$hide=mobile$type=ticker$c=12$cols=3$l=0$sr=random$b=0

Giả Thuyết Kepler Đã Được Chứng Minh Một Cách Hình Thức

Việc một bài toán đã tồn tại 400 năm nay được chứng minh bằng máy tính có thể mở ra một kỷ nguyên mới cho toán học, trong đó máy tính thực hiện các công việc kỹ năng để giải phóng con người cho những suy luận sâu sắc hơn.

Bài toán này là một câu hỏi quen thuộc với những người bán hoa quả ở khắp mọi nơi: Xếp những quả cam thế nào là tốt nhất? Năm 1611, nhà toán học và thiên văn học người Đức Johannes Kepler cho rằng cách sắp xếp theo hình kim tự tháp là hiệu quả nhất, nhưng không thể chứng minh được điều này. 

Johannes Kepler (27/12/1571-15/11/1630)
Suy diễn trực giác của Kepler (mà ngày nay được gọi là giả thuyết Kepler) có thể phát biểu về mặt toán học như sau: Cách thức xếp các khối cầu cùng kích thước trong không gian theo kiểu hình kim tự tháp có mật độ chiếm không gian trung bình lớn nhất trong tất cả các cách xếp. Mật độ trung bình của kiểu √ xếp này có thể tính chính xác là π/3 2. Giả thuyết này là một phần của vấn đề thứ 18 trong danh mục 23 vấn đề nổi tiếng do Hilbert nêu ra năm 1900. Có thể xem cuốn sách [4] để thấy tầm ảnh hưởng của giả thuyết Kepler trong lịch sử toán học.

Gần đây, Thomas Hales, giáo sư của Đại học Pittsburgh, Pennsylvania, thông báo đã hoàn thành một nỗ lực hùng tráng nhằm chứng minh một cách hình thức suy diễn trên của Kepler. Ông nói "Vai tôi đã trút được một gánh nặng khổng lồ" và "Tôi bỗng nhiên cảm thấy trẻ ra mười tuổi!" Tại sao Hales lại nói như vậy và thế nào là một chứng minh hình thức? 

Năm 1998 Hales lần đầu đưa ra chứng minh suy diễn trực giác của Kepler là đúng. Mặc dù có vô hạn cách để xếp các khối cầu, nhưng phần lớn chúng chỉ là biến thể của vài ngàn cấu hình. Hales đã phân chia các khả năng sắp xếp vô hạn khối cầu thành khoảng 2500 cách sắp xếp 50 khối cầu về mặt toán học, rồi sau đó dùng máy tính để kiểm tra mật độ tất cả các cách sắp xếp này. Tuy nhiên đây là một chứng minh khủng khiếp dày 250 trang cùng với 3 gigabytes phần mềm tính toán mà 12 nhà phản biện đã phải mất tới 4 năm để kiểm tra. Cuối cùng tạp chí Annals of Mathematics cũng công bố bài báo của Hales năm 2005 kèm theo một thông báo là các phản biện không thể kiểm tra chứng minh của Hales có đúng hay không. Một tiền lệ chưa từng có! Nhà toán học Gabor Fejes Toth phát biểu rằng chỉ có thể khẳng định "chắc chắn 99 phần trăm" chứng minh là đúng do không thể kiểm chứng được phần tính toán của máy tính. Nhiều nhà toán học không thỏa mãn với chứng minh này của Hales.

Vì vậy, từ năm 2003, Hales bắt đầu chương trình Flyspeck (dựa theo các chữ đầu FPK của câu “Formal Proof of Kepler”), một nỗ lực nhằm xác minh chứng minh của mình là đúng thông qua một sự kiểm chứng hình thức. Điều này có nghĩa là máy tính sẽ kiểm tra các suy luận logic hình thức trong chứng minh có gì sai không. Nhóm nghiên cứu của Hales đã phát triển hai phần mềm trợ giúp chứng minh hình thức có tên gọi là Isabelle và HOL Light. Cả hai phần mềm này đều được xây dựng dựa trên một phần lõi logic đã được kiểm tra kỹ lưỡng là không có bất kỳ lỗi nào. Chúng đưa ra một nền tảng cho phép máy tính có thể kiểm tra bất cứ chuỗi mệnh đề logic nào nhằm xem chúng có đúng không. Có một điều thú vị là ngoài các kiểm chứng độc lập hai phần mềm trên, nhóm của Hales cũng dùng chính hai phần mềm này để tự kiểm tra xem chúng có lỗi không. 

