2 + ca^2 + abc$$ nên $$27\left( {ab^2 + bc{}^2 + ca^2 + abc} \right) \le \dfrac{{27}}{2}\left( {ab^2 + bc{}^2 + ca^2 + ab^2 + bc{}^2 + ca^2 + abc} \right).$$ Do đó ta chỉ cần chứng minh $$27\left( {ab^2 + bc{}^2 + ca^2 + ab^2 + bc{}^2 + ca^2 + abc} \right) \le 8(a + b + c)^3$$ hay là $$8\left( {a^3 + b^3 + c^3 } \right) \ge 3\left( {ab^2 + bc{}^2 + ca^2 + ab^2 + bc{}^2 + ca^2 } \right) + 6abc.$$ Bất đẳng thức trên hiển nhiên đúng theo bất đẳng thức $AM-GM$.
    • Nếu $c \ge b \ge a$ thì ta viết bất đẳng thức lại như sau $$4\sum {a^3 } + 12\sum {a^2 b} - 15\sum {ab^2 - 3abc \ge 0}$$ hay là $$4\left( {\sum {a^3 } - 3abc} \right) - \dfrac{3}{2}\left[ {\sum {(ab(a + b))} - 6abc} \right] + \dfrac{{27}}{2}\left( {\sum {a^2 b} - \sum {ab^2 } } \right) \ge 0$$ hay là $$2(a + b + c)\left[ {\sum {(a - b)^2 } } \right] - \dfrac{3}{2}\sum {\left( {a(b - c)^2 } \right)} \ge \dfrac{{27}}{2}(c - b)(b - a)(c - a)$$ hay là $$(4b + 4c + a)(b - c)^2 + (4c + 4a + b)(c - a)^2 + (4a + 4b + c)(a - b)^2 \ge 27(c - b)(b - a)(c - a)$$ hay là $$(5a + 5b + 8c)(c - b)^2 + (8a + 5b + 5c)(b - a)^2 + 2(4a + b + 4c)(c - b)(b - a) \\ \ge 27(c - b)(b - a)(c - a).$$ Đặt $c = a + x + y$, $b = a + x$. Bất đẳng thức được viết lại như sau $$y^2 (18a + 8y + 13x) + x^2 (18a + 5y + 10x) + 2(9a + 5x + 4y)xy \ge 27xy(x + y).$$ Loại $a$ thì ta chỉ cần chứng minh $$y^2 (8y + 13x) + x^2 (5y + 10x) + 2(5x + 4y)xy \ge 27xy(x + y) \Leftrightarrow 5x^3 + 4y^3 \ge 6x^2 y + 3xy^2.$$ Ta có $$2\left( {x^3 + x^3 + y^3 } \right)\mathop \ge \limits_{AM - GM} 6x^2 y;x^3 + y^3 + y^3 \mathop \ge \limits_{AM - GM} 6xy^2.$$ Do đó ta có điều phải chứng minh Bây giờ như đã nói ở phần Xây dựng định lí, ta sẽ làm chặt bất đẳng thức nhờ các biến còn thừa $$\dfrac{1}{2}.18a\left( {x^2 + y^2 + xy} \right)\mathop \ge \limits_{AM - GM} 9a.\dfrac{3}{4}.(x + y)^2 = \dfrac{{27}}{2}a(c - a)^2.$$ Như vậy là ta có bất đẳng thức chặt hơn là với $k = \min \{a,b,c\}$ và $t = \max\{ a,b,c\}$ thì $$4(a + b + c)^3 \ge 27\left( {ab^2 + bc{}^2 + ca^2 + abc} \right) + \dfrac{{27}}{4}k(t - k)^2.$$ Các bạn đừng lo cách làm chặt này chỉ đúng trong một trường hợp mà ta đang xét, bởi trong trường hợp ngược lại $a\ge b\ge c$ thì sau khi đánh giá bất đẳng thức $$(a - b)(b - c)(c - a) \le 0 \le - (a - b)(b - c)(c - a),$$ công việc còn lại chỉ là vấn đề tương tự.
  6. Xét hai trường hợp
    • Nếu $a \ge b \ge c$ thì $$\begin{align}2(a^2 b + b^2 c + c^2 a) &\ge 2(ab^2 + bc^2 + ca^2 ) \\ a^3 + b^3 + c^3 &\ge ab^2 + bc^2 + ca^2\end{align}$$ nên bất đẳng thức hiển nhiên đúng.
