$hide=mobile

[Đáp Án] Đề Thi Chọn Học Sinh Giỏi Quốc Gia THPT 2014-2015

  1. Cho $a$ là một số thục không âm và $(u_n)$ là dãy số xác định bởi $$u_1=3,\quad u_{n+1}=\frac{1}{2}u_n+\frac{n^2}{4n^2+a}\sqrt{u_n^2+3},\, \forall n\in\mathbb N^*.$$ a) Với $a=0$, chứng minh dãy số có giới hạn hữu hạn và tìm giới hạn đó.
    b) Với mọi $a\in[0,1]$, chứng minh dãy số có giới hạn hữu hạn.
  2. Cho $a, b, c$ là các số thực không âm. Chứng minh rằng $$\begin{align}3(a^2+b^2+c^2) & \geq (a+b+c)(\sqrt{ab}+\sqrt{bc}+\sqrt{ca})+(a-b)^2+(b-c)^2+(c-a)^2 \\ & \geq (a+b+c)^2.\end{align}$$
  3. Cho số nguyên dương $K$. Tìm số tự nhiên $n$ không vượt quá $10^K$ thỏa mãn đồng thời các điều kiện sau
    • $n$ chia hết cho $3$,
    • các chữ số trong biểu diễn thập phân của $n$ thuộc tập hợp $\{2, 0, 1, 5\}$.
  4. Cho dường tròn $(O)$ và hai điểm $B$, $C$ cố định trên $(O)$, $BC$ không là đường kính. Một điểm $A$ thay đổi trên $(O)$ sao cho tam giác $ABC$ nhọn. Gọi $E$, $F$ lần lượt là chân đường cao kẻ từ $B$, $C$ của tam giác $ABC$. Cho $(I)$ là đường tròn thay đổi đi qua $E$, $F$ và có tâm là $I$.
    a) Giả sử $(I)$ tiếp xúc với $BC$ tại điểm $D$. Chứng ming rằng $$\dfrac{DB}{DC}=\sqrt{\dfrac{\cot B}{\cot C}}.$$ b) Giả sử $(I)$ cắt cạnh $BC$ tại hai điểm $M$, $N$. Gọi $H$ là trực tâm tam giác $ABC$ và $P, Q$ là các giao điểm của $(I)$ với đường tròn ngoại tiếp tam giác $HBC$. Đường tròn $(K)$ đi qua $P, Q$ và tiếp xúc với $(O)$ tại điểm $T$ ($T$ cùng phía $A$ đối với $PQ$). Chứng minh rằng đường phân giác trong của góc $\widehat{MTN}$ đi qua một điểm cố định.
  5. Cho $(f_n(x))$ là dãy đa thức xác định bởi $f_0(x)=2$, $f_1(x)=3x$, và $$f_n(x)=3xf_{n-1}(x)+(1-x-2x^2)f_{n-2}(x) \ \forall n\ge 2.$$ Tìm tất cả các số nguyên dương $n$ để $f_n(x)$ chia hết cho đa thức $x^3-x^2+x$.
  6. Với $a$, $n$ nguyên dương, xét phương trình $$a^2x+6ay+36z=n,$$ trong đó $x,y,z$ là các số tự nhiên.
    a) Tìm tất cả các giá trị của $a$ để với mọi $n\ge 250$, phương trình đã cho luôn có nghiệm $(x,y,z)$.
    b) Biết rằng $a>1$ và nguyên tố cùng nhau với $6$. Tìm giá trị lớn nhất của $n$ theo $a$ để phương trình đã cho không có nghiệm $(x,y,z)$.
  7. Cho $m$ học sinh nữ và $n$ học sinh nam $(m,n\ge 2)$ tham gia một Liên hoan Song ca. Tai Liên hoan song ca, mỗi buổi biểu diễn văn nghệ. Mỗi chương trình văn nghệ bao gồm một số bài song ca nam-nữ mà trong đó mỗi đôi nam-nữ chỉ hát với nhau không quá một bài và mỗi học sinh đều được hát ít nhất một bài. Hai chương trình được coi là khác nhau nếu có một cặp nam-nữ hát với nhau ở chương trình này nhưng không hát với nhau ở chương trình kia. Liên hoan Song cả chỉ kết thúc khi tất cả các chương trình khác nhau cỏ thế có đều được biểu diễn, mỗi chương trình được biểu diễn đúng một lần.
    a) Một chương trình được gọi là lệ thuộc vào học sinh $X$ nếu như hủy tất cả các bài song ca mà $X$ tham gia thì có ít nhất một học sinh khác không được hát bài nào trong chương trình đó. Chứng minh rằng trong tất cả các chương trình lệ thuộc vào $X$ thì số chương trình có số lẻ bài hát bằng số chương trình có số chẵn bài hát.
    b) Chứng minh rằng Ban tổ chức Liên hoan có thể sắp xếp các buổi biểu diễn sao cho số các bài hát tại hai buổi biểu diễn liên tiếp bất kỳ không cùng tính chẵn lẻ.

