$hide=mobile$type=ticker$c=12$cols=3$l=0$sr=random$b=0

[Nguyễn Văn Huyện] Bổ Đề Hoán Vị

This article has
views, Facebook comments and 0 Blogger comments. Leave a comment.
Năm 2008 trên diễn đàn toán học Art of Problem Solving anh Võ Quốc Bá Cẩn đề xuất một bổ đề khá thú vị sau
Bổ Đề. Với mọi số thực dương $a,\,b,\,c$ thỏa mãn $a+b+c=1,$ đặt $q = ab+bc+ca\,(1 \geqslant 3q).$ Chứng minh rằng $$\frac{a}{b}+\frac{b}{c}+\frac{c}{a} \geqslant \frac{2(27q^2-9q+1)}{9q^2-2q+(1-3q)\sqrt{q(1-3q)}}+\frac{1}{q}-6.$$
Lời Giải. Đặt $p=a+b+c,\,q=ab+bc+ca$ và $r=abc$ (ta sẽ thống nhất cách đặt này cho cả bài viết) khi đó
\[(a-b)^2(b-c)^2(c-a)^2 = p^2q^2 - 4q^3 + 2p(9q - 2p^2)r - 27r^2.\]
Ta có đánh giá
\[\begin{aligned} 2(ab^2+bc^2+ca^2) & = \sum ab(a+b) + (a-b)(b-c)(c-a) \\ &= pq - 3r + (a-b)(b-c)(c-a) \\& \geqslant pq - 3r - \sqrt{(a-b)^2(b-c)^2(c-a)^2} \\& = pq - 3r - \sqrt{p^2q^2 - 4q^3 + 2p(9q - 2p^2)r - 27r^2},\end{aligned}\]
vì thế
\[ab^2+bc^2+ca^2 \geqslant \frac{pq - 3r - \sqrt{p^2q^2 - 4q^3 + 2p(9q - 2p^2)r - 27r^2}}{2}.\]
Mặt khác từ giả thiết ta được $p = 1$ cho nên
\[\frac{a}{b}+\frac{b}{c}+\frac{c}{a} = \frac{ab^2+bc^2+ca^2}{abc} \geqslant \frac{q-3r-\sqrt{q^2-4q^3+2(9q-2)r-27r^2}}{2r}.\]
Xét hàm số
\[f\,(r) = \frac{q-3r-\sqrt{q^2-4q^3+2(9q-2)r-27r^2}}{2r},\]
tính đạo hàm
\[f^{'}(r) = \frac{q^2-4q^3+(9q-2)r-q\sqrt{q^2-4q^3+2(9q-2)r-27r^2}}{2r^2\sqrt{q^2-4q^3+2(9q-2)r-27r^2}},\]
do đó phương trình $f^{'}(r) = 0$ có nghiệm
\[r = r_0 = \frac{q^2\left[9q^2-2q+(1-3q)\sqrt{q(1-3q)}\right]}{27q^2-9q+1}.\]
Lập bảng biến thiên ta được $f(r) \geqslant f(r_0).$ Biến đổi
\[\begin{aligned} f(r_0) & = \frac{q - 3r_0 - \sqrt{q - 4q^3 + 2(9q - 2)r_0 - 27r^2_0}}{2r_0} \\& = \frac{q-3r_0 - \dfrac{q^2 - 4q^3 + (9q - 2)r_0}{q}}{r_0} \\& = \frac{2q^3 + (1 - 6q)r_0}{qr_0} = \frac{2q^2}{r_0} + \frac{1}{q} - 6 \\& = \frac{2(27q^2 - 9q + 1)}{9q^2 - 2q + (1 - 3q)\sqrt{q(1 - 3q)}} + \frac{1}{q} - 6.\end{aligned}\]
Đây chính là điều phải chứng minh.
Nhận Xét.
  1. Ở thời điểm đó bổ đề trên là một bài toán rất khó, do hình thức khá cồng kềnh, không đẹp mắt (có căn thức nằm ở mẫu số) nên không nhận được sự quan tâm của nhiều người, sau này vào năm 2011 anh Lê Hữu Điền Khuê (Nesbit) mới đưa ra một chứng minh khác trên Diễn Đàn Toán Học.
  2. Đây là một kết quả rất chặt với vô số các trường hợp để đẳng thức xảy ra và cũng là dạng chặt nhất trong lớp các bài toán có dạng \[f\left(\frac{a}{b},\,\frac{b}{c},\,\frac{c}{a},\,a+b+c,\,ab+bc+ca\right) \geqslant 0.\]
  3. Bổ đề này sẽ giúp chúng ta sẽ giải quyết được rất nhiều bài toán khó sau đây (đã từng là unsolve suốt một thời gian dài trên AoPS).

Các Bài Toán Áp Dụng

Bài Toán 1 (Võ Quốc Bá Cẩn). Cho $a,\,b,\,c$ là ba số thực dương. Chứng minh rằng
\[\frac{a}{b}+\frac{b}{c}+\frac{c}{a} + \frac{28(ab+bc+ca)}{(a+b+c)^2} \geqslant 12.\]
Lời Giải. Do tính thuần nhất của bài toán nên ta có thể chuẩn hóa $p=1,$ khi đó
\[\frac{28(ab+bc+ca)}{(a+b+c)^2} = \frac{28q}{p^2} = 28q.\]
Áp dụng bổ đề ta đưa bài toán về chứng minh
\[\frac{2(27q^2-9q+1)}{9q^2-2q+(1-3q)\sqrt{q(1-3q)}} + \frac{1}{q} - 6 + 28q \geqslant 12,\]
hay là
$$\frac{2(27q^2-9q+1)}{9q^2-2q+(1-3q)\sqrt{q(1-3q)}} + \frac{1}{q} + 28q \geqslant 18.$$
Bất đẳng thức lúc này chỉ còn một biến nên hai công cụ đầu tiên mà chúng ta nghĩ đến là khảo sát hàm hoặc quy đồng phân tích nhân tử. Tuy nhiên biểu thức này khi lấy đạo hàm sẽ cho ra một kết quả “rất khủng” còn nếu phân tích nhân tử thì thì biểu thức thu được cũng không khá hơn mấy vì sự xuất hiện của căn thức ở mẫu. Viết bất đẳng thức trên lại như sau
$$\frac{2(27q^2 - 9q + 1)}{9q^2 - 2q + (1 - 3q) \cdot q \cdot \sqrt{\frac{1 - 3q}{q}}} + \frac{1}{q} + 28q \geqslant 18.$$
Đặt $x = \sqrt{\frac{1-3q}{q}} \geqslant 0$ thì $q = \frac{1}{x^2+3},$ bất đẳng thức trên trở thành
\[\frac{2(x^2+3x+3)}{x+1} + x^2 + \frac{28}{x^2+3} \geqslant 15.\]
Xét hiệu hai vế ta được
\[\frac{2(x^2+3x+3)}{x+1} + x^2 + \frac{28}{x^2+3} - 15 = \frac{(x^3+5x^2+3x+1)(x-1)^2}{(x+1)(x^2+3)} \geqslant 0.\]
Đẳng thức xảy ra khi và chỉ khi và chỉ khi
\[\frac{a}{\sqrt{7}-\tan\frac{\pi}{7}} = \frac{b}{\sqrt{7}-\tan\frac{2\pi}{7}} = \frac{c}{\sqrt{7}-\tan\frac{4\pi}{7}}.\]
Vậy ta có điều phải chứng minh.

