$hide=mobile

[Đáp Án] Đề Thi Chọn Đội Tuyển Tỉnh Nam Định Dự Thi Học Sinh Giỏi Quốc Gia THPT 2017-2018

  1. Giải hệ phương trình $$\begin{cases} 2y^{3}+7y+2x\sqrt{1-x} &= 3\sqrt{1-x}+3(2y^{2}+1) \\ \sqrt{2y^{2}-4y+3} &= 5-y+\sqrt{x+4} \end{cases}.$$
  2. Cho dãy số $(x_{n})$ được xác định bởi $$x_{1}= 4,\quad x_{n+1}= \frac{x_{n}^{4}+9}{x_{n}^{3}-x_{n}+6},\ \forall n \in \mathbb{N^{*}}.$$ a) Chứng minh rằng $\displaystyle\lim_{n\to\infty} x_{n}= +\infty$.
    b) Với mỗi số nguyên dương $n$, đặt $\displaystyle{y_{n}= \sum_{k=1}^{n}\frac{1}{x_{k}^{3}+3}}$. Tìm $\lim y_{n}$.
  3. Cho tam giác $ABC$ nội tiếp đường tròn $(O)$. Đường tròn $(J)$ qua $B, C$ cắt cạnh $AB$ và $AC$ tại $F$ và $E$ tương ứng. Đường tròn ngoại tiếp tam giác $AEF$ cắt đường tròn $(O)$ tại điểm thứ hai là $D$.
    a) Gọi $P$ và $Q$ là giao điểm thứ hai của $DE$ và $DF$ với $(O)$. Chứng minh các đường thẳng $PC$, $BQ$ và $AO$ đồng quy.
    b) Giả sử $EF$ cắt $BC$ ở $K$. Gọi $O_{1}$, $O_{2}$ lần lượt là tâm đường tròn ngoại tiếp các tam giác $AEF$ và tam giác $KFB$. Chứng minh trực tâm tam giác $O_{1}O_{2}O$ nằm trên $AB$.
  4. Tìm tất cả các hàm số $f: \mathbb{R^{+}}\rightarrow \mathbb{R^{+}}$ thỏa mãn $$f(y)f(x+f(y))= f(x)f(xy), \forall x,y \in \mathbb{R^{+}}.$$
  5. Cho đa giác đều $A_{1}A_{2}...A_{2017}$. Có bao nhiêu tam giác nhọn có đỉnh là đỉnh của đa giác trên?.
  6. Cho $2n+3$ điểm phân biệt trên mặt phẳng sao cho $3$ điểm bất kì không thẳng hàng và $4$ điểm bất kì không cùng nằm trên một đường tròn.
    a) Chứng minh tồn tại đường tròn $(C)$ đi qua $3$ trong số các điểm trên sao cho trong các điểm còn lại có $n$ điểm nằm trong và $n$ điểm nằm ngoài đường tròn.
    b) Xét $2n$ điểm đã cho và không thuộc đường tròn $(C)$, nối tất cả các đoạn thẳng có đầu mút là $2$ trong số các điểm này. Các đoạn thẳng này và đường tròn $(C)$ có thể có nhiều nhất bao nhiêu điểm chung?
  7. Xét các số thực $a, b, c \in [0; 1]$. Tìm giá trị lớn nhất của biểu thức $$P= \frac{a}{b+c+1}+\frac{b}{c+a+1}+\frac{c}{a+b+1}+(1-a)(1-b)(1-c)$$
