[Shortlists & Solutions] Easy Little Math Olympiad 2010


  1. Determine all strictly increasing functions $f: \mathbb{N}\to\mathbb{N}$ satisfying $$nf(f(n))=f(n)^2$$ for all positive integers $n$.
  2. Let $a,b,c$ be positive reals. Prove that \[ \frac{(a-b)(a-c)}{2a^2 + (b+c)^2} + \frac{(b-c)(b-a)}{2b^2 + (c+a)^2} + \frac{(c-a)(c-b)}{2c^2 + (a+b)^2} \geq 0. \]
  3. Find all functions $f: \mathbb{R} \to \mathbb{R}$ such that $$f(x+y) = \max(f(x),y) + \min(f(y),x).$$
  4. Let $-2 < x_1 < 2$ be a real number and define $x_2, x_3, \ldots$ by $x_{n+1} = x_n^2-2$ for $n \geq 1$. Assume that no $x_n$ is $0$ and define a number $A$, $0 \leq A \leq 1$ in the following way: The $n^{\text{th}}$ digit after the decimal point in the binary representation of $A$ is a $0$ if $x_1x_2\cdots x_n$ is positive and $1$ otherwise. Prove that $$A = \frac{1}{\pi}\cos^{-1}\left(\frac{x_1}{2}\right).$$
  5. Given a prime $p$, let $d(a,b)$ be the number of integers $c$ such that $1 \leq c < p$, and the remainders when $ac$ and $bc$ are divided by $p$ are both at most $\frac{p}{3}$. Determine the maximum value of \[\sqrt{\sum_{a=1}^{p-1}\sum_{b=1}^{p-1}d(a,b)(x_a + 1)(x_b + 1)} - \sqrt{\sum_{a=1}^{p-1}\sum_{b=1}^{p-1}d(a,b)x_ax_b}\] over all $(p-1)$-tuples $(x_1,x_2,\ldots,x_{p-1})$ of real numbers.
  6. For all positive real numbers $a,b,c$, prove that \[\sqrt{\frac{a^4 + 2b^2c^2}{a^2+2bc}} + \sqrt{\frac{b^4+2c^2a^2}{b^2+2ca}} + \sqrt{\frac{c^4 + 2a^2b^2}{c^2 + 2ab}} \geq a + b + c.\]
  7. Find the smallest real number $M$ with the following property: Given nine nonnegative real numbers with sum $1$, it is possible to arrange them in the cells of a $3 \times 3$ square so that the product of each row or column is at most $M$. 


  1. For a permutation $\pi$ of $\{1,2,3,\ldots,n\}$, let $\text{Inv}(\pi)$ be the number of pairs $(i,j)$ with $1 \leq i < j \leq n$ and $\pi(i) > \pi(j)$.
    a) Given $n$, what is $\sum \text{Inv}(\pi)$ where the sum ranges over all permutations $\pi$ of $\{1,2,3,\ldots,n\}$?.
    b) Given $n$, what is $\sum \left(\text{Inv}(\pi)\right)^2$ where the sum ranges over all permutations $\pi$ of $\{1,2,3,\ldots,n\}$?
  2. For a positive integer $n$, let $s(n)$ be the number of ways that $n$ can be written as the sum of strictly increasing perfect $2010^{\text{th}}$ powers. For instance, $s(2) = 0$ and $s(1^{2010} + 2^{2010}) = 1$. Show that for every real number $x$, there exists an integer $N$ such that for all $n > N$, \[\frac{\max_{1 \leq i \leq n} s(i)}{n} > x.\]
  3. $2010$ MOPpers are assigned numbers $1$ through $2010$. Each one is given a red slip and a blue slip of paper. Two positive integers, $A$ and $B$, each less than or equal to $2010$ are chosen. On the red slip of paper, each MOPper writes the remainder when the product of $A$ and his or her number is divided by $2011$. On the blue slip of paper, he or she writes the remainder when the product of $B$ and his or her number is divided by $2011$. The MOPpers may then perform either of the following two operations
    • Each MOPper gives his or her red slip to the MOPper whose number is written on his or her blue slip.
    • Each MOPper gives his or her blue slip to the MOPper whose number is written on his or her red slip.
    • Show that it is always possible to perform some number of these operations such that each MOPper is holding a red slip with his or her number written on it.
  4. The numbers $1, 2, \ldots, n$ are written on a blackboard. Each minute, a student goes up to the board, chooses two numbers $x$ and $y$, erases them, and writes the number $2x+2y$ on the board. This continues until only one number remains. Prove that this number is at least $\frac{4}{9}n^3$.