Bài toán 2 ((Võ Quốc Bá Cẩn)). Cho $a,\,b,\,c$ là ba số thực dương. Chứng minh rằng
\[\frac{a}{b}+\frac{b}{c}+\frac{c}{a} + \frac{7(ab+bc+ca)}{a^2+b^2+c^2} \geqslant \frac{17}{2}.\]
Lời giải. Tương tự như trên ta cũng chuẩn hóa $p=1,$ khi đó
\[\frac{7(ab+bc+ca)}{a^2+b^2+c^2} = \frac{7q}{p^2-2q} = \frac{7q}{1-2q}.\]
Áp dụng bổ đề ta đưa bài toán về chứng minh
\[\frac{2(27q^2-9q+1)}{9q^2-2q+(1-3q)\sqrt{q(1-3q)}} + \frac{1}{q} - 6 + \frac{7q}{1-2q} \geqslant \frac{17}{2},\]
hay là
$$\frac{2(27q^2 - 9q + 1)}{9q^2 - 2q + (1 - 3q) \cdot q \cdot \sqrt{\frac{1 - 3q}{q}}} + \frac{1}{q} + \frac{7q}{1-2q} \geqslant \frac{29}{2}.$$
Đặt $x = \sqrt{\frac{1-3q}{q}} \geqslant 0$ thì $q = \frac{1}{x^2+3},$ bất đẳng thức bất đẳng thức trên trở thành
\[\frac{2(x^2+3x+3)}{x+1}+x^2+\frac{7}{x^2+1} \geqslant \frac{23}{2},\]
tương đương với
\[\frac{(2x^3+10x^2+9x+3)(x-1)^2}{2(x+1)(x^2+1)} \geqslant 0.\]
Đẳng thức xảy ra khi và chỉ khi
\[\frac{a}{\sqrt{7}-\tan\frac{\pi}{7}} = \frac{b}{\sqrt{7}-\tan\frac{2\pi}{7}} = \frac{c}{\sqrt{7}-\tan\frac{4\pi}{7}}.\]
Bài toán được chứng minh.
Nhận xét. Bài toán này là hệ quả của bài toán 1. Thật vậy vì
\[\frac{a}{b}+\frac{b}{c}+\frac{c}{a} \geqslant 12 - \frac{28(ab+bc+ca)}{(a+b+c)^2},\]
nên ta chỉ cần chứng minh
\[12 - \frac{28(ab+bc+ca)}{(a+b+c)^2} + \frac{7(ab+bc+ca)}{a^2+b^2+c^2} \geqslant \frac{17}{2},\]
hay là
\[\frac{7(a+b+c)^2}{2(a^2+b^2+c^2)} \geqslant \frac{28(ab+bc+ca)}{(a+b+c)^2},\]
hoặc
\[8(ab+bc+ca)(a^2+b^2+c^2) \leqslant (a+b+c)^4.\]
Áp dụng bất đẳng thức AM-GM, ta có
\[\begin{aligned}8(ab+bc+ca)(a^2+b^2+c^2) \leqslant \left[2(ab+bc+ca) + (a^2+b^2+c^2)\right]^2 = (a+b+c)^4.\end{aligned}\]
Khi đẳng thức xảy ra thì ta được đẳng thức khá đẹp mắt $a^2+b^2+c^2 = 2(ab+bc+ca).$

Bài toán 3 (Nguyễn Văn Huyện). Cho $a,\,b,\,c$ là ba số thực dương. Chứng minh rằng
\[\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)^2 + \frac{70(ab+bc+ca)}{a^2+b^2+c^2} \geqslant 60.\]
Lời giải. Chuẩn hóa $p=1$ và áp dụng bổ đề ta đưa bài toán về chứng minh
$$\left[\frac{2(27q^2-9q+1)}{9q^2-2q+(1-3q)\sqrt{q(1-3q)}} + \frac{1}{q} - 6\right]^2 + \frac{70q}{1-2q} \geqslant 60.$$
Đặt $x = \sqrt{\frac{1-3q}{q}} \geqslant 0$ thì $q = \frac{1}{x^2+3},$ bất đẳng thức trên trở thành
\[\left(\frac{x^3+3x^2+3x+3}{x+1}\right)^2 + \frac{70}{x^2+1} \geqslant 60,\]
tương đương với
\[\frac{(x^6+8x^5+31x^4+84x^3+119x^2+76x+19)(x-1)^2}{(x^2+1)(x+1)^2} \geqslant 0.\]
Đẳng thức xảy ra khi và chỉ khi
\[\frac{a}{\sqrt{7}-\tan\frac{\pi}{7}} = \frac{b}{\sqrt{7}-\tan\frac{2\pi}{7}} = \frac{c}{\sqrt{7}-\tan\frac{4\pi}{7}}.\]
Bài toán được chứng minh.

Bài toán 4 (Tạ Hồng Quảng). Cho $a,\,b,\,c$ là ba số thực dương. Chứng minh rằng
\[\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)^2 + \frac{280(ab+bc+ca)}{(a+b+c)^2} \geqslant 95.\]
Lời giải. Chuẩn hóa $p=1$ và áp dụng bổ đề ta đưa bài toán về chứng minh
$$\left[\frac{2(27q^2-9q+1)}{9q^2-2q+(1-3q)\sqrt{q(1-3q)}} + \frac{1}{q} - 6\right]^2 + 280q \geqslant 95.$$
Đặt $x = \sqrt{\frac{1-3q}{q}} \geqslant 0$ thì $q = \frac{1}{x^2+3},$ bất đẳng thức trên trở thành
\[\left(\frac{x^3+3x^2+3x+3}{x+1}\right)^2 + \frac{280}{x^2+3} \geqslant 95,\]
tương đương với
\[\frac{(x^6+8x^5+33x^4+100x^3+144x^2+88x+22)(x-1)^2}{(x^2+3)(x+1)^2} \geqslant 0.\]
Đẳng thức xảy ra khi và chỉ khi
\[\frac{a}{\sqrt{7}-\tan\frac{\pi}{7}} = \frac{b}{\sqrt{7}-\tan\frac{2\pi}{7}} = \frac{c}{\sqrt{7}-\tan\frac{4\pi}{7}}.\]
Bài toán được chứng minh.

Bài toán 5 (Nguyễn Văn Quý). Cho $a,\,b,\,c$ là ba số thực dương. Chứng minh rằng
\[\frac{a}{b}+\frac{b}{c}+\frac{c}{a} \geqslant \frac{a^2+b^2+c^2}{ab+bc+ca} + \frac{6(a^2+b^2+c^2)}{(a+b+c)^2}.\]
Lời giải. Chuẩn hóa $p=1$ và áp dụng bổ đề ta đưa bài toán về chứng minh
$$\frac{2(27q^2-9q+1)}{9q^2-2q+(1-3q)\sqrt{q(1-3q)}} + \frac{1}{q} - 6 \geqslant \frac{1-2q}{q} + 6(1-2q).$$
Đặt $x = \sqrt{\frac{1-3q}{q}} \geqslant 0$ thì $q = \frac{1}{x^2+3},$ bất đẳng thức bất trên trở thành
\[\frac{x^3+3x^2+3x+3}{x+1} \geqslant \frac{(x^2+9)(x^2+1)}{x^2+3},\]
hay là
\[\frac{2x^2(x-1)^2}{(x+1)(x^2+3)} \geqslant 0.\]
Đẳng thức xảy ra khi và chỉ khi $a=b=c$ hoặc
\[\frac{a}{\sqrt{7}-\tan\frac{\pi}{7}} = \frac{b}{\sqrt{7}-\tan\frac{2\pi}{7}} = \frac{c}{\sqrt{7}-\tan\frac{4\pi}{7}}.\]
Chứng minh hoàn tất.
Bài toán 6 (Ji Chen). Cho $a,\,b,\,c$ là ba số thực dương. Chứng minh rằng
\[\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+\frac{k(ab+bc+ca)}{a^2+b^2+c^2} \geqslant 3+k,\]
trong đó $k = 3\sqrt[3]{4} - 2.$
Lời giải. Chuẩn hóa $p=1$ và áp dụng bổ đề ta đưa bài toán về chứng minh
$$\frac{2(27q^2-9q+1)}{9q^2-2q+(1-3q)\sqrt{q(1-3q)}} + \frac{1}{q} + \frac{kq}{1-2q} \geqslant 9 + k.$$
Đặt $x = \sqrt{\frac{1-3q}{q}} \geqslant 0$ thì $q = \frac{1}{x^2+3}$ bất đẳng thức bất đẳng thức trên trở thành
\[\frac{2(x^2+3x+3)}{x+1}+x^2+\frac{k}{x^2+1} \geqslant k+6,\]
hay là
\[\frac{x^2[x^3+3x^2+(1-k)x-k+3]}{(x+1)(x^2+1)} \geqslant 0.\]
Bất đẳng thức này đúng vì với $k = 3\sqrt[3]{4} - 2,$ thì
\[x^3+3x^2+(1-k)x-k+3 = \big(x + 1 + 2\sqrt[3]{2}\big)\big(x + 1 - \sqrt[3]{2} \big)^2 \geqslant 0.\]
Đẳng thức xảy ra khi và chỉ khi $x=0$ hoặc $x = \sqrt[3]{2} - 1,$ cụ thể