    • Nếu $c \ge b \ge a$ thì bất đẳng thức được viết lại như sau $$(a + b)(a - b)^2 + (b + c)(a - b)^2 + (c + a)(a - b)^2 \ge 5(a - b)(b - c)(c - a)$$ hay là $$(2a + b + c)(b - a)^2 + (2c + a + b)(c - b)^2 \ge (b - a)(c - b)(3c - 7a).$$ Đặt $c = a + x + y$, $b = a + x$. Bất đẳng thức được viết lại như sau $$x^2 (4a + 2x + y) + y^2 (4a + 3x + 2y) \ge xy( - 4a + 3x + 3y).$$ Loại $a$ đi thì ta chỉ cần chứng minh $$x^2 (2x + y) + y^2 (3x + 2y) \ge xy(3x + 3y) \Leftrightarrow 2x^3 + 2y^3 \ge 2x^2 y.$$ Bất đẳng thức trên đúng do $$2x^3 + y^3 \mathop \ge \limits_{AM - GM} 2x^2 y.$$ Cũng như bài toán trên, ta có thể làm chặt bài toán và thu được $$a^3 + b^3 + c^3 + 2(a^2 b + b^2 c + c^2 a) \ge 3(ab^2 + bc^2 + ca^2 ) + \dfrac{3}{2}k(t - k)^2$$
  7. Xét hai trường hợp
    • Nếu $a \ge b \ge c$ thì $\dfrac{{2(a^2 b + b^2 c + c^2 a) - abc}}{{2(ab^2 + bc^2 + ca^2 ) - abc}} \ge 1$, nên dễ dàng suy ra điều phải chứng minh.
    • Nếu $c \ge b \ge a$ thì bất đẳng thức được viết lại như sau $$\dfrac{{(a - b)^2 + (b - c)^2 + (c - a)^2 }}{{ab + bc + ca}} \ge \dfrac{{6(a - b)(b - c)(c - a)}}{{2\left( {ab^2 + bc{}^2 + ca^2 } \right) - abc}}.$$ Mà $$\dfrac{{(a - b)^2 + (b - c)^2 + (c - a)^2 }}{{ab + bc + ca}} = \dfrac{{2\left[ {(c - b)^2 + (b - a)^2 + (c - b)(b - a)} \right]}}{{ab + bc + ca}} \ge \dfrac{{6(c - b)(b - a)}}{{ab + bc + ca}}$$ nên ta chỉ cần chứng minh $$\dfrac{1}{{ab + bc + ca}} \ge \dfrac{{c - a}}{{2\left( {ab^2 + bc{}^2 + ca^2 } \right) - abc}}.$$ Quy đồng và rút gọn bất đẳng thức trên thành $$c(b - a)(c - a) + 2ca^2 + 3a^2 b \ge 0.$$ Bất đẳng thức trên hiển nhiên đúng. Vậy ta có điều phải chứng minh. Đẳng thức xảy ra khi và chỉ khi $a=b=c$.
  8. Thật ra ta có thể chứng minh bất đẳng thức mạnh hơn là $$\dfrac{{a^3 + b^3 + c^3 }}{3} \ge abc + |(a - b)(b - c)(c - a)|.$$ Không mất tính tổng quát giả sử$c \ge b \ge a$. Bất đẳng thức trên được viết lại như sau $$a^3 + b^3 + c^3 \ge 3abc + 3|(a - b)(b - c)(c - a)|$$ hay là $$(a + b + c)\left[ {(a - b)^2 + (b - c)^2 + (c - a)^2 } \right] \ge 6|(a - b)(b - c)(c - a)|.$$ Áp dụng tiêu chuẩn 4, ta cần phải chứng minh $$6(a + b + c) - 6(c - a) \ge 0 \Leftrightarrow 12a + 6b \ge 0.$$ Bất đẳng thức trên hiển nhiên. Vậy ta có điều phải chứng minh. Đẳng thức xảy ra khi và chỉ khi $a=b=c$. Thật ra hằng số tốt nhất trong bài toán trên là $\dfrac{1}{3}\sqrt {\dfrac{{3\sqrt 3 + 9}}{{\sqrt 3 - 1}}}$, tức là ta có bất đẳng thức $$\dfrac{{a^3 + b^3 + c^3 }}{3} \ge abc + \dfrac{1}{3}\sqrt {\dfrac{{3\sqrt 3 + 9}}{{\sqrt 3 - 1}}} |(a - b)(b - c)(c - a)|.$$ Nhưng để giải quyết bài toán này thì cần phải nhờ đến công cụ hàm số, nên không tiện nhắc đến ở đây.