  5. Let $n > 1$ be a positive integer. A 2-dimensional grid, infinite in all directions, is given. Each 1 by 1 square in a given $n$ by $n$ square has a counter on it. A move consists of taking $n$ adjacent counters in a row or column and sliding them each by one space along that row or column. A returning sequence is a finite sequence of moves such that all counters again fill the original $n$ by $n$ square at the end of the sequence.
    a) Assume that all counters are distinguishable except two, which are indistinguishable from each other. Prove that any distinguishable arrangement of counters in the $n$ by $n$ square can be reached by a returning sequence.
    b) Assume all counters are distinguishable. Prove that there is no returning sequence that switches two counters and returns the rest to their original positions.
  6. Hamster is playing a game on an $m \times n$ chessboard. He places a rook anywhere on the board and then moves it around with the restriction that every vertical move must be followed by a horizontal move and every horizontal move must be followed by a vertical move. For what values of $m,n$ is it possible for the rook to visit every square of the chessboard exactly once? A square is only considered visited if the rook was initially placed there or if it ended one of its moves on it.
  7. The game of circulate is played with a deck of $kn$ cards each with a number in $1,2,\ldots,n$ such that there are $k$ cards with each number. First, $n$ piles numbered $1,2,\ldots,n$ of $k$ cards each are dealt out face down. The player then flips over a card from pile $1$, places that card face up at the bottom of the pile, then next flips over a card from the pile whose number matches the number on the card just flipped. The player repeats this until he reaches a pile in which every card has already been flipped and wins if at that point every card has been flipped. Hamster has grown tired of losing every time, so he decides to cheat. He looks at the piles beforehand and rearranges the $k$ cards in each pile as he pleases. When can Hamster perform this procedure such that he will win the game?
  8. A tree $T$ is given. Starting with the complete graph on $n$ vertices, subgraphs isomorphic to $T$ are erased at random until no such subgraph remains. For what trees does there exist a positive constant $c$ such that the expected number of edges remaining is at least $cn^2$ for all positive integers $n$?.


  1. Let $ABC$ be a triangle. Let $A_1$, $A_2$ be points on $AB$ and $AC$ respectively such that $A_1A_2 \parallel BC$ and the circumcircle of $\triangle AA_1A_2$ is tangent to $BC$ at $A_3$. Define $B_3$, $C_3$ similarly. Prove that $AA_3$, $BB_3$, and $CC_3$ are concurrent.
  2. Given a triangle $ABC$, a point $P$ is chosen on side $BC$. Points $M$ and $N$ lie on sides $AB$ and $AC$, respectively, such that $MP \parallel AC$ and $NP \parallel AB$. Point $P$ is reflected across $MN$ to point $Q$. Show that triangle $QMB$ is similar to triangle $CNQ$.
  3. A circle $\omega$ not passing through any vertex of $\triangle ABC$ intersects each of the segments $AB$, $BC$, $CA$ in 2 distinct points. Prove that the incenter of $\triangle ABC$ lies inside $\omega$.
  4. Let $ABC$ be a triangle with circumcircle $\omega$, incenter $I$, and $A$-excenter $I_A$. Let the incircle and the $A$-excircle hit $BC$ at $D$ and $E$, respectively, and let $M$ be the midpoint of arc $BC$ without $A$. Consider the circle tangent to $BC$ at $D$ and arc $BAC$ at $T$. If $TI$ intersects $\omega$ again at $S$, prove that $SI_A$ and $ME$ meet on $\omega$.
  5. Determine all (not necessarily finite) sets $S$ of points in the plane such that given any four distinct points in $S$, there is a circle passing through all four or a line passing through some three.
  6. Let $ABC$ be a triangle with circumcircle $\Omega$. $X$ and $Y$ are points on $\Omega$ such that $XY$ meets $AB$ and $AC$ at $D$ and $E$, respectively. Show that the midpoints of $XY$, $BE$, $CD$, and $DE$ are concyclic.

Number Theory

  1. For a positive integer $n$, let $\mu(n) = 0$ if $n$ is not squarefree and $(-1)^k$ if $n$ is a product of $k$ primes, and let $\sigma(n)$ be the sum of the divisors of $n$. Prove that for all $n$ we have \[\left|\sum_{d|n}\frac{\mu(d)\sigma(d)}{d}\right| \geq \frac{1}{n}, \] and determine when equality holds.
  2. Given a prime $p$, show that \[\left(1+p\sum_{k=1}^{p-1}k^{-1}\right)^2 \equiv 1-p^2\sum_{k=1}^{p-1}k^{-2} \pmod{p^4}.\]
  3. Prove that there are infinitely many quadruples of integers $(a,b,c,d)$ such that $$\begin{align*} a^2 + b^2 + 3 &= 4ab\\ c^2 + d^2 + 3 &= 4cd\\ 4c^3 - 3c &= a \end{align*}$$
  4. Let $r$ and $s$ be positive integers. Define $a_0 = 0$, $a_1 = 1$, and $a_n = ra_{n-1} + sa_{n-2}$ for $n \geq 2$. Let $f_n = a_1a_2\cdots a_n$. Prove that $\displaystyle\frac{f_n}{f_kf_{n-k}}$ is an integer for all integers $n$ and $k$ such that $0 < k < n$.
  5. Find the set $S$ of primes such that $p \in S$ if and only if there exists an integer $x$ such that $x^{2010} + x^{2009} + \cdots + 1 \equiv p^{2010} \pmod{p^{2011}}$.
MOlympiad.NET là dự án thu thập và phát hành các đề thi tuyển sinh và học sinh giỏi toán. Quý bạn đọc muốn giúp chúng tôi chỉnh sửa đề thi này, xin hãy để lại bình luận facebook (có thể đính kèm hình ảnh) hoặc google (có thể sử dụng $\LaTeX$) bên dưới. BBT rất mong bạn đọc ủng hộ UPLOAD đề thi và đáp án mới hoặc liên hệ
Chúng tôi nhận tất cả các định dạng của tài liệu: $\TeX$, PDF, WORD, IMG,...


Abel Albania AMM Amsterdam An Giang Andrew Wiles Anh APMO Austria (Áo) Ba Đình Ba Lan Bà Rịa Vũng Tàu Bắc Bộ Bắc Giang Bắc Kạn Bạc Liêu Bắc Ninh Bắc Trung Bộ Bài Toán Hay Balkan Baltic Way BAMO Bất Đẳng Thức Bến Tre Benelux Bình Định Bình Dương Bình Phước Bình Thuận Birch BMO Booklet Bosnia Herzegovina BoxMath Brazil British Bùi Đắc Hiên Bùi Thị Thiện Mỹ Bùi Văn Tuyên Bùi Xuân Diệu Bulgaria Buôn Ma Thuột BxMO Cà Mau Cần Thơ Canada Cao Bằng Cao Quang Minh Câu Chuyện Toán Học Caucasus CGMO China - Trung Quốc Chọn Đội Tuyển Chu Tuấn Anh Chuyên Đề Chuyên Sư Phạm Chuyên Trần Hưng Đạo Collection College Mathematic Concours Cono Sur Contest Correspondence Cosmin Poahata Crux Czech-Polish-Slovak Đà Nẵng Đa Thức Đại Số Đắk Lắk Đắk Nông Đan Phượng Danube Đào Thái Hiệp ĐBSCL Đề Thi Đề Thi HSG Đề Thi JMO Điện Biên Định Lý Định Lý Beaty Đỗ Hữu Đức Thịnh Do Thái Doãn Quang Tiến Đoàn Quỳnh Đoàn Văn Trung Đống Đa Đồng Nai Đồng Tháp Du Hiền Vinh Đức Duyên Hải Bắc Bộ E-Book EGMO ELMO EMC Epsilon Estonian Euler Evan Chen Fermat Finland Forum Of Geometry Furstenberg G. Polya Gặp Gỡ Toán Học Gauss GDTX Geometry Gia Lai Gia Viễn Giải Tích Hàm Giảng Võ Giới hạn Goldbach Hà Giang Hà Lan Hà Nam Hà Nội Hà Tĩnh Hà Trung Kiên Hải Dương Hải Phòng Hậu Giang Hậu Lộc Hilbert Hình Học HKUST Hòa Bình Hoài Nhơn Hoàng Bá Minh Hoàng Minh Quân Hodge Hojoo Lee HOMC HongKong HSG 10 HSG 10 Bắc Giang HSG 10 Thái Nguyên HSG 11 HSG 11 Bắc Giang HSG 11 Lạng Sơn HSG 11 Thái Nguyên HSG 12 HSG 12 2010-2011 HSG 12 2011-2012 HSG 12 2012-2013 HSG 12 2013-2014 HSG 12 2014-2015 HSG 12 2015-2016 HSG 12 2016-2017 HSG 12 2017-2018 HSG 12 2018-2019 HSG 12 