  • Nếu $x = 0$ thì $q = \frac{1}{3}$ kết hợp với $p = 1$ ta được $a = b = c.$
  • Nếu $x = \sqrt[3]{2} - 1$ thì $q = \frac{2+\sqrt[3]{2}}{10}$ dẫn đến $r = \frac{3-\sqrt[3]{2}}{50},$ kết hợp với $p=1$ ta thấy $a,\,b,\,c$ lần lượt là ba nghiệm của phương trình \[t^3 - t^2 + \frac{2+\sqrt[3]{2}}{10}t - \frac{3-\sqrt[3]{2}}{50} = 0.\] Bằng Maple hoặc Wolframalpha ta tìm được \[\left\{ \begin{aligned} & a = \frac{1}{3}+\frac{1}{3}\sqrt{\frac{8-6\sqrt[3]{2}}{5}} \cos \left(\frac{1}{3} \arccos \sqrt{\frac{101-54\sqrt[3]{4}}{20}}\right) \\ & b = \frac{1}{3}-\frac{1}{3}\sqrt{\frac{8-6\sqrt[3]{2}}{5}} \sin \left(\frac{\pi}{6}-\frac{1}{3} \arccos \sqrt{\frac{101-54\sqrt[3]{4}}{20}}\right)\\ & c = \frac{1}{3}-\frac{1}{3}\sqrt{\frac{8-6\sqrt[3]{2}}{5}} \sin \left(\frac{\pi}{6}+\frac{1}{3} \arccos \sqrt{\frac{101-54\sqrt[3]{4}}{20}}\right)\end{aligned}\right.\] cùng các hoán vị.
Bài toán được chứng minh.

Bài toán 7 (Võ Quốc Bá Cẩn, Bách Ngọc Thành Công). Cho $a,\,b,\,c$ là ba số thực dương. Chứng minh rằng
\[\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+k\geqslant \frac{(9+3k)(a^2+b^2+c^2)}{(a+b+c)^2},\]
với $k = 3\sqrt[3]{2} - 3.$
Lời giải. Chuẩn hóa $p=1$ và áp dụng bổ đề ta đưa bài toán về chứng minh
$$\frac{2(27q^2-9q+1)}{9q^2-2q+(1-3q)\sqrt{q(1-3q)}} + \frac{1}{q} - 6 + k \geqslant (9+3k)(1-2q).$$
Đặt $x = \sqrt{\frac{1-3q}{q}} \geqslant 0$ thì $q = \frac{1}{x^2+3},$ bất đẳng thức bất đẳng thức trên trở thành
\[\frac{x^3+3x^2+3x+3}{x+1} + k \geqslant \frac{(9+3k)(x^2+1)}{x^2+3}.\]
Với $k = 3\sqrt[3]{2} - 3,$ ta có
\[\frac{x^3+3x^2+3x+3}{x+1} + k-\frac{(9+3k)(x^2+1)}{x^2+3} = \frac{x^2\big(x+1+2\sqrt[3]{4}\big)\big(x+1-\sqrt[3]{4}\big)^2}{(x+1)(x^2+3)} \geqslant 0\]
Đẳng thức xảy ra khi và chỉ khi $a=b=c$ hoặc $a,\,b,\,c$ lần lượt là ba nghiệm của phương trình
\[t^3 - t^2 + \frac{2+\sqrt[3]{4}}{12} t - \frac{1}{36} = 0,\]
cụ thể
$$\begin{aligned} & a = \frac{1}{3}+\frac{1}{3}\sqrt{2-\sqrt[3]{4}} \cos \left(\frac{1}{3} \arccos \sqrt{\frac{7-\sqrt[3]{2}}{4}}\right) \\ & b = \frac{1}{3} - \frac{1}{3}\sqrt{2-\sqrt[3]{4}} \sin \left(\frac{\pi}{6}-\frac{1}{3} \arccos \sqrt{\frac{7-\sqrt[3]{2}}{4}}\right) \\ & c = \frac{1}{3} - \frac{1}{3}\sqrt{2-\sqrt[3]{4}} \sin \left(\frac{\pi}{6}+\frac{1}{3} \arccos \sqrt{\frac{7-\sqrt[3]{2}}{4}}\right)\end{aligned}.$$
cùng các hoán vị. Bài toán được chứng minh.

Bài toán 8 (Võ Quốc Bá Cẩn). Cho $a,\,b,\,c$ là các số thực dương. Chứng minh rằng
\[\frac{a}{b}+\frac{b}{c}+\frac{c}{a} \geqslant \sqrt{9-k+\frac{k(a^2+b^2+c^2)}{ab+bc+ca}},\]
trong đó $k = 3\big(1+\sqrt[3]2\big)^2.$
Lời giải. Chuẩn hóa $p=1$ và áp dụng bổ đề ta đưa bài toán về chứng minh
$$\frac{2(27q^2-9q+1)}{9q^2-2q+(1-3q)\sqrt{q(1-3q)}} + \frac{1}{q} - 6 \geqslant \sqrt{9-k+\frac{k(1-2q)}{q}}.$$
Đặt $x = \sqrt{\frac{1-3q}{q}} \geqslant 0$ thì $q = \frac{1}{x^2+3},$ bất đẳng thức bất đẳng thức trên trở thành
\[\frac{2(x^2+3x+3)}{x+1}+x^2-3 \geqslant \sqrt{9 + kx^2},\]
hay là
\[\frac{x^3+3x^2+3x+3}{x+1} \geqslant \sqrt{9 + kx^2},\]
hoặc
\[(x^3+3x^2+3x+3)^2 \geqslant (9 + kx^2)(x+1)^2,\]
\[x^2[x^4+6x^3+(15-k)x^2+2(12-k)x-k+18] \geqslant 0.\]
Đặt
\[P = x^4+6x^3+(15-k)x^2+2(12-k)x-k+18,\]
ta sẽ chứng minh $P \geqslant 0.$ Thật vậy, với $k = 3\big(1+\sqrt[3]2\big)^2$ thì
\[P = \big(x+1-\sqrt[3]{2}+\sqrt[3]{4}\big)\big(x+3+\sqrt[3]{2}+\sqrt[3]{4}\big)\big(x+1-\sqrt[3]{4}\big)^2 \geqslant 0.\]
Đẳng thức xảy ra khi và chỉ khi $a=b=c$ hoặc $a,\,b,\,c$ lần lượt là ba nghiệm của phương trình
\[t^3 - t^2 + \frac{2+\sqrt[3]{4}}{12} t - \frac{1}{36} = 0.\]
Giải phương trình này ta được nghiệm. Chứng minh hoàn tất.