  8. Cho dãy đa thức $(P_{n})_{n=0}^{+ \infty }$ được xác định $$P_{0}(x)= x,\quad P_{n+1}(x)= -2xP_{n}(x)+ P_{n}^{'}(x), \forall n \in \mathbb{N^{*}}.$$ a) Chứng minh $P_{n}^{'}(x)= -2(n+1)P_{n-1}(x)$ với mọi số nguyên dương $n$;
    b) Tính $P_{2017}(0)$.
  9. Cho hai điểm cố định $B$, $C$ trên đường tròn $(O)$. Một điểm $A$ thay đổi trên đường tròn $(O)$ sao cho tam giác $ABC$ luôn là tam giác nhọn và không cân tại $A$. Đường phân giác trong góc $\widehat{BAC}$ cắt đường thẳng $BC$ tại $D$ và cắt đường tròn $(O)$ tại điểm thứ hai là $E$. Điểm $F$ nằm trên $BC$ sao cho $FD= FE$.
    a) Gọi $H$ là hình chiếu vuông góc của $A$ trên $EF$. Chứng minh rằng $A$, $O$, $H$ thẳng hàng, từ đó suy ra $H$ luôn thuộc một đường tròn cố định.
    b) Một đường tròn tâm $I$ tiếp xúc với các tia $AB$, $AC$ và tiếp xúc với đường thằng $EF$ tương ứng tại $M$, $N$, $P$ ($I$ và $A$ nằm về cùng một nửa mặt phẳng bờ là đường thẳng $EF$). Gọi $Q$ là điểm trên đường thẳng $MN$ sao cho $PQ$ vuông góc với $EF$. Chứng minh rằng đường thẳng $AQ$ luôn đi qua một điểm cố định khi $A$ di động trên đường tròn $(O)$.
  10. Cho $a, b$ là hai số thực thỏa mãn $a^{p}- b^{p}$ là số nguyên dương với mỗi số nguyên tố $p$. Chứng minh rằng $a$, $b$ là các số nguyên.
  11. a) Trên mặt phẳng tọa độ $Oxy$, cho $101$ điểm $A_{k}(k;100)$, $k= 0,1,...,100$. Tìm số đoạn thẳng $OA_{k}$ không đi qua điểm nào có tọa độ nguyên (cả hoành độ và tung độ đều nguyên) trừ 2 đầu mút của nó.
    b) Cho đa giác lồi có lẻ đỉnh. Mỗi cạnh được tô bởi $1$ trong $3$ màu: đỏ, xanh, vàng. Giả sử ban đầu các màu được tô cho các cạnh theo chiều kim đồng hồ là đỏ, xanh, đỏ,..., đỏ, xanh, vàng. Mỗi bước có thể đổi màu $1$ cạnh sao cho không có $2$ cạnh kề nhau (chung đỉnh) được tô cùng màu. Hỏi sau hữu hạn bước có thể nhận được trạng thái mà màu được tô cho các cạnh theo chiều kim đồng hồ là đỏ, xanh, đỏ, xanh,..., đỏ, vàng, xanh hay không?.