Bài Tập Áp Dụng

Qua các ví dụ trên đã phần nào nói lên điểm mạnh của kĩ thuật này, và bây giờ các bạn thử áp dụng phương pháp này để giải quyết các bài toán

  1. Cho các số thực không âm $a$, $b$, $c$ sao cho $a^2 + b^2 + c^2 = 3$. Chứng minh $$ab^2 + bc{}^2 + ca^2 \le 2 + abc$$
  2. Cho các số thực không âm $a$, $b$, $c$ sao cho $a^2 + b^2 + c^2 = 1$. Chứng minh $$(a + b + c)(a - b)(b - c)(c - a) \le \dfrac{1}{4}$$
  3. Cho các số thực không âm $a$, $b$, $c$. Chứng minh bất đẳng thức $$\dfrac{a}{{b + c}} + \dfrac{b}{{c + a}} + \dfrac{c}{{a + b}} + \dfrac{{3abc}}{{2\left( {ab^2 + bc{}^2 + ca^2 } \right)}} \ge 2$$
MOlympiad.NET là dự án thu thập và phát hành các đề thi tuyển sinh và học sinh giỏi toán. Quý bạn đọc muốn giúp chúng tôi chỉnh sửa bài viết này, xin hãy để lại bình luận facebook (có thể đính kèm hình ảnh) hoặc google (có thể sử dụng $\LaTeX$) bên dưới. BBT rất mong bạn đọc ủng hộ UPLOAD đề thi và đáp án mới hoặc liên hệ
Chúng tôi nhận tất cả các định dạng của tài liệu: $\TeX$, PDF, WORD, IMG,...



Name

Abel Albania AMM Amsterdam An Giang Andrew Wiles Anh APMO Austria (Áo) Ba Đình Ba Lan Bà Rịa Vũng Tàu Bắc Bộ Bắc Giang Bắc Kạn Bạc Liêu Bắc Ninh Bắc Trung Bộ Bài Toán Hay Balkan Baltic Way BAMO Bất Đẳng Thức Bến Tre Benelux Bình Định Bình Dương Bình Phước Bình Thuận Birch BMO Booklet Bosnia Herzegovina BoxMath Brazil British Bùi Đắc Hiên Bùi Thị Thiện Mỹ Bùi Văn Tuyên Bùi Xuân Diệu Bulgaria Buôn Ma Thuột BxMO Cà Mau Cần Thơ Canada Cao Bằng Cao Quang Minh Câu Chuyện Toán Học Caucasus CGMO China - Trung Quốc Chọn Đội Tuyển Chu Tuấn Anh Chuyên Đề Chuyên SP TPHCM Chuyên SPHN Chuyên Trần Hưng Đạo Collection College Mathematic Concours Cono Sur Contest Correspondence Cosmin Poahata Crux Czech-Polish-Slovak Đà Nẵng Đa Thức Đại Số Đắk Lắk Đắk Nông Đan Phượng Danube Đào Thái Hiệp ĐBSCL Đề Thi Đề Thi HSG Đề Thi JMO Điện Biên Định Lý Định Lý Beaty Đỗ Hữu Đức Thịnh Do Thái Doãn Quang Tiến Đoàn Quỳnh Đoàn Văn Trung Đống Đa Đồng Nai Đồng Tháp Du Hiền Vinh Đức Dương Quỳnh Châu Duyên Hải Bắc Bộ E-Book EGMO ELMO EMC Epsilon Estonian Euler Evan Chen Fermat Finland Forum Of Geometry Furstenberg G. Polya Gặp Gỡ Toán Học Gauss GDTX Geometry Gia Lai Gia Viễn Giải Tích Hàm Giảng Võ Giới hạn Goldbach Hà Giang Hà Lan Hà Nam Hà Nội Hà Tĩnh Hà Trung Kiên Hải Dương Hải Phòng Hậu Giang Hậu Lộc Hilbert Hình Học HKUST Hòa Bình Hoài Nhơn Hoàng Bá Minh Hoàng Minh Quân Hodge Hojoo Lee HOMC HongKong HSG 10 HSG 10 2015-2016 HSG 10 