Post a Comment


$hide=home

$type=three$count=6$sr=random$t=oot$h=1$l=0$meta=hide$rm=hide$sn=0

$hide=post$type=three$count=6$sr=random$t=oot$h=1$l=0$meta=hide$rm=hide$sn=0

$hide=home

Kỷ Yếu$cl=violet$type=three$count=6$sr=random$t=oot$h=1$l=0$meta=hide$rm=hide$sn=0

Journals$cl=green$type=three$count=6$sr=random$t=oot$h=1$l=0$meta=hide$rm=hide$sn=0

Name

Ả-rập Xê-út,1,Abel,5,Albania,2,AMM,2,Amsterdam,5,Ấn Độ,1,An Giang,21,Andrew Wiles,1,Anh,2,Áo,1,APMO,19,Ba Đình,2,Ba Lan,1,Bà Rịa Vũng Tàu,52,Bắc Giang,49,Bắc Kạn,1,Bạc Liêu,9,Bắc Ninh,47,Bắc Trung Bộ,7,Bài Toán Hay,5,Balkan,37,Baltic Way,30,BAMO,1,Bất Đẳng Thức,66,Bến Tre,46,Benelux,13,Bình Định,44,Bình Dương,21,Bình Phước,38,Bình Thuận,34,Birch,1,Booklet,11,Bosnia Herzegovina,3,BoxMath,3,Brazil,2,Bùi Đắc Hiên,1,Bùi Thị Thiện Mỹ,1,Bùi Văn Tuyên,1,Bùi Xuân Diệu,1,Bulgaria,5,Buôn Ma Thuột,1,BxMO,12,Cà Mau,13,Cần Thơ,14,Canada,39,Cao Bằng,6,Cao Quang Minh,1,Câu Chuyện Toán Học,36,Caucasus,2,CGMO,10,China,10,Chọn Đội Tuyển,347,Chu Tuấn Anh,1,Chuyên Đề,124,Chuyên Sư Phạm,31,Chuyên Trần Hưng Đạo,3,Collection,8,College Mathematic,1,Concours,1,Cono Sur,1,Contest,610,Correspondence,1,Cosmin Poahata,1,Crux,2,Czech-Polish-Slovak,25,Đà Nẵng,39,Đa Thức,2,Đại Số,20,Đắk Lắk,54,Đắk Nông,7,Đan Phượng,1,Danube,7,Đào Thái Hiệp,1,ĐBSCL,2,Đề Thi HSG,1641,Đề Thi JMO,1,Điện Biên,8,Định Lý,1,Định Lý Beaty,1,Đỗ Hữu Đức Thịnh,1,Do Thái,3,Doãn Quang Tiến,4,Đoàn Quỳnh,1,Đoàn Văn Trung,1,Đống Đa,4,Đồng Nai,49,Đồng Tháp,51,Du Hiền Vinh,1,Đức,1,Duyên Hải Bắc Bộ,25,E-Book,33,EGMO,16,ELMO,19,EMC,8,Epsilon,1,Estonian,5,Euler,1,Evan Chen,1,Fermat,3,Finland,4,Forum Of Geometry,2,Furstenberg,1,G. Polya,3,Gặp Gỡ Toán Học,26,Gauss,1,GDTX,3,Geometry,12,Gia Lai,25,Gia Viễn,2,Giải Tích Hàm,1,Giảng Võ,1,Giới hạn,2,Goldbach,1,Hà Giang,2,Hà Lan,1,Hà Nam,29,Hà Nội,231,Hà Tĩnh,72,Hà Trung Kiên,1,Hải Dương,49,Hải Phòng,42,Hàn Quốc,5,Hậu Giang,4,Hậu Lộc,1,Hilbert,1,Hình Học,33,HKUST,7,Hòa Bình,13,Hoài Nhơn,1,Hoàng Bá Minh,1,Hoàng Minh Quân,1,Hodge,1,Hojoo Lee,2,HOMC,5,HongKong,8,HSG 10,100,HSG 11,86,HSG 12,580,HSG 9,402,HSG Cấp Trường,78,HSG Quốc Gia,99,HSG Quốc Tế,16,Hứa Lâm Phong,1,Hứa Thuần Phỏng,1,Hùng Vương,2,Hưng Yên,32,Hương Sơn,2,Huỳnh Kim Linh,1,Hy Lạp,1,IMC,25,IMO,54,India,45,Inequality,13,InMC,1,International,307,Iran,11,Jakob,1,JBMO,41,Jewish,1,Journal,20,Junior,38,K2pi,1,Kazakhstan,1,Khánh Hòa,16,KHTN,53,Kiên Giang,63,Kim Liên,1,Kon