Bài toán 9 (Nguyễn Văn Huyện). Cho $a,\,b,\,c$ là ba số thực dương. Chứng minh rằng
\[\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+\frac{(4\sqrt{2}-4)(ab+bc+ca)}{a^2+b^2+c^2} \geqslant 4\sqrt{2}-2+\frac{a^2+b^2+c^2}{ab+bc+ca}.\]
Lời giải. Chuẩn hóa $p=1$ và áp dụng bổ đề ta đưa bài toán về chứng minh
\[\frac{2(27q^2-9q+1)}{9q^2-2q+(1-3q)\sqrt{q(1-3q)}} + \frac{1}{q} - 6+\frac{(4\sqrt{2}-4)q}{1-2q} \geqslant 4\sqrt{2}-2+\frac{1-2q}{q},\]
hay là
$$\frac{2(27q^2-9q+1)}{9q^2-2q+(1-3q)\sqrt{q(1-3q)}} +\frac{(4\sqrt{2}-4)q}{1-2q} \geqslant 4\sqrt{2}+2.$$
Đặt $x = \sqrt{\frac{1-3q}{q}} \geqslant 0$ thì $q = \frac{1}{x^2+3},$ khi đó bất đẳng thức bất đẳng thức trên trở thành
\[\frac{x^3+3x^2+3x+3}{x+1} \geqslant \frac{x^4+4\sqrt{2}x^2+3}{x^2+1}.\]
Xét hiệu hai vế ta được
\[\frac{x^3+3x^2+3x+3}{x+1} - \frac{x^4+4\sqrt{2}x^2+3}{x^2+1} = \frac{2x^2\big(x+1-\sqrt{2}\big)^2}{(x+1)(x^2+1)} \geqslant 0.\]
Đẳng thức xảy ra khi và chỉ khi $a=b=c$ hoặc $a,\,b,\,c$ lần lượt là ba nghiệm của phương trình
\[t^3-t^2+\frac{3+\sqrt{2}}{14}t - \frac{2+3\sqrt{2}}{196} = 0,\]
cụ thể
\[\left\{ \begin{aligned} & a = \frac{1}{3}+\frac{1}{3}\sqrt{\frac{10-6\sqrt{2}}{7}} \cos \left(\frac{1}{3} \arccos \sqrt{\frac{115-27\sqrt{2}}{196}}\right) \\ & b = \frac{1}{3}-\frac{1}{3}\sqrt{\frac{10-6\sqrt{2}}{7}} \sin \left(\frac{\pi}{6}-\frac{1}{3} \arccos \sqrt{\frac{115-27\sqrt{2}}{196}}\right) \\ & c = \frac{1}{3}-\frac{1}{3}\sqrt{\frac{10-6\sqrt{2}}{7}} \sin \left(\frac{\pi}{6}+\frac{1}{3} \arccos \sqrt{\frac{115-27\sqrt{2}}{196}}\right)\end{aligned}\right.\]
Bài toán được chứng minh.

Bài Toán 10 (Nguyễn Văn Huyện). Cho ba số thực dương $a,\,b,\,c$ thỏa mãn điều kiện
\[\frac{a}{b} + \frac{b}{c} + \frac{c}{a} = \frac{5}{2}\cdot\frac{a^2+b^2+c^2}{ab+bc+ca}.\]
Chứng minh rằng \[a^2+b^2+c^2 \geqslant 2(ab+bc+ca).\]
Lời giải. Chuẩn hóa $p=1$ từ giả thiết áp dụng bổ đề ta có
$$\frac{2(27q^2-9q+1)}{9q^2-2q+(1-3q)\sqrt{q(1-3q)}}+\frac{1}{q} - 6 \leqslant \frac{5(1-2q)}{2q}.$$
Đặt $x = \sqrt{\frac{1-3q}{q}} \geqslant 0$ thì $q = \frac{1}{x^2+3},$ khi đó bất đẳng thức trên trở thành
\[\frac{x^3+3x^2+3x+3}{x+1} \leqslant \frac{5(x^2+1)}{2},\]
tương đương với
\[\frac{(x - 1)(3x^2 + 2x + 1)}{x+1} \geqslant 0.\]
Suy ra $x \geqslant 1,$ hay là
\[(a+b+c)^2 \geqslant 4(ab+bc+ca),\]
hoặc
\[a^2+b^2+c^2 \geqslant 2(ab+bc+ca).\]
Đẳng thức xảy ra khi và chỉ khi $a=b=c$ hoặc
\[\frac{a}{\sqrt{7}-\tan\frac{\pi}{7}} = \frac{b}{\sqrt{7}-\tan\frac{2\pi}{7}} = \frac{c}{\sqrt{7}-\tan\frac{4\pi}{7}}.\]
Chứng minh hoàn tất.

Bài toán 11 (Nguyễn Văn Huyện, VMEO IV). Với $k \geqslant 0$ là một số thực cho trước và $a,\,b,\,c$ là ba số thực dương sao cho
\[\frac{a}{b}+\frac{b}{c}+\frac{c}{a} = (k + 1)^2 + \frac{2}{k+1}.\]
Chứng minh rằng
\[a^2 + b^2 + c^2 \leqslant (k^2+1)(ab+bc+ca).\]
Lời giải. Chuẩn hóa $p=1$ từ giả thiết áp dụng bổ đề ta được
$$\frac{2(27q^{2}-9q+1)}{9q^{2}-2q+(1-3q)\sqrt{q(1-3q)}}+\frac{1}{q}-6\leq(k+1)^{2}+\frac{2}{k+1}.$$
Đặt $x = \sqrt{\frac{1-3q}{q}} \geqslant 0$ thì $q = \frac{1}{x^2+3},$ khi đó bất đẳng thức trên trở thành
\[\frac{x^3+3x^2+3x+3}{x+1} \leqslant (k + 1)^2 + \frac{2}{k+1},\]
hay
\[(x+1)^2 + \frac{2}{x+1} \leqslant (k + 1)^2 + \frac{2}{k+1},\]
tương đương với
\[\frac{(x-k)\big[(k+1)x^2+(k^2+4k+3)x+k^2+3k\big]}{(x+1)(k+1)} \leqslant 0.\]
Suy ra $x \leqslant k$ hay là
\[(a+b+c)^2\leqslant (k^2+3)(ab+bc+ca),\]
hoặc
\[a^2 + b^2 + c^2 \leqslant (k^2+1)(ab+bc+ca).\]
Bài toán được chứng minh.

Nhận xét. Trường hợp $k = 1$ ta được bài toán rất đẹp sau \[a^2 + b^2 + c^2 \leqslant 2(ab+bc+ca)\] với $a,\,b,\,c$ là ba số thực dương thỏa mãn $$\frac{a}{b}+\frac{b}{c}+\frac{c}{a} = 5.$$