2022-2023 HSG 10 Bà Rịa Vũng Tàu HSG 10 Bắc Giang HSG 10 Bạc Liêu HSG 10 Bắc Ninh HSG 10 Bình Định HSG 10 Bình Dương HSG 10 Bình Thuận HSG 10 Chuyên SPHN HSG 10 Đắk Lắk HSG 10 Đồng Nai HSG 10 Gia Lai HSG 10 Hà Nam HSG 10 Hà Tĩnh HSG 10 Hải Dương HSG 10 KHTN HSG 10 Nghệ An HSG 10 Phú Yên HSG 10 Thái Nguyên HSG 10 Thanh Hóa HSG 10 Trà Vinh HSG 10 Vĩnh Phúc HSG 11 HSG 11 2011-2012 HSG 11 2012-2013 HSG 11 Bà Rịa Vũng Tàu HSG 11 Bắc Giang HSG 11 Bạc Liêu HSG 11 Bắc Ninh HSG 11 Bình Định HSG 11 Bình Dương HSG 11 Bình Thuận HSG 11 Cà Mau HSG 11 Đà Nẵng HSG 11 Đồng Nai HSG 11 Hà Nam HSG 11 Hà Tĩnh HSG 11 Hải Phòng HSG 11 HSG 12 Quảng Ngãi HSG 11 Lạng Sơn HSG 11 Nghệ An HSG 11 Ninh Bình HSG 11 Thái Nguyên HSG 11 Thanh Hóa HSG 11 Trà Vinh HSG 11 Vĩnh Long HSG 11 Vĩnh Phúc HSG 12 HSG 12 2010-2011 HSG 12 2011-2012 HSG 12 2012-2013 HSG 12 2013-2014 HSG 12 2014-2015 HSG 12 2015-2016 HSG 12 2016-2017 HSG 12 2017-2018 HSG 12 2018-2019 HSG 12 2019-2020 HSG 12 2020-2021 HSG 12 2021-2022 HSG 12 An Giang HSG 12 Bà Rịa Vũng Tàu HSG 12 Bắc Giang HSG 12 Bạc Liêu HSG 12 Bắc Ninh HSG 12 Bến Tre HSG 12 Bình Định HSG 12 Bình Dương HSG 12 Bình Phước HSG 12 Bình Thuận HSG 12 Cà Mau HSG 12 Cần Thơ HSG 12 Cao Bằng HSG 12 Chuyên SPHN HSG 12 Đà Nẵng HSG 12 Đắk Lắk HSG 12 Đắk Nông HSG 12 Đồng Nai HSG 12 Đồng Tháp HSG 12 Gia Lai HSG 12 Hà Nam HSG 12 Hà Tĩnh HSG 12 Hải Dương HSG 12 Hải Phòng HSG 12 Hòa Bình HSG 12 Khánh Hòa HSG 12 KHTN HSG 12 Lạng Sơn HSG 12 Long An HSG 12 Nam Định HSG 12 Nghệ An HSG 12 Ninh Bình HSG 12 Phú Yên HSG 12 Quảng Nam HSG 12 Quảng Ngãi HSG 12 Quảng Ninh HSG 12 Sơn La HSG 12 Tây Ninh HSG 12 Thái Nguyên HSG 12 Thanh Hóa HSG 12 Thừa Thiên Huế HSg 12 Tiền Giang HSG 12 TPHCM HSG 12 Vĩnh Long HSG 12 Vĩnh Phúc HSG 9 HSG 9 2010-2011 HSG 9 2011-2012 HSG 9 2012-2013 HSG 9 2013-2014 HSG 9 2014-2015 HSG 9 2015-2016 HSG 9 2016-2017 HSG 9 2017-2018 HSG 9 2018-2019 HSG 9 2019-2020 HSG 9 2020-2021 HSG 9 2021-202 HSG 9 2021-2022 HSG 9 2022-2023 HSG 9 An Giang HSG 9 Bà Rịa Vũng Tàu HSG 9 Bắc Giang HSG 9 Bắc Ninh HSG 9 Bến Tre HSG 9 Bình Định HSG 9 Bình Dương HSG 9 Bình Phước HSG 9 Bình Thuận HSG 9 Cà Mau HSG 9 Cao Bằng HSG 9 Đà Nẵng HSG 9 Đắk Lắk HSG 9 Đắk Nông HSG 9 Đồng Nai HSG 9 Đồng Tháp HSG 9 Gia Lai HSG 9 Hà Giang HSG 9 Hà Nam HSG 9 Hà Tĩnh HSG 9 Hải Dương HSG 9 Hải Phòng HSG 9 Hòa Bình HSG 9 Khánh Hòa HSG 9 Lạng Sơn HSG 9 Long An HSG 9 Nam Định HSG 9 Nghệ An HSG 9 Ninh Bình HSG 9 Phú Yên HSG 9 Quảng Nam HSG 9 Quảng Ngãi HSG 9 