Tum,18,Korea,5,Kvant,2,Kỷ Yếu,42,Lai Châu,4,Lâm Đồng,33,Lạng Sơn,21,Langlands,1,Lào Cai,16,Lê Hải Châu,1,Lê Hải Khôi,1,Lê Hoành Phò,4,Lê Khánh Sỹ,3,Lê Minh Cường,1,Lê Phúc Lữ,1,Lê Phương,1,Lê Quý Đôn,1,Lê Viết Hải,1,Lê Việt Hưng,1,Leibniz,1,Long An,42,Lớp 10,10,Lớp 10 Chuyên,452,Lớp 10 Không Chuyên,229,Lớp 11,1,Lục Ngạn,1,Lượng giác,1,Lương Tài,1,Lưu Giang Nam,2,Lý Thánh Tông,1,Macedonian,1,Malaysia,1,Margulis,2,Mark Levi,1,Mathematical Excalibur,1,Mathematical Reflections,1,Mathematics Magazine,1,Mathematics Today,1,Mathley,1,MathLinks,1,MathProblems Journal,1,Mathscope,8,MathsVN,5,MathVN,1,MEMO,10,Metropolises,4,Mexico,1,MIC,1,Michael Guillen,1,Mochizuki,1,Moldova,1,Moscow,1,Mỹ,9,MYTS,4,Nam Định,32,Nam Phi,1,Nam Trung Bộ,1,National,249,Nesbitt,1,Newton,4,Nghệ An,50,Ngô Bảo Châu,2,Ngô Việt Hải,1,Ngọc Huyền,2,Nguyễn Anh Tuyến,1,Nguyễn Bá Đang,1,Nguyễn Đình Thi,1,Nguyễn Đức Tấn,1,Nguyễn Đức Thắng,1,Nguyễn Duy Khương,1,Nguyễn Duy Tùng,1,Nguyễn Hữu Điển,3,Nguyễn Mình Hà,1,Nguyễn Minh Tuấn,8,Nguyễn Phan Tài Vương,1,Nguyễn Phú Khánh,1,Nguyễn Phúc Tăng,1,Nguyễn Quản Bá Hồng,1,Nguyễn Quang Sơn,1,Nguyễn Tài Chung,5,Nguyễn Tăng Vũ,1,Nguyễn Tất Thu,1,Nguyễn Thúc Vũ Hoàng,1,Nguyễn Trung Tuấn,8,Nguyễn Tuấn Anh,2,Nguyễn Văn Huyện,3,Nguyễn Văn Mậu,25,Nguyễn Văn Nho,1,Nguyễn Văn Quý,2,Nguyễn Văn Thông,1,Nguyễn Việt Anh,1,Nguyễn Vũ Lương,2,Nhật Bản,3,Nhóm $\LaTeX$,4,Nhóm Toán,1,Ninh Bình,41,Ninh Thuận,15,Nội Suy Lagrange,2,Nội Suy Newton,1,Nordic,19,Olympiad Corner,1,Olympiad Preliminary,2,Olympic 10,98,Olympic 10/3,5,Olympic 11,89,Olympic 12,30,Olympic 24/3,6,Olympic 27/4,20,Olympic 30/4,66,Olympic KHTN,6,Olympic Sinh Viên,73,Olympic Tháng 4,12,Olympic Toán,300,Olympic Toán Sơ Cấp,3,PAMO,1,Phạm Đình Đồng,1,Phạm Đức Tài,1,Phạm Huy Hoàng,1,Pham Kim Hung,3,Phạm Quốc Sang,2,Phan Huy Khải,1,Phan Thành Nam,1,Pháp,2,Philippines,8,Phú Thọ,30,Phú Yên,26,Phùng Hồ Hải,1,Phương Trình Hàm,11,Phương Trình Pythagoras,1,Pi,1,Polish,32,Problems,1,PT-HPT,14,PTNK,44,Putnam,25,Quảng Bình,44,Quảng Nam,31,Quảng Ngãi,33,Quảng Ninh,43,Quảng Trị,26,Quỹ Tích,1,Riemann,1,RMM,12,RMO,24,Romania,36,Romanian Mathematical,1,Russia,1,Sách Thường Thức Toán,7,Sách Toán,69,Sách Toán Cao Học,1,Sách Toán THCS,7,Saudi Arabia,7,Scholze,1,Serbia,17,Sharygin,24,Shortlists,56,Simon Singh,1,Singapore,1,Số Học - Tổ Hợp,27,Sóc Trăng,28,Sơn La,11,Spain,8,Star Education,5,Stars of Mathematics,11,Swinnerton-Dyer,1,Talent