Thomas Callister Hales
Phần đầu tiên của chương trình Flyspeck là phân loại tất cả đồ thị thuần hóa (tame graphs) trong phần mềm Is- abelle được thực hiện bởi Bauer và Nip- kow. Phần này liệt kê cấu trúc tổ hợp của các phản ví dụ tiềm năng cho giả thiết Kepler. Định lý phân loại của họ đã được dịch tương ứng sang phần mềm HOL Light. Phần thứ hai của dự án kiểm tra tính đúng đắn của tất cả các bất đẳng phi tuyến trong HOL dựa trên luận án của Solovyev năm 2012. Việc xác minh tính đúng đắn của tất cả các bất đẳng phi tuyến trong HOL sử dụng thuật toán đám mây Azure của Microsoft trong 5000 giờ. Hầu như tất cả các tính toán được thực hiện song song với 32 lõi, do đó thời gian thực sự là khoảng 5000/32 = 156,25 giờ. Phần cuối cùng của dự án là chứng minh giả thiết Kepler trong HOL Light. Việc xác minh tính đúng đắn của tất cả các chuỗi logic ở mức độ vi mô trong chứng minh giả thiết Kepler bằng phần mềm HOL Light được thực hiện bởi nhóm nghiên cứu Việt Nam trong 6 năm. Nhóm này gồm Triệu Thị Diệp, Đặng Tất Đạt, Vũ Khắc Kỷ, Vương Anh Quyền, Nguyễn Tất Thắng, Trần Nam Trung, Hoàng Lê Trường, Nguyễn Quang Trưởng,... [3]. Trong thời gian đó ông Hales đã nhiều lần đến Viện Toán học tổ chức các bài giảng và hội thảo về chương trình Flyspeck. 

Vào ngày Chủ nhật 10 tháng 8, ngay trước thềm Đại hội Toán học Quốc tế (ICM) 2014, chương trình Flyspeck thông báo họ đã chuyển được chứng minh toán học của Hales sang dạng máy tính và kiểm chứng được rằng nó thực sự chính xác [3]. Tin này lập tức gây chấn động trong cộng đồng toán học. Nhiều tờ báo trên thế giới và Bản tin của ICM 2014 đã đồng loạt đưa tin về sự kiện này

"Công nghệ này loại bỏ các nhà phản biện khỏi quá trình kiểm tra chứng minh”, Hales nói. "Ý kiến của họ về tính chính xác của một chứng minh không còn là vấn đề". "Đó là một nỗ lực to lớn", Alan Bundy của Đại học Edinburgh, Anh, người không tham gia vào công việc này nói. Ông nói thêm rằng ông hy vọng sự thành công của chương trình Flyspeck sẽ khích lệ các nhà toán học khác bắt đầu sử dụng các phần mềm hỗ trợ chứng minh. "Một nhà toán học nổi tiếng thế giới đã sử dụng phép chứng minh định lý một cách tự động. Một sự kiện xã hội như vậy rất quan trọng", ông nói. "Đây là một trường hợp nghiên cứu có thể bắt đầu trở thành tiêu chuẩn." 

Lý tưởng nhất, phần mềm hỗ trợ sẽ làm việc phía sau trong khi các nhà toán học có thể dồn tâm sức cho những ý tưởng mới. Phần mềm đã có thể tự chứng minh một số mệnh đề cơ bản, nhưng nó cần phải dễ dàng sử dụng hơn. "Chúng ta cần biết cách khai thác phép chứng minh để nhận được một bức tranh lớn", Bundy nói. "Việc xem xét mọi thứ ở tầng vi mô vượt quá khả năng của chúng ta. Là con người chúng ta không thể hấp thu quá nhiều." 

Cũng cần nói thêm rằng phương pháp nghiên cứu của Hales đã giúp ông giải quyết được Bài toán tổ ong từ thế kỷ thứ ba trước Công nguyên. Bài toán này nói rằng việc chia một miền phẳng thành các phần có diện tích bằng nhau sẽ có tổng chu vi nhỏ nhất khi chia thành các lục giác đều theo kiểu tổ ong. Ngoài ra, phương pháp của Hales còn có thể có ứng dụng trong việc truyền tín hiệu trong công nghệ thông tin. Thông thường, người ta muốn cùng một lúc gửi đi càng nhiều tín hiệu càng tốt. Tuy nhiên truyền quá nhiều tín hiệu cùng một lúc sẽ gây ra nhiễu. Hales cho rằng “Vấn đề ở đây là mật độ tín hiệu như thế nào là tốt nhất”. Câu hỏi này cũng giống như bài toán xếp khối cầu trong toán học. 

Đối với Hales, ông sẵn sàng để tiếp bước. "Tôi có một cái hộp tràn đầy những ý tưởng mà tôi phải đặt sang một bên khi làm việc với phép chứng minh hình thức này", ông nói. "Chúng ta hãy hy vọng rằng chương trình tiếp theo không mất tới 20 năm!"

Tài liệu tham khảo 

  1. Jacob Aron, Proof confirmed of 400-year-old fruit-stacking problem. New Scientist 12.8.2014. 
  2. Frank Morgan, Kepler’s Conjecture and Hales’s Proof. Notices of the AMS 52(1) (2005), 44-47. 
  3. Flysspeck, Annoucement of completion, https://code.google.com/p/flyspeck/wiki/ An- nouncingCompletion 
  4. George Szpiro, Kepler’s Conjecture: How some of the greatest minds in history helped solve one of the oldest math problems in the world. Wiley & Sons, 2003.