Post a Comment


$hide=home

$type=three$count=6$sr=random$t=oot$h=1$l=0$meta=hide$rm=hide$sn=0

$hide=post$type=three$count=6$sr=random$t=oot$h=1$l=0$meta=hide$rm=hide$sn=0

$hide=home

Kỷ Yếu$cl=violet$type=three$count=6$sr=random$t=oot$h=1$l=0$meta=hide$rm=hide$sn=0

Journals$cl=green$type=three$count=6$sr=random$t=oot$h=1$l=0$meta=hide$rm=hide$sn=0

Name

Ả-rập Xê-út,1,Abel,5,Albania,2,AMM,2,Amsterdam,5,Ấn Độ,1,An Giang,22,Andrew Wiles,1,Anh,2,Áo,1,APMO,19,Ba Đình,2,Ba Lan,1,Bà Rịa Vũng Tàu,52,Bắc Giang,49,Bắc Kạn,1,Bạc Liêu,9,Bắc Ninh,47,Bắc Trung Bộ,7,Bài Toán Hay,5,Balkan,37,Baltic Way,30,BAMO,1,Bất Đẳng Thức,66,Bến Tre,46,Benelux,13,Bình Định,44,Bình Dương,21,Bình Phước,38,Bình Thuận,34,Birch,1,Booklet,11,Bosnia Herzegovina,3,BoxMath,3,Brazil,2,Bùi Đắc Hiên,1,Bùi Thị Thiện Mỹ,1,Bùi Văn Tuyên,1,Bùi Xuân Diệu,1,Bulgaria,5,Buôn Ma Thuột,1,BxMO,12,Cà Mau,13,Cần Thơ,14,Canada,39,Cao Bằng,6,Cao Quang Minh,1,Câu Chuyện Toán Học,36,Caucasus,2,CGMO,10,China,10,Chọn Đội Tuyển,347,Chu Tuấn Anh,1,Chuyên Đề,124,Chuyên Sư Phạm,31,Chuyên Trần Hưng Đạo,3,Collection,8,College Mathematic,1,Concours,1,Cono Sur,1,Contest,610,Correspondence,1,Cosmin Poahata,1,Crux,2,Czech-Polish-Slovak,25,Đà Nẵng,39,Đa Thức,2,Đại Số,20,Đắk Lắk,54,Đắk Nông,7,Đan Phượng,1,Danube,7,Đào Thái Hiệp,1,ĐBSCL,2,Đề Thi HSG,1643,Đề Thi JMO,1,Điện Biên,8,Định Lý,1,Định Lý Beaty,1,Đỗ Hữu Đức Thịnh,1,Do Thái,3,Doãn Quang Tiến,4,Đoàn Quỳnh,1,Đoàn Văn Trung,1,Đống Đa,4,Đồng Nai,49,Đồng Tháp,51,Du Hiền Vinh,1,Đức,1,Duyên Hải Bắc Bộ,25,E-Book,33,EGMO,16,ELMO,19,EMC,8,Epsilon,1,Estonian,5,Euler,1,Evan Chen,1,Fermat,3,Finland,4,Forum Of Geometry,2,Furstenberg,1,G. Polya,3,Gặp Gỡ Toán Học,26,Gauss,1,GDTX,3,Geometry,12,Gia Lai,25,Gia Viễn,2,Giải Tích Hàm,1,Giảng Võ,1,Giới hạn,2,Goldbach,1,Hà Giang,2,Hà Lan,1,Hà Nam,29,Hà Nội,231,Hà Tĩnh,72,Hà Trung Kiên,1,Hải Dương,49,Hải Phòng,42,Hàn Quốc,5,Hậu Giang,4,Hậu Lộc,1,Hilbert,1,Hình Học,33,HKUST,7,Hòa Bình,13,Hoài Nhơn,1,Hoàng Bá Minh,1,Hoàng Minh Quân,1,Hodge,1,Hojoo Lee,2,HOMC,5,HongKong,8,HSG 10,100,HSG 11,87,HSG 12,581,HSG 9,402,HSG Cấp Trường,78,HSG Quốc Gia,99,HSG Quốc Tế,16,Hứa Lâm Phong,1,Hứa Thuần Phỏng,1,Hùng Vương,2,Hưng Yên,32,Hương Sơn,2,Huỳnh Kim Linh,1,Hy Lạp,1,IMC,25,IMO,54,India,45,Inequality,13,InMC,1,International,307,Iran,11,Jakob,1,JBMO,41,Jewish,1,Journal,20,Junior,38,K2pi,1,Kazakhstan,1,Khánh Hòa,16,KHTN,53,Kiên Giang,64,Kim Liên,1,Kon Tum,18,Korea,5,Kvant,2,Kỷ Yếu,42,Lai Châu,4,Lâm Đồng,33,Lạng Sơn,21,Langlands,1,Lào Cai,16,Lê Hải Châu,1,Lê Hải Khôi,1,Lê Hoành Phò,4,Lê Khánh Sỹ,3,Lê Minh Cường,1,Lê Phúc Lữ,1,Lê Phương,1,Lê Quý Đôn,1,Lê Viết Hải,1,Lê Việt Hưng,1,Leibniz,1,Long An,42,Lớp 10,10,Lớp 10 Chuyên,452,Lớp 10 Không Chuyên,230,Lớp 11,1,Lục Ngạn,1,Lượng giác,1,Lương Tài,1,Lưu Giang Nam,2,Lý Thánh Tông,1,Macedonian,1,Malaysia,1,Margulis,2,Mark Levi,1,Mathematical Excalibur,1,Mathematical Reflections,1,Mathematics Magazine,1,Mathematics Today,1,Mathley,1,MathLinks,1,MathProblems Journal,1,Mathscope,8,MathsVN,5,MathVN,1,MEMO,10,Metropolises,4,Mexico,1,MIC,1,Michael Guillen,1,Mochizuki,1,Moldova,1,Moscow,1,Mỹ,9,MYTS,4,Nam Định,32,Nam Phi,1,Nam Trung Bộ,1,National,249,Nesbitt,1,Newton,4,Nghệ An,50,Ngô Bảo Châu,2,Ngô Việt Hải,1,Ngọc Huyền,2,Nguyễn Anh Tuyến,1,Nguyễn Bá Đang,1,Nguyễn Đình Thi,1,Nguyễn Đức Tấn,1,Nguyễn Đức Thắng,1,Nguyễn Duy Khương,1,Nguyễn Duy Tùng,1,Nguyễn Hữu Điển,3,Nguyễn Mình Hà,1,Nguyễn Minh Tuấn,8,Nguyễn Phan Tài Vương,1,Nguyễn Phú Khánh,1,Nguyễn Phúc Tăng,1,Nguyễn Quản Bá Hồng,1,Nguyễn Quang Sơn,1,Nguyễn Tài Chung,5,Nguyễn Tăng Vũ,1,Nguyễn Tất Thu,1,Nguyễn Thúc Vũ Hoàng,1,Nguyễn Trung Tuấn,8,Nguyễn Tuấn Anh,2,Nguyễn Văn Huyện,3,Nguyễn Văn Mậu,25,Nguyễn Văn Nho,1,Nguyễn Văn Quý,2,Nguyễn Văn Thông,1,Nguyễn Việt Anh,1,Nguyễn Vũ Lương,2,Nhật Bản,3,Nhóm $\LaTeX$,4,Nhóm Toán,1,Ninh Bình,41,Ninh Thuận,15,Nội Suy Lagrange,2,Nội Suy Newton,1,Nordic,19,Olympiad Corner,1,Olympiad Preliminary,2,Olympic 10,98,Olympic 10/3,5,Olympic 11,89,Olympic 12,30,Olympic 24/3,6,Olympic 27/4,20,Olympic 30/4,66,Olympic KHTN,6,Olympic Sinh Viên,73,Olympic Tháng 4,12,Olympic Toán,300,Olympic Toán Sơ Cấp,3,PAMO,1,Phạm Đình Đồng,1,Phạm Đức Tài,1,Phạm Huy Hoàng,1,Pham Kim Hung,3,Phạm Quốc Sang,2,Phan Huy Khải,1,Phan Thành Nam,1,Pháp,2,Philippines,8,Phú Thọ,30,Phú Yên,26,Phùng Hồ Hải,1,Phương Trình Hàm,11,Phương Trình Pythagoras,1,Pi,1,Polish,32,Problems,1,PT-HPT,14,PTNK,45,Putnam,25,Quảng Bình,44,Quảng Nam,31,Quảng Ngãi,33,Quảng Ninh,43,Quảng Trị,26,Quỹ Tích,1,Riemann,1,RMM,12,RMO,24,Romania,36,Romanian Mathematical,1,Russia,1,Sách Thường Thức Toán,7,Sách Toán,69,Sách Toán Cao Học,1,Sách Toán THCS,7,Saudi Arabia,7,Scholze,1,Serbia,17,Sharygin,24,Shortlists,56,Simon Singh,1,Singapore,1,Số Học - Tổ Hợp,27,Sóc Trăng,28,Sơn La,11,Spain,8,Star Education,5,Stars of Mathematics,11,Swinnerton-Dyer,1,Talent Search,1,Tăng Hải Tuân,2,Tạp