2019-2020 HSG 12 2020-2021 HSG 12 2021-2022 HSG 12 Bắc Giang HSG 12 Bình Phước HSG 12 Đồng Tháp HSG 12 Lạng Sơn HSG 12 Long An HSG 12 Quảng Nam HSG 12 Quảng Ninh HSG 12 Thái Nguyên HSG 9 HSG 9 2010-2011 HSG 9 2011-2012 HSG 9 2012-2013 HSG 9 2013-2014 HSG 9 2014-2015 HSG 9 2015-2016 HSG 9 2016-2017 HSG 9 2017-2018 HSG 9 2018-2019 HSG 9 2019-2020 HSG 9 2020-2021 HSG 9 2021-202 HSG 9 2021-2022 HSG 9 Bắc Giang HSG 9 Bình Phước HSG 9 Đồng Tháp HSG 9 Lạng Sơn HSG 9 Long An HSG 9 Quảng Nam HSG 9 Quảng Ninh HSG Cấp Trường HSG Quốc Gia HSG Quốc Tế Hứa Lâm Phong Hứa Thuần Phỏng Hùng Vương Hưng Yên Hương Sơn Huỳnh Kim Linh Hy Lạp IMC IMO IMT India - Ấn Độ Inequality InMC International Iran Jakob JBMO Jewish Journal Junior K2pi Kazakhstan Khánh Hòa KHTN Kiên Giang Kim Liên Kon Tum Korea - Hàn Quốc Kvant Kỷ Yếu Lai Châu Lâm Đồng Lạng Sơn Langlands Lào Cai Lê Hải Châu Lê Hải Khôi Lê Hoành Phò Lê Khánh Sỹ Lê Minh Cường Lê Phúc Lữ Lê Phương Lê Quý Đôn Lê Viết Hải Lê Việt Hưng Leibniz Long An Lớp 10 Lớp 10 Chuyên Lớp 10 Không Chuyên Lớp 11 Lục Ngạn Lượng giác Lương Tài Lưu Giang Nam Lý Thánh Tông Macedonian Malaysia Margulis Mark Levi Mathematical Excalibur Mathematical Reflections Mathematics Magazine Mathematics Today Mathley MathLinks MathProblems Journal Mathscope MathsVN MathVN MEMO Metropolises Mexico MIC Michael Guillen Mochizuki Moldova Moscow MYM MYTS Nam Định Nam Phi National Nesbitt Newton Nghệ An Ngô Bảo Châu Ngô Việt Hải Ngọc Huyền Nguyễn Anh Tuyến Nguyễn Bá Đang Nguyễn Đình Thi Nguyễn Đức Tấn Nguyễn Đức Thắng Nguyễn Duy Khương Nguyễn Duy Tùng Nguyễn Hữu Điển Nguyễn Mình Hà Nguyễn Minh Tuấn Nguyễn Phan Tài Vương Nguyễn Phú Khánh Nguyễn Phúc Tăng Nguyễn Quản Bá Hồng Nguyễn Quang Sơn Nguyễn Tài Chung Nguyễn Tăng Vũ Nguyễn Tất Thu Nguyễn Thúc Vũ Hoàng Nguyễn Trung Tuấn Nguyễn Tuấn Anh Nguyễn Văn Huyện Nguyễn Văn Mậu Nguyễn Văn Nho Nguyễn Văn Quý Nguyễn Văn Thông Nguyễn Việt Anh Nguyễn Vũ Lương Nhật Bản Nhóm $\LaTeX$ Nhóm Toán Ninh Bình Ninh Thuận Nội Suy Lagrange Nội Suy Newton Nordic Olympiad Corner Olympiad Preliminary Olympic 10 Olympic 10/3 Olympic 11 Olympic 12 Olympic 24/3 Olympic 24/3 Quảng Nam Olympic 27/4 Olympic 30/4 Olympic KHTN Olympic Sinh Viên Olympic Tháng 4 Olympic Toán Olympic Toán Sơ Cấp PAMO Phạm Đình Đồng Phạm Đức Tài Phạm Huy Hoàng Pham Kim Hung Phạm Quốc Sang Phan Huy Khải Phan Thành Nam Pháp Philippines Phú Thọ Phú Yên Phùng Hồ Hải Phương Trình Hàm Phương Trình Pythagoras Pi Polish Problems PT-HPT PTNK Putnam Quảng Bình Quảng Nam Quảng Ngãi Quảng Ninh Quảng Trị Quỹ Tích Riemann RMM RMO Romania Romanian Mathematical Russia Sách Thường Thức Toán Sách Toán Sách Toán Cao Học Sách Toán THCS Saudi Arabia - Ả Rập Xê Út Scholze Serbia Sharygin Shortlists Simon Singh Singapore Số Học - Tổ Hợp Sóc Trăng Sơn La Spain