Hoàng Lê Trường

$hide=mobile$type=ticker$c=36$cols=2$l=0$sr=random$b=0

$hide=mobile

Name

Abel,5,Albania,2,AMM,2,Amsterdam,5,An Giang,40,Andrew Wiles,1,Anh,2,APMO,21,Austria (Áo),1,Ba Đình,2,Ba Lan,1,Bà Rịa Vũng Tàu,71,Bắc Bộ,2,Bắc Giang,59,Bắc Kạn,3,Bạc Liêu,14,Bắc Ninh,58,Bắc Trung Bộ,3,Bài Toán Hay,5,Balkan,40,Baltic Way,32,BAMO,1,Bất Đẳng Thức,69,Bến Tre,67,Benelux,15,Bình Định,60,Bình Dương,35,Bình Phước,47,Bình Thuận,39,Birch,1,BMO,40,Booklet,12,Bosnia Herzegovina,3,BoxMath,3,Brazil,2,British,16,Bùi Đắc Hiên,1,Bùi Thị Thiện Mỹ,1,Bùi Văn Tuyên,1,Bùi Xuân Diệu,1,Bulgaria,6,Buôn Ma Thuột,2,BxMO,14,Cà Mau,20,Cần Thơ,25,Canada,40,Cao Bằng,11,Cao Quang Minh,1,Câu Chuyện Toán Học,43,Caucasus,3,CGMO,11,China - Trung Quốc,25,Chọn Đội Tuyển,467,Chu Tuấn Anh,1,Chuyên Đề,125,Chuyên SPHCM,7,Chuyên SPHN,26,Chuyên Trần Hưng Đạo,2,Collection,8,College Mathematic,1,Concours,1,Cono Sur,1,Contest,666,Correspondence,1,Cosmin Poahata,1,Crux,2,Czech-Polish-Slovak,26,Đà Nẵng,48,Đa Thức,2,Đại Số,20,Đắk Lắk,72,Đắk Nông,12,Đan Phượng,1,Danube,7,Đào Thái Hiệp,1,ĐBSCL,2,Đề Thi,1,Đề Thi HSG,2087,Đề Thi JMO,1,DHBB,28,Điện Biên,12,Định Lý,1,Định Lý Beaty,1,Đỗ Hữu Đức Thịnh,1,Do Thái,3,Doãn Quang Tiến,5,Đoàn Quỳnh,1,Đoàn Văn Trung,1,Đống Đa,4,Đồng Nai,62,Đồng Tháp,62,Du Hiền Vinh,1,Đức,1,Dương Quỳnh Châu,1,Dương Tú,1,Duyên Hải Bắc Bộ,28,E-Book,31,EGMO,29,ELMO,19,EMC,10,Epsilon,1,Estonian,5,Euler,1,Evan Chen,1,Fermat,3,Finland,4,Forum Of Geometry,2,Furstenberg,1,G. Polya,3,Gặp Gỡ Toán Học,30,Gauss,1,GDTX,3,Geometry,14,GGTH,30,Gia Lai,37,Gia Viễn,2,Giải Tích Hàm,1,Giảng Võ,1,Giới hạn,2,Goldbach,1,Hà Giang,4,Hà Lan,1,Hà Nam,38,Hà Nội,256,Hà Tĩnh,87,Hà Trung Kiên,1,Hải Dương,63,Hải Phòng,54,Hậu Giang,11,Hậu Lộc,1,Hélènne Esnault,1,Hilbert,2,Hình Học,33,HKUST,7,Hòa Bình,31,Hoài Nhơn,1,Hoàng Bá Minh,1,Hoàng Minh Quân,1,Hodge,1,Hojoo Lee,2,HOMC,5,HongKong,8,HSG 10,114,HSG 10 2010-2011,4,HSG 10 2011-2012,6,HSG 10 2012-2013,5,HSG 10 2013-2014,4,HSG 10 2014-2015,5,HSG 10 2015-2016,2,HSG 10 2016-2017,5,HSG 10 2017-2018,3,HSG 10 2018-2019,3,HSG 10 2019-2020,8,HSG 10 2020-2021,2,HSG 10 2021-2022,2,HSG 10 2022-2023,3,HSG 10 Bà Rịa Vũng Tàu,2,HSG 10 Bắc Giang,1,HSG 10 Bạc Liêu,2,HSG 10 Bắc Ninh,3,HSG 10 Bình Định,1,HSG 10 Bình Dương,1,HSG 10 Bình Thuận,3,HSG 10 Chuyên SPHN,5,HSG 10 Đắk Lắk,2,HSG 10 Đồng Nai,4,HSG 10 Gia Lai,2,HSG 10 Hà Nam,3,HSG 10 Hà Tĩnh,13,HSG 10 Hải Dương,9,HSG 10 KHTN,9,HSG 10 Kon Tum,1,HSG 10 Nghệ An,1,HSG 10 Ninh Thuận,1,HSG 10 Phú Yên,2,HSG 10 Quảng Trị,2,HSG 10 Thái Nguyên,8,HSG 10 Thanh Hóa,1,HSG 10 Trà Vinh,5,HSG 10 Vĩnh