Quảng Ninh HSG 9 Sơn La HSG 9 Tây Ninh HSG 9 Thanh Hóa HSG 9 Thừa Thiên Huế HSG 9 Tiền Giang HSG 9 TPHCM HSG 9 Trà Vinh HSG 9 Vĩnh Long HSG 9 Vĩnh Phúc HSG Cấp Trường HSG Quốc Gia HSG Quốc Tế Hứa Lâm Phong Hứa Thuần Phỏng Hùng Vương Hưng Yên Hương Sơn Huỳnh Kim Linh Hy Lạp IMC IMO IMT India - Ấn Độ Inequality InMC International Iran Jakob JBMO Jewish Journal Junior K2pi Kazakhstan Khánh Hòa KHTN Kiên Giang Kim Liên Kon Tum Korea - Hàn Quốc Kvant Kỷ Yếu Lai Châu Lâm Đồng Lăng Hồng Nguyệt Anh Lạng Sơn Langlands Lào Cai Lê Hải Châu Lê Hải Khôi Lê Hoành Phò Lê Hồng Phong Lê Khánh Sỹ Lê Minh Cường Lê Phúc Lữ Lê Phương Lê Quý Đôn Lê Viết Hải Lê Việt Hưng Leibniz Long An Lớp 10 Chuyên Lớp 10 Không Chuyên Lớp 11 Lục Ngạn Lượng giác Lương Tài Lưu Giang Nam Lý Thánh Tông Macedonian Malaysia Margulis Mark Levi Mathematical Excalibur Mathematical Reflections Mathematics Magazine Mathematics Today Mathley MathLinks MathProblems Journal Mathscope MathsVN MathVN MEMO Metropolises Mexico MIC Michael Guillen Mochizuki Moldova Moscow MYTS Nam Định Nam Phi National Nesbitt Newton Nghệ An Ngô Bảo Châu Ngô Việt Hải Ngọc Huyền Nguyễn Anh Tuyến Nguyễn Bá Đang Nguyễn Đình Thi Nguyễn Đức Tấn Nguyễn Đức Thắng Nguyễn Duy Khương Nguyễn Duy Tùng Nguyễn Hữu Điển Nguyễn Mình Hà Nguyễn Minh Tuấn Nguyễn Nhất Huy Nguyễn Phan Tài Vương Nguyễn Phú Khánh Nguyễn Phúc Tăng Nguyễn Quản Bá Hồng Nguyễn Quang Sơn Nguyễn Song Thiên Long Nguyễn Tài Chung Nguyễn Tăng Vũ Nguyễn Tất Thu Nguyễn Thúc Vũ Hoàng Nguyễn Trung Tuấn Nguyễn Tuấn Anh Nguyễn Văn Huyện Nguyễn Văn Mậu Nguyễn Văn Nho Nguyễn Văn Quý Nguyễn Văn Thông Nguyễn Việt Anh Nguyễn Vũ Lương Nhật Bản Nhóm $\LaTeX$ Nhóm Toán Ninh Bình Ninh Thuận Nội Suy Lagrange Nội Suy Newton Nordic Olympiad Corner Olympiad Preliminary Olympic 10 Olympic 10/3 Olympic 10/3 Đắk Lắk Olympic 11 Olympic 12 Olympic 23/3 Olympic 24/3 Olympic 24/3 Quảng Nam Olympic 27/4 Olympic 30/4 Olympic KHTN Olympic Sinh Viên Olympic Tháng 4 Olympic Toán Olympic Toán Sơ Cấp Ôn Thi 10 PAMO Phạm Đình Đồng Phạm Đức Tài Phạm Huy Hoàng Pham Kim Hung Phạm Quốc Sang Phan Huy Khải Phan Quang Đạt Phan Thành Nam Pháp Philippines Phú Thọ Phú Yên Phùng Hồ Hải Phương Trình Hàm Phương Trình Pythagoras Pi Polish Problems PT-HPT PTNK Putnam Quảng Bình Quảng Nam Quảng Ngãi Quảng Ninh Quảng Trị Quỹ Tích Riemann RMM RMO Romania Romanian Mathematical Russia Sách Thường Thức Toán Sách Toán Sách Toán Cao Học Sách Toán THCS Saudi Arabia - Ả Rập Xê Út Scholze