Các Bài Toán Rèn Luyện

Để kết thúc chuyên đề xin được giới thiệu một số bài tập để bạn đọc tự luyện
  1. (Nguyễn Văn Huyện) Cho $a,\,b,\,c$ là ba số thực dương. Chứng minh rằng \[\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)^3+\frac{525(ab+bc+ca)}{a^2+b^2+c^2} \geqslant \frac{775}{2}.\]
  2. (Tạ Hồng Quảng) Chứng minh rằng với mọi số thực $k \geqslant 12$ ta luôn có \[\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+\frac{k(ab+bc+ca)}{(a+b+c)^2} \geqslant 4+2\sqrt{k-12},\] trong đó $a,\,b,\,c$ là ba số thực dương thay đổi bất kỳ.
  3. (Bách Ngọc Thành Công) Cho $a,\,b,\,c$ là ba số thực dương. Chứng minh rằng \[\frac{a}{b}+\frac{b}{c}+\dfrac{c}{a} \geqslant \sqrt{\frac{k(a^2+b^2+c^2)}{(a+b+c)^2}+9-\dfrac{k}{3}},\] trong đó $k = 54\sqrt[3]{2}.$
  4. Tìm hằng số $k$ lớn nhất sao cho bất đẳng thức \[\frac{a}{b}+\frac{b}{c}+\frac{c}{a} \geqslant \sqrt{9+k-\frac{k(ab+bc+ca)}{a^2+b^2+c^2}},\] luôn đúng với mọi số thực dương $a,\,b,\,c.$
  5. Tìm hằng số $k$ lớn nhất sao cho bất đẳng thức \[\frac{a}{b} + \frac{b}{c} + \frac{c}{a} + k \geqslant \sqrt{\frac{k^2(a^2+b^2+c^2)}{ab+bc+ca}} + 3,\] luôn đúng với mọi số thực dương $a,\,b,\,c$ bất kỳ.
  6. Cho $a,\,b,\,c$ là ba số thực dương. Chứng minh rằng \[\frac{a}{b} + \frac{b}{c} + \frac{c}{a} \geqslant \frac{a^2+b^2+c^2}{ab+bc+ca} + 2 \sqrt{\frac{a^2+b^2+c^2}{ab+bc+ca}}.\]
  7. (Nguyễn Văn Huyện) Cho $a,\,b,\,c$ là ba số thực dương. Chứng minh rằng \[\frac{a}{b} + \frac{b}{c} + \frac{c}{a} + \frac{k(ab+bc+ca)}{a^2+b^2+c^2+ab+bc+ca} \geqslant 3+ \frac{k}{2},\] trong đó $k = 2\big(3\sqrt[3]{9}-1\big).$
  8. (Phạm Sinh Tân) Tìm hằng số $k$ lớn nhất sao cho bất đẳng thức \[\frac{a}{b} + \frac{b}{c} + \frac{c}{a} + k \geqslant \sqrt{\frac{3k^2(a^2+b^2+c^2)}{(a+b+c)^2}} + 3,\] luôn đúng với mọi số thực dương $a,\,b,\,c$ bất kỳ.
  9. Tìm hằng số $k$ lớn nhất sao cho bất đẳng thức \[\frac{a}{b} + \frac{b}{c} + \frac{c}{a} + k\left ( \frac{ab+bc+ca}{a^2+b^2+c^2} \right )^2 \geqslant 3+k,\] luôn đúng với mọi số thực dương $a,\,b,\,c$ bất kỳ.
  10. (Nguyễn Văn Huyện) Với $k \geqslant 1$ là một số thực cho trước và $a,\,b,\,c$ là ba số thực dương sao cho \[\frac{a}{b} + \frac{b}{c} + \frac{c}{a} = \frac{(k^2+9)(a^2+b^2+c^2)}{(a+b+c)^2}.\] Chứng minh rằng \[a^2+b^2+c^2 \leqslant (k^2+1)(ab+bc+ca).\]

Tài Liệu Tham Khảo

  1. Võ Quốc Bá Cẩn, Chuyên Đề Bất Đẳng Thức Hiện Đại, 2008.
  2. Diễn đàn toán học: http://diendantoanhoc.net
  3. Art of Problem Solving: http://artofproblemsolving.com