Phúc,14,HSG 1015-2016,3,HSG 11,115,HSG 11 2010-2011,4,HSG 11 2011-2012,5,HSG 11 2012-2013,7,HSG 11 2013-2014,4,HSG 11 2014-2015,8,HSG 11 2015-2016,2,HSG 11 2016-2017,5,HSG 11 2017-2018,4,HSG 11 2018-2019,5,HSG 11 2019-2020,5,HSG 11 2020-2021,5,HSG 11 2021-2022,1,HSG 11 An Giang,1,HSG 11 Bà Rịa Vũng Tàu,1,HSG 11 Bắc Giang,4,HSG 11 Bạc Liêu,2,HSG 11 Bắc Ninh,4,HSG 11 Bình Định,11,HSG 11 Bình Dương,3,HSG 11 Bình Thuận,1,HSG 11 Cà Mau,1,HSG 11 Đà Nẵng,9,HSG 11 Đồng Nai,1,HSG 11 Hà Nam,1,HSG 11 Hà Tĩnh,10,HSG 11 Hải Phòng,1,HSG 11 Kiên Giang,4,HSG 11 Lạng Sơn,11,HSG 11 Nghệ An,6,HSG 11 Ninh Bình,2,HSG 11 Quảng Bình,9,HSG 11 Quảng Ngãi,8,HSG 11 Quảng Trị,3,HSG 11 Sóc Trăng,1,HSG 11 Thái Nguyên,8,HSG 11 Thanh Hóa,4,HSG 11 Trà Vinh,1,HSG 11 Tuyên Quang,1,HSG 11 Vĩnh Long,2,HSG 11 Vĩnh Phúc,10,HSG 12,608,HSG 12 2009-2010,2,HSG 12 2010-2011,39,HSG 12 2011-2012,44,HSG 12 2012-2013,58,HSG 12 2013-2014,53,HSG 12 2014-2015,44,HSG 12 2015-2016,36,HSG 12 2016-2017,47,HSG 12 2017-2018,58,HSG 12 2018-2019,44,HSG 12 2019-2020,43,HSG 12 2020-2021,51,HSG 12 2021-2022,34,HSG 12 2022-2023,12,HSG 12 An Giang,7,HSG 12 Bà Rịa Vũng Tàu,11,HSG 12 Bắc Giang,17,HSG 12 Bạc Liêu,2,HSG 12 Bắc Ninh,13,HSG 12 Bến Tre,18,HSG 12 Bình Định,15,HSG 12 Bình Dương,7,HSG 12 Bình Phước,8,HSG 12 Bình Thuận,7,HSG 12 Cà Mau,8,HSG 12 Cần Thơ,7,HSG 12 Cao Bằng,5,HSG 12 Chuyên SPHN,9,HSG 12 Đà Nẵng,3,HSG 12 Đắk Lắk,20,HSG 12 Đắk Nông,1,HSG 12 Điện Biên,3,HSG 12 Đồng Nai,20,HSG 12 Đồng Tháp,18,HSG 12 Gia Lai,12,HSG 12 Hà Nam,4,HSG 12 Hà Nội,14,HSG 12 Hà Tĩnh,15,HSG 12 Hải Dương,13,HSG 12 Hải Phòng,19,HSG 12 Hậu Giang,3,HSG 12 Hòa Bình,10,HSG 12 Hưng Yên,9,HSG 12 Khánh Hòa,2,HSG 12 KHTN,26,HSG 12 Kiên Giang,11,HSG 12 Kon Tum,2,HSG 12 Lai Châu,4,HSG 12 Lâm Đồng,10,HSG 12 Lạng Sơn,8,HSG 12 Lào Cai,16,HSG 12 Long An,17,HSG 12 Nam Định,7,HSG 12 Nghệ An,11,HSG 12 Ninh Bình,11,HSG 12 Ninh Thuận,6,HSG 12 Phú Thọ,16,HSG 12 Phú Yên,12,HSG 12 Quảng Bình,12,HSG 12 Quảng Nam,9,HSG 12 Quảng Ngãi,5,HSG 12 Quảng Ninh,19,HSG 12 Quảng Trị,9,HSG 12 Sóc Trăng,4,HSG 12 Sơn La,5,HSG 12 Tây Ninh,6,HSG 12 Thái Bình,11,HSG 12 Thái Nguyên,12,HSG 12 Thanh Hóa,18,HSG 12 Thừa Thiên Huế,16,HSG 12 Tiền Giang,3,HSG 12 TPHCM,12,HSG 12 Tuyên Quang,2,HSG 12 Vĩnh Long,6,HSG 12 Vĩnh Phúc,22,HSG 9,533,HSG 9 2009-2010,1,HSG 9 2010-2011,21,HSG 9 2011-2012,44,HSG 9 2012-2013,44,HSG 9 2013-2014,36,HSG 9 2014-2015,40,HSG 9 2015-2016,39,HSG 9 2016-2017,42,HSG 9 2017-2018,47,HSG 9 2018-2019,50,HSG 9 2019-2020,20,HSG 9 2020-2021,53,HSG 9 2021-2022,57,HSG 9 2022-2023,1,HSG 9 An Giang,8,HSG 9 Bà Rịa Vũng