Star Education Stars of Mathematics Swinnerton-Dyer Talent Search Tăng Hải Tuân Tạp Chí Tập San Tây Ban Nha Tây Ninh Thạch Hà Thái Bình Thái Nguyên Thái Vân Thanh Hóa THCS Thổ Nhĩ Kỳ Thomas J. Mildorf THPT Chuyên Lê Quý Đôn THPTQG THTT Thừa Thiên Huế Tiền Giang Tin Tức Toán Học Titu Andreescu Toán 12 Toán Cao Cấp Toán Chuyên Toán Rời Rạc Toán Tuổi Thơ Tôn Ngọc Minh Quân TOT TPHCM Trà Vinh Trắc Nghiệm Trắc Nghiệm Toán Trại Hè Trại Hè Hùng Vương Trại Hè Phương Nam Trần Đăng Phúc Trần Minh Hiền Trần Nam Dũng Trần Phương Trần Quang Hùng Trần Quốc Anh Trần Quốc Luật Trần Quốc Nghĩa Trần Tiến Tự Trịnh Đào Chiến Trường Đông Trường Hè Trường Thu Trường Xuân TST TST 2010-2011 TST 2011-2012 TST 2012-2013 TST 2013-2014 TST 2014-2015 TST 2015-2016 TST 2016-2017 TST 2017-2018 TST 2018-2019 TST 2019-2020 TST 2020-2021 TST 2021-2022 TST Bắc Giang TST Bình Phước TST Đồng Tháp TST Lạng Sơn TST Long An TST Quảng Nam TST Quảng Ninh TST Thái Nguyên Tuyên Quang Tuyển Sinh Tuyển Sinh 10 Tuyển Sinh 10 Bắc Giang Tuyển Sinh 10 Bình Phước Tuyển Sinh 10 Đồng Tháp Tuyển Sinh 10 Lạng Sơn Tuyển Sinh 10 Long An Tuyển Sinh 10 Quảng Nam Tuyển Sinh 10 Quảng Ninh Tuyển Sinh 10 Thái Nguyên Tuyển Sinh 2010-2011 Tuyển Sinh 2011-2012 Tuyển Sinh 2011-2022 Tuyển Sinh 2012-2013 Tuyển Sinh 2013-2014 Tuyển Sinh 2014-2015 Tuyển Sinh 2015-2016 Tuyển Sinh 2016-2017 Tuyển Sinh 2017-2018 Tuyển Sinh 2018-2019 Tuyển Sinh 2019-2020 Tuyển Sinh 2020-2021 Tuyển Sinh 2021-202 Tuyển Sinh 2021-2022 Tuyển Tập Tuymaada UK - Anh Undergraduate USA - Mỹ USA TSTST USAJMO USATST USEMO Uzbekistan Vasile Cîrtoaje Vật Lý Viện Toán Học Vietnam Viktor Prasolov VIMF Vinh Vĩnh Long Vĩnh Phúc Virginia Tech VLTT VMEO VMF VMO VNTST Võ Anh Khoa Võ Quốc Bá Cẩn Võ Thành Văn Vojtěch Jarník Vũ Hữu Bình Vương Trung Dũng WFNMC Journal Wiles Yên Bái Yên Định Yên Thành Zhautykov Zhou Yuan Zhe
MOlympiad.NET: [Shortlists & Solutions] Easy Little Math Olympiad 2010
[Shortlists & Solutions] Easy Little Math Olympiad 2010
Not found any posts Not found any related posts VIEW ALL Readmore Reply Cancel reply Delete By Home PAGES POSTS View All RECOMMENDED FOR YOU Tag ARCHIVE SEARCH ALL POSTS Not found any post match with your request Back Home Contents See also related Sunday Monday Tuesday Wednesday Thursday Friday Saturday Sun Mon Tue Wed Thu Fri Sat January February March April May June July August September October November December Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec just now 1 minute ago $$1$$ minutes ago 1 hour ago $$1$$ hours ago Yesterday $$1$$ days ago $$1$$ weeks ago more than 5 weeks ago Followers Follow Copy All Code Select All Code All codes were copied to your clipboard Can not copy the codes / texts, please press [CTRL]+[C] (or CMD+C with Mac) to copy THIS PREMIUM CONTENT IS LOCKED