Chí,14,Tập San,6,Tây Ban Nha,1,Tây Ninh,29,Thạch Hà,1,Thái Bình,39,Thái Nguyên,49,Thái Vân,2,Thanh Hóa,57,THCS,2,Thổ Nhĩ Kỳ,5,Thomas J. Mildorf,1,THPT Chuyên Lê Quý Đôn,1,THPTQG,15,THTT,6,Thừa Thiên Huế,35,Tiền Giang,19,Tin Tức Toán Học,1,Titu Andreescu,2,Toán 12,7,Toán Cao Cấp,3,Toán Chuyên,2,Toán Rời Rạc,5,Toán Tuổi Thơ,3,Tôn Ngọc Minh Quân,2,TOT,1,TPHCM,126,Trà Vinh,5,Trắc Nghiệm,1,Trắc Nghiệm Toán,2,Trại Hè,34,Trại Hè Hùng Vương,25,Trại Hè Phương Nam,5,Trần Đăng Phúc,1,Trần Minh Hiền,2,Trần Nam Dũng,9,Trần Phương,1,Trần Quang Hùng,1,Trần Quốc Anh,2,Trần Quốc Luật,1,Trần Quốc Nghĩa,1,Trần Tiến Tự,1,Trịnh Đào Chiến,2,Trung Quốc,12,Trường Đông,19,Trường Hè,7,Trường Thu,1,Trường Xuân,2,TST,55,Tuyên Quang,6,Tuyển Sinh,3,Tuyển Tập,44,Tuymaada,4,Undergraduate,66,USA,44,USAJMO,10,USATST,7,Uzbekistan,1,Vasile Cîrtoaje,4,Vật Lý,1,Viện Toán Học,2,Vietnam,4,Viktor Prasolov,1,VIMF,1,Vinh,27,Vĩnh Long,20,Vĩnh Phúc,63,Virginia Tech,1,VLTT,1,VMEO,4,VMF,12,VMO,46,VNTST,22,Võ Anh Khoa,1,Võ Quốc Bá Cẩn,26,Võ Thành Văn,1,Vojtěch Jarník,6,Vũ Hữu Bình,7,Vương Trung Dũng,1,WFNMC Journal,1,Wiles,1,Yên Bái,17,Yên Định,1,Yên Thành,1,Zhautykov,11,Zhou Yuan Zhe,1,
ltr
item
MOlympiad: [Đáp Án] Đề Thi Chọn Đội Tuyển Tỉnh Nam Định Dự Thi Học Sinh Giỏi Quốc Gia THPT 2017-2018
[Đáp Án] Đề Thi Chọn Đội Tuyển Tỉnh Nam Định Dự Thi Học Sinh Giỏi Quốc Gia THPT 2017-2018
MOlympiad
https://www.molympiad.net/2017/10/de-thi-chon-doi-tuyen-tinh-nam-dinh-2017-2018.html
https://www.molympiad.net/
https://www.molympiad.net/
https://www.molympiad.net/2017/10/de-thi-chon-doi-tuyen-tinh-nam-dinh-2017-2018.html
true
2506595080985176441
UTF-8
Loaded All Posts Not found any posts VIEW ALL Readmore Reply Cancel reply Delete By Home PAGES POSTS View All RECOMMENDED FOR YOU LABEL ARCHIVE SEARCH ALL POSTS Not found any post match with your request Back Home Sunday Monday Tuesday Wednesday Thursday Friday Saturday Sun Mon Tue Wed Thu Fri Sat January February March April May June July August September October November December Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec just now 1 minute ago $$1$$ minutes ago 1 hour ago $$1$$ hours ago Yesterday $$1$$ days ago $$1$$ weeks ago more than 5 weeks ago Followers Follow THIS PREMIUM CONTENT IS LOCKED Please share to unlock Copy All Code Select All Code All codes were copied to your clipboard Can not copy the codes / texts, please press [CTRL]+[C] (or CMD+C with Mac) to copy