Tàu,7,HSG 9 Bắc Giang,12,HSG 9 Bạc Liêu,1,HSG 9 Bắc Ninh,12,HSG 9 Bến Tre,9,HSG 9 Bình Định,10,HSG 9 Bình Dương,6,HSG 9 Bình Phước,13,HSG 9 Bình Thuận,5,HSG 9 Cà Mau,1,HSG 9 Cần Thơ,4,HSG 9 Cao Bằng,1,HSG 9 Chuyên SPHN,2,HSG 9 Đà Nẵng,10,HSG 9 Đắk Lắk,11,HSG 9 Đắk Nông,2,HSG 9 Điện Biên,3,HSG 9 Đồng Nai,7,HSG 9 Đồng Tháp,10,HSG 9 Gia Lai,8,HSG 9 Hà Giang,3,HSG 9 Hà Nam,9,HSG 9 Hà Nội,25,HSG 9 Hà Tĩnh,16,HSG 9 Hải Dương,14,HSG 9 Hải Phòng,7,HSG 9 Hậu Giang,4,HSG 9 Hòa Bình,3,HSG 9 Hưng Yên,9,HSG 9 Khánh Hòa,4,HSG 9 Kiên Giang,15,HSG 9 Kon Tum,8,HSG 9 Lai Châu,1,HSG 9 Lâm Đồng,13,HSG 9 Lạng Sơn,9,HSG 9 Lào Cai,3,HSG 9 Long An,9,HSG 9 Nam Định,8,HSG 9 Nghệ An,19,HSG 9 Ninh Bình,13,HSG 9 Ninh Thuận,3,HSG 9 Phú Thọ,12,HSG 9 Phú Yên,8,HSG 9 Quảng Bình,13,HSG 9 Quảng Nam,11,HSG 9 Quảng Ngãi,12,HSG 9 Quảng Ninh,15,HSG 9 Quảng Trị,9,HSG 9 Sóc Trăng,8,HSG 9 Sơn La,4,HSG 9 Tây Ninh,16,HSG 9 Thái Bình,9,HSG 9 Thái Nguyên,5,HSG 9 Thanh Hóa,17,HSG 9 Thừa Thiên Huế,8,HSG 9 Tiền Giang,6,HSG 9 TPHCM,10,HSG 9 Trà Vinh,2,HSG 9 Tuyên Quang,5,HSG 9 Vĩnh Long,11,HSG 9 Vĩnh Phúc,12,HSG Cấp Trường,89,HSG Quốc Gia,109,HSG Quốc Tế,16,HSG11 2021-2022,3,Hứa Lâm Phong,1,Hứa Thuần Phỏng,1,Hùng Vương,2,Hưng Yên,39,Hương Sơn,2,Huỳnh Kim Linh,1,Hy Lạp,1,IMC,26,IMO,57,IMT,2,IMU,2,India - Ấn Độ,47,Inequality,13,InMC,1,International,340,Iran,13,Jakob,1,JBMO,41,Jewish,1,Journal,30,Junior,38,K2pi,1,Kazakhstan,1,Khánh Hòa,26,KHTN,61,Kiên Giang,71,Kim Liên,1,Kon Tum,23,Korea - Hàn Quốc,5,Kvant,2,Kỷ Yếu,45,Lai Châu,10,Lâm Đồng,44,Lăng Hồng Nguyệt Anh,1,Lạng Sơn,35,Langlands,1,Lào Cai,32,Lê Hải Châu,1,Lê Hải Khôi,1,Lê Hoành Phò,4,Lê Hồng Phong,5,Lê Khánh Sỹ,3,Lê Minh Cường,1,Lê Phúc Lữ,1,Lê Phương,1,Lê Quý Đôn,1,Lê Viết Hải,1,Lê Việt Hưng,2,Leibniz,1,Long An,48,Lớp 10 Chuyên,666,Lớp 10 Không Chuyên,347,Lớp 11,1,Lục Ngạn,1,Lượng giác,1,Lương Tài,1,Lưu Giang Nam,2,Lưu Lý Tưởng,1,Lý Thánh Tông,1,Macedonian,1,Malaysia,1,Margulis,2,Mark Levi,1,Mathematical Excalibur,1,Mathematical Reflections,1,Mathematics Magazine,1,Mathematics Today,1,Mathley,1,MathLinks,1,MathProblems Journal,1,Mathscope,8,MathsVN,5,MathVN,1,MEMO,12,Menelaus,1,Metropolises,4,Mexico,1,MIC,1,Michael Atiyah,1,Michael Guillen,1,Mochizuki,1,Moldova,1,Moscow,1,MYTS,4,Nam Định,44,Nam Phi,1,National,276,Nesbitt,1,Newton,4,Nghệ An,68,Ngô Bảo Châu,2,Ngô Việt Hải,1,Ngọc Huyền,2,Nguyễn Anh Tuyến,1,Nguyễn Bá Đang,1,Nguyễn Đình Thi,1,Nguyễn Đức Tấn,1,Nguyễn Đức Thắng,1,Nguyễn Duy Khương,1,Nguyễn Duy Tùng,1,Nguyễn Hữu Điển,3,Nguyễn Minh Hà,1,Nguyễn Minh Tuấn,9,Nguyễn Nhất Huy,1,Nguyễn Phan Tài