$hide=mobile$type=ticker$c=36$cols=2$l=0$sr=random$b=0

Name

Abel,5,Albania,2,AMM,2,Amsterdam,4,An Giang,45,Andrew Wiles,1,Anh,2,APMO,21,Austria (Áo),1,Ba Lan,1,Bà Rịa Vũng Tàu,77,Bắc Bộ,2,Bắc Giang,62,Bắc Kạn,4,Bạc Liêu,18,Bắc Ninh,53,Bắc Trung Bộ,3,Bài Toán Hay,5,Balkan,41,Baltic Way,32,BAMO,1,Bất Đẳng Thức,69,Bến Tre,72,Benelux,16,Bình Định,65,Bình Dương,38,Bình Phước,52,Bình Thuận,42,Birch,1,BMO,41,Booklet,12,Bosnia Herzegovina,3,BoxMath,3,Brazil,2,British,16,Bùi Đắc Hiên,1,Bùi Thị Thiện Mỹ,1,Bùi Văn Tuyên,1,Bùi Xuân Diệu,1,Bulgaria,6,Buôn Ma Thuột,2,BxMO,15,Cà Mau,22,Cần Thơ,27,Canada,40,Cao Bằng,12,Cao Quang Minh,1,Câu Chuyện Toán Học,43,Caucasus,3,CGMO,11,China - Trung Quốc,25,Chọn Đội Tuyển,515,Chu Tuấn Anh,1,Chuyên Đề,125,Chuyên SPHCM,7,Chuyên SPHN,30,Chuyên Trần Hưng Đạo,3,Collection,8,College Mathematic,1,Concours,1,Cono Sur,1,Contest,675,Correspondence,1,Cosmin Poahata,1,Crux,2,Czech-Polish-Slovak,28,Đà Nẵng,50,Đa Thức,2,Đại Số,20,Đắk Lắk,76,Đắk Nông,15,Danube,7,Đào Thái Hiệp,1,ĐBSCL,2,Đề Thi,1,Đề Thi HSG,2249,Đề Thi JMO,1,DHBB,30,Điện Biên,15,Định Lý,1,Định Lý Beaty,1,Đỗ Hữu Đức Thịnh,1,Do Thái,3,Doãn Quang Tiến,5,Đoàn Quỳnh,1,Đoàn Văn Trung,1,Đồng Nai,64,Đồng Tháp,63,Du Hiền Vinh,1,Đức,1,Dương Quỳnh Châu,1,Dương Tú,1,Duyên Hải Bắc Bộ,30,E-Book,31,EGMO,30,ELMO,19,EMC,11,Epsilon,1,Estonian,5,Euler,1,Evan Chen,1,Fermat,3,Finland,4,Forum Of Geometry,2,Furstenberg,1,G. Polya,3,Gặp Gỡ Toán Học,30,Gauss,1,GDTX,3,Geometry,14,GGTH,30,Gia Lai,40,Gia Viễn,2,Giải Tích Hàm,1,Giới hạn,2,Goldbach,1,Hà Giang,5,Hà Lan,1,Hà Nam,45,Hà Nội,255,Hà Tĩnh,91,Hà Trung Kiên,1,Hải Dương,70,Hải Phòng,57,Hậu Giang,14,Hélènne Esnault,1,Hilbert,2,Hình Học,33,HKUST,7,Hòa Bình,33,Hoài Nhơn,1,Hoàng Bá Minh,1,Hoàng Minh Quân,1,Hodge,1,Hojoo Lee,2,HOMC,5,HongKong,8,HSG 10,126,HSG 10 2010-2011,4,HSG 10 2011-2012,7,HSG 10 2012-2013,8,HSG 10 2013-2014,7,HSG 10 2014-2015,6,HSG 10 2015-2016,2,HSG 10 2016-2017,8,HSG 10 2017-2018,4,HSG 10 2018-2019,4,HSG 10 2019-2020,7,HSG 10 2020-2021,3,HSG 10 2021-2022,4,HSG 10 2022-2023,11,HSG 10 2023-2024,1,HSG 10 Bà Rịa Vũng Tàu,2,HSG 10 Bắc Giang,1,HSG 10 Bạc Liêu,2,HSG 10 Bình Định,1,HSG 10 Bình Dương,1,HSG 10 Bình Thuận,4,HSG 10 Chuyên SPHN,5,HSG 10 Đắk Lắk,2,HSG 10 Đồng Nai,4,HSG 10 Gia Lai,2,HSG 10 Hà Nam,4,HSG 10 Hà Tĩnh,15,HSG 10 Hải Dương,10,HSG 10 KHTN,9,HSG 10 Nghệ An,1,HSG 10 Ninh Thuận,1,HSG 10 Phú Yên,2,HSG 10 PTNK,10,HSG 10 Quảng Nam,1,HSG 10 Quảng Trị,2,HSG 10 Thái Nguyên,9,HSG 10 Vĩnh Phúc,14,HSG 1015-2016,3,HSG 11,135,HSG 11 2009-2010,1,HSG 11 2010-2011,6,HSG 11 2011-2012,10,HSG 11 2012-2013,9,HSG 11 2013-2014,7,HSG 11 2014-2015,10,HSG 11 2015-2016,6,HSG 11 2016-2017,8,HSG 11 2017-2018,7,HSG 11 2018-2019,8,HSG 11 2019-2020,5,HSG 11 2020-2021,8,HSG 11 2021-2022,4,HSG 11 2022-2023,7,HSG 11 2023-2024,1,HSG 11 An Giang,2,HSG 11 Bà Rịa Vũng Tàu,1,HSG 11 Bắc Giang,4,HSG 11 Bạc Liêu,3,HSG 11 Bắc Ninh,2,HSG 11 Bình Định,12,HSG 11 Bình Dương,3,HSG 11 Bình Thuận,1,HSG 11 Cà Mau,1,HSG 11 Đà Nẵng,9,HSG 11 Đồng Nai,1,HSG 11 Hà Nam,2,HSG 11 Hà Tĩnh,12,HSG 11 Hải Phòng,1,HSG 11 Kiên Giang,4,HSG 11 Lạng Sơn,11,HSG 11 Nghệ An,6,HSG 11 Ninh Bình,2,HSG 11 Quảng Bình,12,HSG 11 Quảng Nam,1,HSG 11 Quảng Ngãi,9,HSG 11 Quảng Trị,3,HSG 11 Sóc Trăng,1,HSG 11 Thái Nguyên,8,HSG 11 Thanh Hóa,3,HSG 11 Trà Vinh,1,HSG 11 Tuyên Quang,1,HSG 11 Vĩnh Long,3,HSG 11 Vĩnh Phúc,11,HSG 12,668,HSG 12 2009-2010,2,HSG 12 2010-2011,39,HSG 12 2011-2012,44,HSG 12 2012-2013,58,HSG 12 2013-2014,53,HSG 12 2014-2015,44,HSG 12 2015-2016,37,HSG 12 2016-2017,46,HSG 12 2017-2018,55,HSG 12 2018-2019,43,HSG 12 2019-2020,43,HSG 12 2020-2021,52,HSG 12 2021-2022,35,HSG 12 2022-2023,42,HSG 12 2023-2024,23,HSG 12 2023-2041,1,HSG 12 An Giang,8,HSG 12 Bà Rịa Vũng Tàu,13,HSG 12 Bắc Giang,18,HSG 12 Bạc Liêu,3,HSG 12 Bắc Ninh,13,HSG 12 Bến Tre,19,HSG 12 Bình Định,17,HSG 12 Bình Dương,8,HSG 12 Bình Phước,9,HSG 12 Bình Thuận,8,HSG 12 Cà Mau,7,HSG 12 Cần Thơ,7,HSG 12 Cao Bằng,5,HSG 12 Chuyên SPHN,11,HSG 12 Đà Nẵng,3,HSG 12 Đắk Lắk,21,HSG 12 Đắk Nông,1,HSG 12 Điện Biên,3,HSG 12 Đồng Nai,20,HSG 12 Đồng Tháp,18,HSG 12 Gia Lai,14,HSG 12 Hà Nam,5,HSG 12 Hà Nội,17,HSG 12 Hà Tĩnh,16,HSG 12 Hải Dương,16,HSG 12 Hải Phòng,20,HSG 12 Hậu Giang,4,HSG 12 Hòa Bình,10,HSG 12 Hưng Yên,10,HSG 12 Khánh Hòa,4,HSG 12 KHTN,26,HSG 12 Kiên Giang,12,HSG 12 Kon Tum,3,HSG 12 Lai Châu,4,HSG 12 Lâm Đồng,11,HSG 12 Lạng Sơn,8,HSG 12 Lào Cai,17,HSG 12 Long An,18,HSG 12 Nam Định,7,HSG 12 Nghệ An,13,HSG 12 Ninh Bình,12,HSG 12 Ninh Thuận,7,HSG 12 Phú Thọ,18,HSG 12 Phú Yên,13,HSG 12 Quảng Bình,14,HSG 12 Quảng Nam,11,HSG 12 Quảng Ngãi,6,HSG 12 Quảng Ninh,20,HSG 12 Quảng Trị,10,HSG 12 Sóc Trăng,4,HSG 12 Sơn La,5,HSG 12 Tây Ninh,6,HSG 12 Thái Bình,11,HSG 12 Thái Nguyên,13,HSG 12 Thanh Hóa,17,HSG 12 Thừa Thiên Huế,19,HSG 12 Tiền Giang,3,HSG 12 TPHCM,13,HSG 12 Tuyên Quang,3,HSG 12 Vĩnh Long,7,HSG 12 Vĩnh Phúc,20,HSG 12 Yên Bái,6,HSG 9,573,HSG 9 2009-2010,1,HSG 9 2010-2011,21,HSG 9 2011-2012,42,HSG 9 2012-2013,41,HSG 9 2013-2014,35,HSG 9 2014-2015,41,HSG 9 2015-2016,38,HSG 9 2016-2017,42,HSG 9 2017-2018,45,HSG 9 2018-2019,41,HSG 9 2019-2020,18,HSG 