Serbia Sharygin Shortlists Simon Singh Singapore Số Học - Tổ Hợp Sóc Trăng Sơn La Spain Star Education Stars of Mathematics Swinnerton-Dyer Talent Search Tăng Hải Tuân Tạp Chí Tập San Tây Ban Nha Tây Ninh Thạch Hà Thái Bình Thái Nguyên Thái Vân Thanh Hóa THCS Thổ Nhĩ Kỳ Thomas J. Mildorf THPT Chuyên Lê Quý Đôn THPTQG THTT Thừa Thiên Huế Tiền Giang Tin Tức Toán Học Titu Andreescu Toán 12 Toán Cao Cấp Toán Rời Rạc Toán Tuổi Thơ Tôn Ngọc Minh Quân TOT TPHCM Trà Vinh Trắc Nghiệm Trắc Nghiệm Toán Trại Hè Trại Hè Hùng Vương Trại Hè Phương Nam Trần Đăng Phúc Trần Minh Hiền Trần Nam Dũng Trần Phương Trần Quang Hùng Trần Quốc Anh Trần Quốc Luật Trần Quốc Nghĩa Trần Tiến Tự Trịnh Đào Chiến Trường Đông Trường Hè Trường Thu Trường Xuân TST TST 2008-2009 TST 2010-2011 TST 2011-2012 TST 2012-2013 TST 2013-2014 TST 2014-2015 TST 2015-2016 TST 2016-2017 TST 2017-2018 TST 2018-2019 TST 2019-2020 TST 2020-2021 TST 2021-2022 TST 2022-2023 TST An Giang TST Bà Rịa Vũng Tàu TST Bắc Giang TST Bắc Ninh TST Bến Tre TST Bình Định TST Bình Dương TST Bình Phước TST Bình Thuận TST Cà Mau TST Cần Thơ TST Cao Bằng TST Đà Nẵng TST Đắk Lắk TST Đắk Nông TST Đồng Nai TST Đồng Tháp TST Gia Lai TST Hà Nam TST Hà Tĩnh TST Hải Dương TST Hải Phòng TST Hòa Bình TST Khánh Hòa TST Lạng Sơn TST Long An TST Nam Định TST Nghệ An TST Ninh Bình TST Phú Yên TST PTNK TST Quảng Nam TST Quảng Ngãi TST Quảng Ninh TST Sơn La TST Thái Nguyên TST Thanh Hóa TST Thừa Thiên Huế TST Tiền Giang TST TPHCM TST Trà Vinh TST Vĩnh Long TST Vĩnh Phúc Tuyên Quang Tuyển Sinh Tuyển Sinh 10 Tuyển Sinh 10 An Giang Tuyển Sinh 10 Bà Rịa Vũng Tàu Tuyển Sinh 10 Bắc Giang Tuyển Sinh 10 Bạc Liêu Tuyển Sinh 10 Bắc Ninh Tuyển Sinh 10 Bến Tre Tuyển Sinh 10 Bình Định Tuyển Sinh 10 Bình Dương Tuyển Sinh 10 Bình Phước Tuyển Sinh 10 Bình Thuận Tuyển Sinh 10 Cà Mau Tuyển Sinh 10 Cao Bằng Tuyển Sinh 10 Chuyên SPHN Tuyển Sinh 10 Đà Nẵng Tuyển Sinh 10 Đắk Lắk Tuyển Sinh 10 Đắk Nông Tuyển Sinh 10 Đồng Nai Tuyển Sinh 10 Đồng Tháp Tuyển Sinh 10 Gia Lai Tuyển Sinh 10 Hà Giang Tuyển Sinh 10 Hà Nam Tuyển Sinh 10 Hà Nội Tuyển Sinh 10 Hà Tĩnh Tuyển Sinh 10 Hải Dương Tuyển Sinh 10 Hải Phòng Tuyển Sinh 10 Hòa Bình Tuyển Sinh 10 Khánh Hòa Tuyển Sinh 10 KHTN Tuyển Sinh 10 Lạng Sơn Tuyển Sinh 10 Long An Tuyển Sinh 10 Nam Định Tuyển Sinh 10 Nghệ An Tuyển Sinh 10 Ninh Bình Tuyển Sinh 10 Phú Yên Tuyển Sinh 10 PTNK Tuyển Sinh 10 Quảng Nam Tuyển Sinh 10 Quảng Ngãi Tuyển Sinh 10 Quảng Ninh Tuyển Sinh 10 Sơn La Tuyển