Vương,1,Nguyễn Phú Khánh,1,Nguyễn Phúc Tăng,2,Nguyễn Quản Bá Hồng,1,Nguyễn Quang Sơn,1,Nguyễn Song Thiên Long,1,Nguyễn Tài Chung,5,Nguyễn Tăng Vũ,1,Nguyễn Tất Thu,1,Nguyễn Thúc Vũ Hoàng,1,Nguyễn Trung Tuấn,8,Nguyễn Tuấn Anh,2,Nguyễn Văn Huyện,3,Nguyễn Văn Mậu,25,Nguyễn Văn Nho,1,Nguyễn Văn Quý,2,Nguyễn Văn Thông,1,Nguyễn Việt Anh,1,Nguyễn Vũ Lương,2,Nhật Bản,4,Nhóm $\LaTeX$,4,Nhóm Toán,1,Ninh Bình,58,Ninh Thuận,23,Nội Suy Lagrange,2,Nội Suy Newton,1,Nordic,21,Olympiad Corner,1,Olympiad Preliminary,2,Olympic 10,126,Olympic 10/3,6,Olympic 10/3 Đắk Lắk,6,Olympic 11,117,Olympic 12,49,Olympic 23/3,2,Olympic 24/3,10,Olympic 24/3 Quảng Nam,10,Olympic 27/4,23,Olympic 30/4,57,Olympic KHTN,7,Olympic Sinh Viên,75,Olympic Tháng 4,12,Olympic Toán,330,Olympic Toán Sơ Cấp,3,Ôn Thi 10,2,PAMO,1,Phạm Đình Đồng,1,Phạm Đức Tài,1,Phạm Huy Hoàng,1,Pham Kim Hung,3,Phạm Quốc Sang,2,Phan Huy Khải,1,Phan Quang Đạt,1,Phan Thành Nam,1,Pháp,2,Philippines,8,Phú Thọ,31,Phú Yên,38,Phùng Hồ Hải,1,Phương Trình Hàm,11,Phương Trình Pythagoras,1,Pi,1,Polish,32,Problems,1,PT-HPT,14,PTNK,50,Putnam,27,Quảng Bình,57,Quảng Nam,50,Quảng Ngãi,44,Quảng Ninh,54,Quảng Trị,38,Quỹ Tích,1,Riemann,1,RMM,13,RMO,24,Romania,37,Romanian Mathematical,1,Russia,1,Sách Thường Thức Toán,7,Sách Toán,70,Sách Toán Cao Học,1,Sách Toán THCS,7,Saudi Arabia - Ả Rập Xê Út,9,Scholze,1,Serbia,17,Sharygin,28,Shortlists,56,Simon Singh,1,Singapore,1,Số Học - Tổ Hợp,28,Sóc Trăng,31,Sơn La,21,Spain,8,Star Education,1,Stars of Mathematics,11,Swinnerton-Dyer,1,Talent Search,1,Tăng Hải Tuân,2,Tạp Chí,17,Tập San,3,Tây Ban Nha,1,Tây Ninh,36,Thạch Hà,1,Thái Bình,42,Thái Nguyên,57,Thái Vân,2,Thanh Hóa,73,THCS,2,Thổ Nhĩ Kỳ,5,Thomas J. Mildorf,1,Thông Tin Toán Học,43,THPT Chuyên Lê Quý Đôn,1,THPT Chuyên Nguyễn Du,9,THPTQG,16,THTT,6,Thừa Thiên Huế,50,Tiền Giang,27,Tin Tức Toán Học,1,Titu Andreescu,2,Toán 12,7,Toán Cao Cấp,3,Toán Rời Rạc,5,Toán Tuổi Thơ,3,Tôn Ngọc Minh Quân,2,TOT,1,TPHCM,141,Trà Vinh,9,Trắc Nghiệm,1,Trắc Nghiệm Toán,2,Trại Hè,37,Trại Hè Hùng Vương,28,Trại Hè Phương Nam,7,Trần Đăng Phúc,1,Trần Minh Hiền,2,Trần Nam Dũng,12,Trần Phương,1,Trần Quang Hùng,1,Trần Quốc Anh,2,Trần Quốc Luật,1,Trần Quốc Nghĩa,1,Trần Tiến Tự,1,Trịnh Đào Chiến,2,Trường Đông,20,Trường Hè,8,Trường Thu,1,Trường Xuân,2,TST,496,TST 2008-2009,1,TST 2010-2011,21,TST 2011-2012,23,TST 2012-2013,31,TST 2013-2014,29,TST 2014-2015,27,TST 2015-2016,26,TST 2016-2017,41,TST 2017-2018,41,TST 2018-2019,30,TST 2019-2020,36,TST 2020-2021,28,TST 2021-2022,36,TST 2022-2023,23,TST An Giang,7,TST Bà Rịa Vũng Tàu,10,TST Bắc Giang,5,TST