Search,1,Tăng Hải Tuân,2,Tạp Chí,14,Tập San,6,Tây Ban Nha,1,Tây Ninh,29,Thạch Hà,1,Thái Bình,39,Thái Nguyên,49,Thái Vân,2,Thanh Hóa,57,THCS,2,Thổ Nhĩ Kỳ,5,Thomas J. Mildorf,1,THPT Chuyên Lê Quý Đôn,1,THPTQG,15,THTT,6,Thừa Thiên Huế,35,Tiền Giang,19,Tin Tức Toán Học,1,Titu Andreescu,2,Toán 12,7,Toán Cao Cấp,3,Toán Chuyên,2,Toán Rời Rạc,5,Toán Tuổi Thơ,3,Tôn Ngọc Minh Quân,2,TOT,1,TPHCM,125,Trà Vinh,5,Trắc Nghiệm,1,Trắc Nghiệm Toán,2,Trại Hè,34,Trại Hè Hùng Vương,25,Trại Hè Phương Nam,5,Trần Đăng Phúc,1,Trần Minh Hiền,2,Trần Nam Dũng,9,Trần Phương,1,Trần Quang Hùng,1,Trần Quốc Anh,2,Trần Quốc Luật,1,Trần Quốc Nghĩa,1,Trần Tiến Tự,1,Trịnh Đào Chiến,2,Trung Quốc,12,Trường Đông,19,Trường Hè,7,Trường Thu,1,Trường Xuân,2,TST,55,Tuyên Quang,6,Tuyển Sinh,3,Tuyển Tập,44,Tuymaada,4,Undergraduate,66,USA,44,USAJMO,10,USATST,7,Uzbekistan,1,Vasile Cîrtoaje,4,Vật Lý,1,Viện Toán Học,2,Vietnam,4,Viktor Prasolov,1,VIMF,1,Vinh,27,Vĩnh Long,20,Vĩnh Phúc,63,Virginia Tech,1,VLTT,1,VMEO,4,VMF,12,VMO,46,VNTST,22,Võ Anh Khoa,1,Võ Quốc Bá Cẩn,26,Võ Thành Văn,1,Vojtěch Jarník,6,Vũ Hữu Bình,7,Vương Trung Dũng,1,WFNMC Journal,1,Wiles,1,Yên Bái,17,Yên Định,1,Yên Thành,1,Zhautykov,11,Zhou Yuan Zhe,1,
ltr
item
MOlympiad: [Đáp Án] Đề Thi Chọn Học Sinh Giỏi Quốc Gia THPT 2014-2015
[Đáp Án] Đề Thi Chọn Học Sinh Giỏi Quốc Gia THPT 2014-2015
MOlympiad
https://www.molympiad.net/2017/11/de-thi-hoc-sinh-gioi-quoc-gia-2014-2015.html
https://www.molympiad.net/
https://www.molympiad.net/
https://www.molympiad.net/2017/11/de-thi-hoc-sinh-gioi-quoc-gia-2014-2015.html
true
2506595080985176441
UTF-8
Loaded All Posts Not found any posts VIEW ALL Readmore Reply Cancel reply Delete By Home PAGES POSTS View All RECOMMENDED FOR YOU LABEL ARCHIVE SEARCH ALL POSTS Not found any post match with your request Back Home Sunday Monday Tuesday Wednesday Thursday Friday Saturday Sun Mon Tue Wed Thu Fri Sat January February March April May June July August September October November December Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec just now 1 minute ago $$1$$ minutes ago 1 hour ago $$1$$ hours ago Yesterday $$1$$ days ago $$1$$ weeks ago more than 5 weeks ago Followers Follow THIS PREMIUM CONTENT IS LOCKED Please share to unlock Copy All Code Select All Code All codes were copied to your clipboard Can not copy the codes / texts, please press [CTRL]+[C] (or CMD+C with Mac) to copy