Sinh 10 Tây Ninh Tuyển Sinh 10 Thái Nguyên Tuyển Sinh 10 Thanh Hóa Tuyển Sinh 10 Thừa Thiên Huế Tuyển Sinh 10 Tiền Giang Tuyển Sinh 10 TPHCM Tuyển Sinh 10 Vĩnh Long Tuyển Sinh 10 Vĩnh Phúc Tuyển Sinh 2010-2011 Tuyển Sinh 2011-2012 Tuyển Sinh 2012-2013 Tuyển Sinh 2013-2014 Tuyển Sinh 2014-2015 Tuyển Sinh 2015-2016 Tuyển Sinh 2016-2017 Tuyển Sinh 2017-2018 Tuyển Sinh 2018-2019 Tuyển Sinh 2019-2020 Tuyển Sinh 2020-2021 Tuyển Sinh 2021-202 Tuyển Sinh 2021-2022 Tuyển Sinh 2022-2023 Tuyển Sinh Chuyên SP TPHCM Tuyển Tập Tuymaada UK - Anh Undergraduate USA - Mỹ USA TSTST USAJMO USATST USEMO Uzbekistan Vasile Cîrtoaje Vật Lý Viện Toán Học Vietnam Viktor Prasolov VIMF Vinh Vĩnh Long Vĩnh Phúc Virginia Tech VLTT VMEO VMF VMO VNTST Võ Anh Khoa Võ Quốc Bá Cẩn Võ Thành Văn Vojtěch Jarník Vũ Hữu Bình Vương Trung Dũng WFNMC Journal Wiles Yên Bái Yên Định Yên Thành Zhautykov Zhou Yuan Zhe
false
ltr
item
MOlympiad.NET: Kĩ Thuật Phân Tích Bình Phương Cho Bất Đẳng Thức Hoán Vị
Kĩ Thuật Phân Tích Bình Phương Cho Bất Đẳng Thức Hoán Vị
MOlympiad.NET
https://www.molympiad.net/2018/04/ki-thuat-phan-tich-binh-phuong-cho-bat-dang-thuc-hoan-vi.html
https://www.molympiad.net/
https://www.molympiad.net/
https://www.molympiad.net/2018/04/ki-thuat-phan-tich-binh-phuong-cho-bat-dang-thuc-hoan-vi.html
true
2506595080985176441
UTF-8
Not found any posts Not found any related posts VIEW ALL Readmore Reply Cancel reply Delete By Home PAGES POSTS View All RECOMMENDED FOR YOU Tag ARCHIVE SEARCH ALL POSTS Not found any post match with your request Back Home Table of Contents See also related Sunday Monday Tuesday Wednesday Thursday Friday Saturday Sun Mon Tue Wed Thu Fri Sat January February March April May June July August September October November December Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec just now 1 minute ago $$1$$ minutes ago 1 hour ago $$1$$ hours ago Yesterday $$1$$ days ago $$1$$ weeks ago more than 5 weeks ago Followers Follow Copy All Code Select All Code All codes were copied to your clipboard Can not copy the codes / texts, please press [CTRL]+[C] (or CMD+C with Mac) to copy THIS PREMIUM CONTENT IS LOCKED
PLEASE FOLLOW THE INSTRUCTIONS TO VIEW THIS CONTENT
NỘI DUNG CAO CẤP NÀY ĐÃ BỊ KHÓA
XIN HÃY LÀM THEO HƯỚNG DẪN ĐỂ XEM NỘI DUNG NÀY
STEP 1: SHARE THIS ARTICLE TO A SOCIAL NETWORK
BƯỚC 1: CHIA SẺ BÀI VIẾT NÀY LÊN MẠNG XÃ HỘI
STEP 2: CLICK THE LINK ON YOUR SOCIAL NETWORK
BƯỚC 2: BẤM VÀO ĐƯỜNG DẪN TRÊN MẠNG XÃ HỘI CỦA BẠN