Bắc Ninh,11,TST Bến Tre,7,TST Bình Định,4,TST Bình Dương,6,TST Bình Phước,7,TST Bình Thuận,8,TST Cà Mau,5,TST Cần Thơ,5,TST Cao Bằng,2,TST Đà Nẵng,8,TST Đắk Lắk,11,TST Đắk Nông,1,TST Điện Biên,2,TST Đồng Nai,12,TST Đồng Tháp,12,TST Gia Lai,4,TST Hà Nam,7,TST Hà Nội,10,TST Hà Tĩnh,14,TST Hải Dương,11,TST Hải Phòng,13,TST Hậu Giang,1,TST Hòa Bình,3,TST Hưng Yên,9,TST Khánh Hòa,8,TST Kiên Giang,10,TST Kon Tum,6,TST Lâm Đồng,11,TST Lạng Sơn,2,TST Lào Cai,4,TST Long An,5,TST Nam Định,8,TST Nghệ An,7,TST Ninh Bình,11,TST Ninh Thuận,3,TST Phú Thọ,13,TST Phú Yên,4,TST PTNK,9,TST Quảng Bình,12,TST Quảng Nam,5,TST Quảng Ngãi,7,TST Quảng Ninh,7,TST Quảng Trị,9,TST Sóc Trăng,3,TST Sơn La,7,TST Thái Bình,6,TST Thái Nguyên,8,TST Thanh Hóa,8,TST Thừa Thiên Huế,4,TST Tiền Giang,4,TST TPHCM,13,TST Trà Vinh,1,TST Tuyên Quang,1,TST Vĩnh Long,6,TST Vĩnh Phúc,7,Tuyên Quang,12,Tuyển Sinh,4,Tuyển Sinh 10,1013,Tuyển Sinh 10 An Giang,17,Tuyển Sinh 10 Bà Rịa Vũng Tàu,21,Tuyển Sinh 10 Bắc Giang,19,Tuyển Sinh 10 Bạc Liêu,7,Tuyển Sinh 10 Bắc Ninh,15,Tuyển Sinh 10 Bến Tre,33,Tuyển Sinh 10 Bình Định,19,Tuyển Sinh 10 Bình Dương,12,Tuyển Sinh 10 Bình Phước,19,Tuyển Sinh 10 Bình Thuận,15,Tuyển Sinh 10 Cà Mau,5,Tuyển Sinh 10 Cần Thơ,9,Tuyển Sinh 10 Cao Bằng,2,Tuyển Sinh 10 Chuyên SPHN,15,Tuyển Sinh 10 Đà Nẵng,17,Tuyển Sinh 10 Đắk Lắk,20,Tuyển Sinh 10 Đắk Nông,6,Tuyển Sinh 10 Điện Biên,4,Tuyển Sinh 10 Đồng Nai,18,Tuyển Sinh 10 Đồng Tháp,22,Tuyển Sinh 10 Gia Lai,10,Tuyển Sinh 10 Hà Giang,1,Tuyển Sinh 10 Hà Nam,14,Tuyển Sinh 10 Hà Nội,80,Tuyển Sinh 10 Hà Tĩnh,18,Tuyển Sinh 10 Hải Dương,16,Tuyển Sinh 10 Hải Phòng,14,Tuyển Sinh 10 Hậu Giang,3,Tuyển Sinh 10 Hòa Bình,15,Tuyển Sinh 10 Hưng Yên,12,Tuyển Sinh 10 Khánh Hòa,12,Tuyển Sinh 10 KHTN,19,Tuyển Sinh 10 Kiên Giang,31,Tuyển Sinh 10 Kon Tum,6,Tuyển Sinh 10 Lai Châu,5,Tuyển Sinh 10 Lâm Đồng,10,Tuyển Sinh 10 Lạng Sơn,6,Tuyển Sinh 10 Lào Cai,9,Tuyển Sinh 10 Long An,17,Tuyển Sinh 10 Nam Định,21,Tuyển Sinh 10 Nghệ An,22,Tuyển Sinh 10 Ninh Bình,19,Tuyển Sinh 10 Ninh Thuận,10,Tuyển Sinh 10 Phú Thọ,17,Tuyển Sinh 10 Phú Yên,11,Tuyển Sinh 10 PTNK,35,Tuyển Sinh 10 Quảng Bình,11,Tuyển Sinh 10 Quảng Nam,15,Tuyển Sinh 10 Quảng Ngãi,12,Tuyển Sinh 10 Quảng Ninh,11,Tuyển Sinh 10 Quảng Trị,6,Tuyển Sinh 10 Sóc Trăng,15,Tuyển Sinh 10 Sơn La,5,Tuyển Sinh 10 Tây Ninh,14,Tuyển Sinh 10 Thái Bình,16,Tuyển Sinh 10 Thái Nguyên,16,Tuyển Sinh 10 Thanh Hóa,24,Tuyển Sinh 10 Thừa Thiên Huế,22,Tuyển Sinh 10 Tiền Giang,14,Tuyển Sinh 10 TPHCM,23,Tuyển Sinh 10 Tuyên Quang,3,Tuyển Sinh 10 Vĩnh Long,12,Tuyển Sinh 10 Vĩnh Phúc,21,Tuyển