9 2020-2021,50,HSG 9 2021-2022,53,HSG 9 2022-2023,55,HSG 9 2023-2024,15,HSG 9 An Giang,9,HSG 9 Bà Rịa Vũng Tàu,8,HSG 9 Bắc Giang,14,HSG 9 Bắc Kạn,1,HSG 9 Bạc Liêu,1,HSG 9 Bắc Ninh,12,HSG 9 Bến Tre,9,HSG 9 Bình Định,11,HSG 9 Bình Dương,7,HSG 9 Bình Phước,13,HSG 9 Bình Thuận,5,HSG 9 Cà Mau,2,HSG 9 Cần Thơ,4,HSG 9 Cao Bằng,2,HSG 9 Đà Nẵng,11,HSG 9 Đắk Lắk,12,HSG 9 Đắk Nông,3,HSG 9 Điện Biên,5,HSG 9 Đồng Nai,8,HSG 9 Đồng Tháp,10,HSG 9 Gia Lai,9,HSG 9 Hà Giang,4,HSG 9 Hà Nam,10,HSG 9 Hà Nội,15,HSG 9 Hà Tĩnh,13,HSG 9 Hải Dương,16,HSG 9 Hải Phòng,8,HSG 9 Hậu Giang,6,HSG 9 Hòa Bình,4,HSG 9 Hưng Yên,11,HSG 9 Khánh Hòa,6,HSG 9 Kiên Giang,16,HSG 9 Kon Tum,9,HSG 9 Lai Châu,2,HSG 9 Lâm Đồng,14,HSG 9 Lạng Sơn,10,HSG 9 Lào Cai,4,HSG 9 Long An,10,HSG 9 Nam Định,9,HSG 9 Nghệ An,21,HSG 9 Ninh Bình,14,HSG 9 Ninh Thuận,4,HSG 9 Phú Thọ,13,HSG 9 Phú Yên,9,HSG 9 Quảng Bình,14,HSG 9 Quảng Nam,12,HSG 9 Quảng Ngãi,13,HSG 9 Quảng Ninh,17,HSG 9 Quảng Trị,10,HSG 9 Sóc Trăng,9,HSG 9 Sơn La,5,HSG 9 Tây Ninh,16,HSG 9 Thái Bình,11,HSG 9 Thái Nguyên,5,HSG 9 Thanh Hóa,12,HSG 9 Thừa Thiên Huế,9,HSG 9 Tiền Giang,7,HSG 9 TPHCM,11,HSG 9 Trà Vinh,2,HSG 9 Tuyên Quang,6,HSG 9 Vĩnh Long,12,HSG 9 Vĩnh Phúc,12,HSG 9 Yên Bái,5,HSG Cấp Trường,80,HSG Quốc Gia,113,HSG Quốc Tế,16,Hứa Lâm Phong,1,Hứa Thuần Phỏng,1,Hùng Vương,2,Hưng Yên,43,Huỳnh Kim Linh,1,Hy Lạp,1,IMC,26,IMO,58,IMT,2,IMU,2,India - Ấn Độ,47,Inequality,13,InMC,1,International,349,Iran,13,Jakob,1,JBMO,41,Jewish,1,Journal,30,Junior,38,K2pi,1,Kazakhstan,1,Khánh Hòa,30,KHTN,64,Kiên Giang,74,Kon Tum,24,Korea - Hàn Quốc,5,Kvant,2,Kỷ Yếu,46,Lai Châu,12,Lâm Đồng,47,Lăng Hồng Nguyệt Anh,1,Lạng Sơn,37,Langlands,1,Lào Cai,35,Lê Hải Châu,1,Lê Hải Khôi,1,Lê Hoành Phò,4,Lê Hồng Phong,5,Lê Khánh Sỹ,3,Lê Minh Cường,1,Lê Phúc Lữ,1,Lê Phương,1,Lê Viết Hải,1,Lê Việt Hưng,2,Leibniz,1,Long An,52,Lớp 10 Chuyên,709,Lớp 10 Không Chuyên,355,Lớp 11,1,Lục Ngạn,1,Lượng giác,1,Lưu Giang Nam,2,Lưu Lý Tưởng,1,Macedonian,1,Malaysia,1,Margulis,2,Mark Levi,1,Mathematical Excalibur,1,Mathematical Reflections,1,Mathematics Magazine,1,Mathematics Today,1,Mathley,1,MathLinks,1,MathProblems Journal,1,Mathscope,8,MathsVN,5,MathVN,1,MEMO,13,Menelaus,1,Metropolises,4,Mexico,1,MIC,1,Michael Atiyah,1,Michael Guillen,1,Mochizuki,1,Moldova,1,Moscow,1,MYM,25,MYTS,4,Nam Định,45,Nam Phi,1,National,276,Nesbitt,1,Newton,4,Nghệ An,73,Ngô Bảo Châu,2,Ngô Việt Hải,1,Ngọc Huyền,2,Nguyễn Anh Tuyến,1,Nguyễn Bá Đang,1,Nguyễn Đình Thi,1,Nguyễn Đức Tấn,1,Nguyễn Đức Thắng,1,Nguyễn Duy Khương,1,Nguyễn Duy Tùng,1,Nguyễn Hữu Điển,3,Nguyễn Minh Hà,1,Nguyễn Minh Tuấn,9,Nguyễn Nhất Huy,1,Nguyễn Phan Tài Vương,1,Nguyễn Phú Khánh,1,Nguyễn Phúc Tăng,2,Nguyễn Quản Bá Hồng,1,Nguyễn Quang Sơn,1,Nguyễn Song Thiên Long,1,Nguyễn Tài Chung,5,Nguyễn Tăng Vũ,1,Nguyễn Tất Thu,1,Nguyễn Thúc Vũ Hoàng,1,Nguyễn Trung Tuấn,8,Nguyễn Tuấn Anh,2,Nguyễn Văn Huyện,3,Nguyễn Văn Mậu,25,Nguyễn Văn Nho,1,Nguyễn Văn Quý,2,Nguyễn Văn Thông,1,Nguyễn Việt Anh,1,Nguyễn Vũ Lương,2,Nhật Bản,4,Nhóm $\LaTeX$,4,Nhóm Toán,1,Ninh Bình,61,Ninh Thuận,26,Nội Suy Lagrange,2,Nội Suy Newton,1,Nordic,21,Olympiad Corner,1,Olympiad Preliminary,2,Olympic 10,134,Olympic 10/3,6,Olympic 10/3 Đắk Lắk,6,Olympic 11,122,Olympic 12,52,Olympic 23/3,2,Olympic 24/3,10,Olympic 24/3 Quảng Nam,10,Olympic 27/4,24,Olympic 30/4,61,Olympic KHTN,8,Olympic Sinh Viên,78,Olympic Tháng 4,12,Olympic Toán,344,Olympic Toán Sơ Cấp,3,Ôn Thi 10,2,PAMO,1,Phạm Đình Đồng,1,Phạm Đức Tài,1,Phạm Huy Hoàng,1,Pham Kim Hung,3,Phạm Quốc Sang,2,Phan Huy Khải,1,Phan Quang Đạt,1,Phan Thành Nam,1,Pháp,2,Philippines,8,Phú Thọ,32,Phú Yên,42,Phùng Hồ Hải,1,Phương Trình Hàm,11,Phương Trình Pythagoras,1,Pi,1,Polish,32,Problems,1,PT-HPT,14,PTNK,64,Putnam,27,Quảng Bình,64,Quảng Nam,57,Quảng Ngãi,49,Quảng Ninh,60,Quảng Trị,42,Quỹ Tích,1,Riemann,1,RMM,14,RMO,24,Romania,38,Romanian Mathematical,1,Russia,1,Sách Thường Thức Toán,7,Sách Toán,70,Sách Toán Cao Học,1,Sách Toán THCS,7,Saudi Arabia - Ả Rập Xê Út,9,Scholze,1,Serbia,17,Sharygin,28,Shortlists,56,Simon Singh,1,Singapore,1,Số Học - Tổ Hợp,28,Sóc Trăng,36,Sơn La,22,Spain,8,Star Education,1,Stars of Mathematics,11,Swinnerton-Dyer,1,Talent Search,1,Tăng Hải Tuân,2,Tạp Chí,17,Tập San,3,Tây Ban Nha,1,Tây Ninh,37,Thái Bình,45,Thái Nguyên,61,Thái Vân,2,Thanh Hóa,69,THCS,2,Thổ Nhĩ Kỳ,5,Thomas J. Mildorf,1,Thông Tin Toán Học,43,THPT Chuyên Lê Quý Đôn,1,THPT Chuyên Nguyễn Du,9,THPTQG,16,THTT,31,Thừa Thiên Huế,56,Tiền Giang,30,Tin Tức Toán Học,1,Titu Andreescu,2,Toán 12,7,Toán Cao Cấp,3,Toán Rời Rạc,5,Toán Tuổi Thơ,3,Tôn Ngọc Minh Quân,2,TOT,1,TPHCM,158,Trà Vinh,10,Trắc Nghiệm,1,Trắc Nghiệm Toán,2,Trại Hè,39,Trại Hè Hùng Vương,30,Trại Hè Phương Nam,7,Trần Đăng Phúc,1,Trần Minh Hiền,2,Trần Nam Dũng,12,Trần Phương,1,Trần Quang Hùng,1,Trần Quốc Anh,2,Trần Quốc Luật,1,Trần Quốc Nghĩa,1,Trần Tiến Tự,1,Trịnh Đào Chiến,2,Trường Đông,23,Trường Hè,10,Trường Thu,1,Trường Xuân,3,TST,544,TST 2008-2009,1,TST 2010-2011,22,TST 2011-2012,23,TST 2012-2013,32,TST 2013-2014,29,TST 2014-2015,27,TST 2015-2016,26,TST 2016-2017,41,TST 2017-2018,42,TST 2018-2019,30,TST 2019-2020,34,TST 