Sinh 2008-2009,1,Tuyển Sinh 2009-2010,1,Tuyển Sinh 2010-2011,6,Tuyển Sinh 2011-2012,20,Tuyển Sinh 2012-2013,63,Tuyển Sinh 2013-2014,78,Tuyển Sinh 2014-2015,78,Tuyển Sinh 2015-2016,60,Tuyển Sinh 2016-2017,72,Tuyển Sinh 2017-2018,126,Tuyển Sinh 2018-2019,60,Tuyển Sinh 2019-2020,90,Tuyển Sinh 2020-2021,59,Tuyển Sinh 2021-202,1,Tuyển Sinh 2021-2022,70,Tuyển Sinh 2022-2023,114,Tuyển Sinh Chuyên SPHCM,7,Tuyển Tập,45,Tuymaada,6,UK - Anh,16,Undergraduate,69,USA - Mỹ,62,USA TSTST,6,USAJMO,12,USATST,8,USEMO,4,Uzbekistan,1,Vasile Cîrtoaje,4,Vật Lý,1,Viện Toán Học,4,Vietnam,4,Viktor Prasolov,1,VIMF,1,Vinh,31,Vĩnh Long,37,Vĩnh Phúc,86,Virginia Tech,1,VLTT,1,VMEO,4,VMF,12,VMO,51,VNTST,23,Võ Anh Khoa,1,Võ Quốc Bá Cẩn,26,Võ Thành Văn,1,Vojtěch Jarník,6,Vũ Hữu Bình,7,Vương Trung Dũng,1,WFNMC Journal,1,Wiles,1,Xác Suất,1,Yên Bái,22,Yên Định,1,Yên Thành,1,Zhautykov,13,Zhou Yuan Zhe,1,
ltr
item
MOlympiad.NET: Giả Thuyết Kepler Đã Được Chứng Minh Một Cách Hình Thức
Giả Thuyết Kepler Đã Được Chứng Minh Một Cách Hình Thức
https://1.bp.blogspot.com/-gWDX8QKjDAo/WdKP_DvDygI/AAAAAAAAAqA/EXlq_Af2P8wfbiZfw-hDvcRWk0ZC7DRIgCLcBGAs/s1600/Kepler_wide.jpg
https://1.bp.blogspot.com/-gWDX8QKjDAo/WdKP_DvDygI/AAAAAAAAAqA/EXlq_Af2P8wfbiZfw-hDvcRWk0ZC7DRIgCLcBGAs/s72-c/Kepler_wide.jpg
MOlympiad.NET
https://www.molympiad.net/2017/10/gia-thuyet-kepler-uoc-chung-minh-mot-cach-hinh-thuc.html
https://www.molympiad.net/
https://www.molympiad.net/
https://www.molympiad.net/2017/10/gia-thuyet-kepler-uoc-chung-minh-mot-cach-hinh-thuc.html
true
2506595080985176441
UTF-8
Loaded All Posts Not found any posts VIEW ALL Readmore Reply Cancel reply Delete By Home PAGES POSTS View All RECOMMENDED FOR YOU Tag ARCHIVE SEARCH ALL POSTS Not found any post match with your request Back Home Sunday Monday Tuesday Wednesday Thursday Friday Saturday Sun Mon Tue Wed Thu Fri Sat January February March April May June July August September October November December Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec just now 1 minute ago $$1$$ minutes ago 1 hour ago $$1$$ hours ago Yesterday $$1$$ days ago $$1$$ weeks ago more than 5 weeks ago Followers Follow THIS PREMIUM CONTENT IS LOCKED
NỘI DUNG CAO CẤP NÀY ĐÃ BỊ KHÓA
STEP 1: SHARE THIS ARTICLE TO A SOCIAL NETWORK
BƯỚC 1: CHIA SẺ BÀI VIẾT NÀY LÊN MẠNG XÃ HỘI
STEP 2: CLICK THE LINK ON YOUR SOCIAL NETWORK
BƯỚC 2: BẤM VÀO ĐƯỜNG DẪN TRÊN MẠNG XÃ HỘI CỦA BẠN
Copy All Code Select All Code All codes were copied to your clipboard Can not copy the codes / texts, please press [CTRL]+[C] (or CMD+C with Mac) to copy Table of Content