2020-2021,30,TST 2021-2022,38,TST 2022-2023,42,TST 2023-2024,23,TST An Giang,8,TST Bà Rịa Vũng Tàu,11,TST Bắc Giang,5,TST Bắc Ninh,11,TST Bến Tre,10,TST Bình Định,5,TST Bình Dương,7,TST Bình Phước,9,TST Bình Thuận,9,TST Cà Mau,7,TST Cần Thơ,6,TST Cao Bằng,2,TST Đà Nẵng,8,TST Đắk Lắk,12,TST Đắk Nông,2,TST Điện Biên,2,TST Đồng Nai,13,TST Đồng Tháp,12,TST Gia Lai,4,TST Hà Nam,8,TST Hà Nội,12,TST Hà Tĩnh,15,TST Hải Dương,11,TST Hải Phòng,13,TST Hậu Giang,1,TST Hòa Bình,4,TST Hưng Yên,10,TST Khánh Hòa,8,TST Kiên Giang,11,TST Kon Tum,6,TST Lâm Đồng,12,TST Lạng Sơn,3,TST Lào Cai,4,TST Long An,6,TST Nam Định,8,TST Nghệ An,7,TST Ninh Bình,11,TST Ninh Thuận,4,TST Phú Thọ,13,TST Phú Yên,5,TST PTNK,15,TST Quảng Bình,12,TST Quảng Nam,7,TST Quảng Ngãi,8,TST Quảng Ninh,9,TST Quảng Trị,10,TST Sóc Trăng,5,TST Sơn La,7,TST Thái Bình,6,TST Thái Nguyên,8,TST Thanh Hóa,9,TST Thừa Thiên Huế,4,TST Tiền Giang,6,TST TPHCM,14,TST Trà Vinh,1,TST Tuyên Quang,1,TST Vĩnh Long,7,TST Vĩnh Phúc,7,TST Yên Bái,8,Tuyên Quang,14,Tuyển Sinh,4,Tuyển Sinh 10,1064,Tuyển Sinh 10 An Giang,18,Tuyển Sinh 10 Bà Rịa Vũng Tàu,22,Tuyển Sinh 10 Bắc Giang,19,Tuyển Sinh 10 Bắc Kạn,3,Tuyển Sinh 10 Bạc Liêu,9,Tuyển Sinh 10 Bắc Ninh,15,Tuyển Sinh 10 Bến Tre,34,Tuyển Sinh 10 Bình Định,19,Tuyển Sinh 10 Bình Dương,12,Tuyển Sinh 10 Bình Phước,21,Tuyển Sinh 10 Bình Thuận,15,Tuyển Sinh 10 Cà Mau,5,Tuyển Sinh 10 Cần Thơ,10,Tuyển Sinh 10 Cao Bằng,2,Tuyển Sinh 10 Chuyên SPHN,19,Tuyển Sinh 10 Đà Nẵng,18,Tuyển Sinh 10 Đại Học Vinh,13,Tuyển Sinh 10 Đắk Lắk,21,Tuyển Sinh 10 Đắk Nông,7,Tuyển Sinh 10 Điện Biên,5,Tuyển Sinh 10 Đồng Nai,18,Tuyển Sinh 10 Đồng Tháp,23,Tuyển Sinh 10 Gia Lai,10,Tuyển Sinh 10 Hà Giang,1,Tuyển Sinh 10 Hà Nam,16,Tuyển Sinh 10 Hà Nội,80,Tuyển Sinh 10 Hà Tĩnh,19,Tuyển Sinh 10 Hải Dương,17,Tuyển Sinh 10 Hải Phòng,15,Tuyển Sinh 10 Hậu Giang,3,Tuyển Sinh 10 Hòa Bình,15,Tuyển Sinh 10 Hưng Yên,12,Tuyển Sinh 10 Khánh Hòa,12,Tuyển Sinh 10 KHTN,21,Tuyển Sinh 10 Kiên Giang,31,Tuyển Sinh 10 Kon Tum,6,Tuyển Sinh 10 Lai Châu,6,Tuyển Sinh 10 Lâm Đồng,10,Tuyển Sinh 10 Lạng Sơn,6,Tuyển Sinh 10 Lào Cai,10,Tuyển Sinh 10 Long An,18,Tuyển Sinh 10 Nam Định,21,Tuyển Sinh 10 Nghệ An,23,Tuyển Sinh 10 Ninh Bình,20,Tuyển Sinh 10 Ninh Thuận,10,Tuyển Sinh 10 Phú Thọ,18,Tuyển Sinh 10 Phú Yên,12,Tuyển Sinh 10 PTNK,37,Tuyển Sinh 10 Quảng Bình,12,Tuyển Sinh 10 Quảng Nam,15,Tuyển Sinh 10 Quảng Ngãi,13,Tuyển Sinh 10 Quảng Ninh,12,Tuyển Sinh 10 Quảng Trị,7,Tuyển Sinh 10 Sóc Trăng,17,Tuyển Sinh 10 Sơn La,5,Tuyển Sinh 10 Tây Ninh,15,Tuyển Sinh 10 Thái Bình,17,Tuyển Sinh 10 Thái Nguyên,18,Tuyển Sinh 10 Thanh Hóa,27,Tuyển Sinh 10 Thừa Thiên Huế,24,Tuyển Sinh 10 Tiền Giang,14,Tuyển Sinh 10 TPHCM,23,Tuyển Sinh 10 Trà Vinh,6,Tuyển Sinh 10 Tuyên Quang,3,Tuyển Sinh 10 Vĩnh Long,12,Tuyển Sinh 10 Vĩnh Phúc,22,Tuyển Sinh 2008-2009,1,Tuyển Sinh 2009-2010,1,Tuyển Sinh 2010-2011,6,Tuyển Sinh 2011-2012,20,Tuyển Sinh 2012-2013,65,Tuyển Sinh 2013-2014,77,Tuyển Sinh 2013-2044,1,Tuyển Sinh 2014-2015,81,Tuyển Sinh 2015-2016,64,Tuyển Sinh 2016-2017,72,Tuyển Sinh 2017-2018,126,Tuyển Sinh 2018-2019,61,Tuyển Sinh 2019-2020,90,Tuyển Sinh 2020-2021,59,Tuyển Sinh 2021-202,1,Tuyển Sinh 2021-2022,69,Tuyển Sinh 2022-2023,113,Tuyển Sinh 2023-2024,49,Tuyển Sinh Chuyên SPHCM,7,Tuyển Sinh Yên Bái,6,Tuyển Tập,45,Tuymaada,6,UK - Anh,16,Undergraduate,69,USA - Mỹ,62,USA TSTST,6,USAJMO,12,USATST,8,USEMO,4,Uzbekistan,1,Vasile Cîrtoaje,4,Vật Lý,1,Viện Toán Học,6,Vietnam,4,Viktor Prasolov,1,VIMF,1,Vinh,32,Vĩnh Long,41,Vĩnh Phúc,86,Virginia Tech,1,VLTT,1,VMEO,4,VMF,12,VMO,58,VNTST,25,Võ Anh Khoa,1,Võ Quốc Bá Cẩn,26,Võ Thành Văn,1,Vojtěch Jarník,6,Vũ Hữu Bình,7,Vương Trung Dũng,1,WFNMC Journal,1,Wiles,1,Xác Suất,1,Yên Bái,25,Yên Thành,1,Zhautykov,14,Zhou Yuan Zhe,1,
ltr
item
MOlympiad.NET: [Nguyễn Văn Huyện] Bổ Đề Hoán Vị
[Nguyễn Văn Huyện] Bổ Đề Hoán Vị
MOlympiad.NET
https://www.molympiad.net/2017/09/nguyen-van-huyen-bo-de-hoan-vi.html
https://www.molympiad.net/
https://www.molympiad.net/
https://www.molympiad.net/2017/09/nguyen-van-huyen-bo-de-hoan-vi.html
true
2506595080985176441
UTF-8
Loaded All Posts Not found any posts VIEW ALL Readmore Reply Cancel reply Delete By Home PAGES POSTS View All RECOMMENDED FOR YOU Tag ARCHIVE SEARCH ALL POSTS Not found any post match with your request Back Home Sunday Monday Tuesday Wednesday Thursday Friday Saturday Sun Mon Tue Wed Thu Fri Sat January February March April May June July August September October November December Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec just now 1 minute ago $$1$$ minutes ago 1 hour ago $$1$$ hours ago Yesterday $$1$$ days ago $$1$$ weeks ago more than 5 weeks ago Followers Follow THIS PREMIUM CONTENT IS LOCKED
NỘI DUNG CAO CẤP NÀY ĐÃ BỊ KHÓA
STEP 1: SHARE THIS ARTICLE TO A SOCIAL NETWORK
BƯỚC 1: CHIA SẺ BÀI VIẾT NÀY LÊN MẠNG XÃ HỘI
STEP 2: CLICK THE LINK ON YOUR SOCIAL NETWORK
BƯỚC 2: BẤM VÀO ĐƯỜNG DẪN TRÊN MẠNG XÃ HỘI CỦA BẠN
Copy All Code Select All Code All codes were copied to your clipboard Can not copy the codes / texts, please press [CTRL]+[C] (or CMD+C with Mac) to copy Table of Content