$hide=mobile

[Đề Xuất] Đề Thi Toán Quốc Tế IMO 2015

  1. Ở Lineland có $n \geq 1$ thị trấn, được sắp xếp dọc một con đường từ trái sang phải. Mỗi thị trấn có một xe ủi trái (đặt bên trái của thị trấn và hướng sang trái) và một xe ủi phải (đặt bên phải của thị trấn và hướng sang phải). Kích thước của $2n$ xe ủi là đôi một khác nhau. Tại mỗi thời điểm khi một xe ủi trái đối diện một xe ủi phải, xe lớn hơn sẽ đẩy xe nhỏ hơn ra khỏi đường. Mặt khác, các xe ủi sẽ không được bảo vệ đằng sau; vì vậy, nếu một xe ủi húc vào đuôi của xe khác thì nó sẽ đẩy xe bị húc ra khỏi đường. Cho $A$ và $B$ là hai thị trấn, với $B$ nằm bên phải $A$. Ta nói $A$ có thể quét $B$ biến mất nếu xe ủi phải của $A$ có thể di chuyển đến $B$ và đẩy tất cả xe ủi mà nó gặp ra khỏi đường. Tương tự, $B$ có thể quét $A$ biến mất nếu xe ủi trái của $B$ có thể di chuyển tới $A$ và đẩy tất cả xe ủi mà nó gặp ra khỏi đường. Chứng minh rằng có đúng một thị trấn không bị quét biến mất bởi mỗi thì trấn còn lại.
  2. Ta nói tập hữu hạn $S$ các điểm trong mặt phẳng là cân bằng nếu với mỗi hai điểm khác nhau $A$ và $B$ trong $S$, tồn tại $C$ trong $S$ sao cho $AC = BC$. Ta nói $S$ là không tâm nếu với mỗi ba điểm phân biệt $A, B$ và $C$ của $S$, không tồn tại $P$ trong $S$ sao cho $P A = P B = P C$.
    a) Chứng minh rằng với mỗi $n \geq 3$, tồn tại tập cân bằng chứa $n$ điểm.
    b) Xác định tất cả $n \geq 3$ sao cho tồn tại tập cân bằng và không tâm chứa $n$ điểm.
  3. Với tập hữu hạn các số nguyên dương $A$, một phân hoạch của $A$ thành hai tập con khác rỗng $A_1$, $A_2$ được gọi là tốt nếu bội chung nhỏ nhất của các phần tử trong $A_1$ bằng ước chung lớn nhất của các phần tử trong $A_2$. Tìm số nguyên dương $n$ nhỏ nhất sao cho tồn tại tập gồm $n$ số nguyên dương với đúng 2015 phân hoạch tốt.
  4. Cho số nguyên dương $n$. Hai người chơi $A$ và $B$ chơi một trò chơi chọn các số nguyên dương $k \leq n$. Luật chơi là
    • Người chơi không được chọn số đã được chọn ở các bước trước.
    • Người chơi không được chọn số liên tiếp với các số đã được người đó chọn ở các bước trước.
    • Trò chơi sẽ kết thúc với kết quả hòa nếu không còn số nào để chọn; trong trường hợp còn lại, ai không chọn được sẽ thua.
    $A$ đi trước. Xác định kết quả của trò chơi, giả sử rằng cả hai cùng chơi giỏi.
  5. Cho dãy các số nguyên $a_1 , a_2 , . . .$ thỏa mãn đồng thời hai điều kiện
    • $1 \leq a_j \leq 2015$ với mỗi $j \geq 1$,
    • $k + a_k \ne l +a_l$ với mỗi $1 \leq k < l$.
    Chứng minh rằng tồn tại hai số nguyên dương $b$ và $N$ sao cho $$\left|\sum_{j=m+1}^{n}(a_j - b)\right| \leq 1007^2$$ với mỗi hai số $m$ và $n$ thỏa mãn $n > m \geq N$.
  6. Cho $S$ là tập khác rỗng các số nguyên dương. Một số nguyên dương được gọi là dọn dẹp nếu nó có thể biểu diễn duy nhất thành tổng của một số lẻ các phần tử khác nhau của $S$. Chứng minh rằng tồn tại vô hạn số nguyên dương không dọn dẹp.
  7. Trong một công ty có một số cặp là kẻ thù của nhau. Một nhóm người được gọi là không ưa giao tiếp nếu số thành viên trong nhóm là số lẻ lớn hơn $1$, và có thể sắp xếp tất cả các thành viên của nhóm xung quanh một bàn tròn sao cho mỗi cặp ngồi cạnh nhau đều là kẻ thù của nhau. Biết có nhiều nhất $2015$ nhóm không ưa giao tiếp, chứng minh rằng có thể chia công ty thành $11$ phần sao cho trong mỗi phần không có hai người nào là kẻ thù của nhau.

Post a Comment


$hide=home

$type=three$count=6$sr=random$t=oot$h=1$l=0$meta=hide$rm=hide$sn=0

$hide=post$type=three$count=6$sr=random$t=oot$h=1$l=0$meta=hide$rm=hide$sn=0

$hide=home

Kỷ Yếu$cl=violet$type=three$count=6$sr=random$t=oot$h=1$l=0$meta=hide$rm=hide$sn=0

Journals$cl=green$type=three$count=6$sr=random$t=oot$h=1$l=0$meta=hide$rm=hide$sn=0

Name

Ả-rập Xê-út,1,Abel,5,Albania,2,AMM,2,Amsterdam,5,Ấn Độ,1,An Giang,21,Andrew Wiles,1,Anh,2,Áo,1,APMO,19,Ba Đình,2,Ba Lan,1,Bà Rịa Vũng Tàu,51,Bắc Giang,49,Bắc Kạn,1,Bạc Liêu,9,Bắc Ninh,46,Bắc Trung Bộ,7,Bài Toán Hay,5,Balkan,37,Baltic Way,30,BAMO,1,Bất Đẳng Thức,66,Bến Tre,46,Benelux,13,Bình Định,43,Bình Dương,21,Bình Phước,38,Bình Thuận,34,Birch,1,Booklet,11,Bosnia Herzegovina,3,BoxMath,3,Brazil,2,Bùi Đắc Hiên,1,Bùi Thị Thiện Mỹ,1,Bùi Văn Tuyên,1,Bùi Xuân Diệu,1,Bulgaria,5,Buôn Ma Thuột,1,BxMO,12,Cà Mau,13,Cần Thơ,14,Canada,39,Cao Bằng,6,Cao Quang Minh,1,Câu Chuyện Toán Học,36,Caucasus,2,CGMO,10,China,10,Chọn Đội Tuyển,347,Chu Tuấn Anh,1,Chuyên Đề,124,Chuyên Sư Phạm,31,Chuyên Trần Hưng Đạo,3,Collection,8,College Mathematic,1,Concours,1,Cono Sur,1,Contest,610,Correspondence,1,Cosmin Poahata,1,Crux,2,Czech-Polish-Slovak,25,Đà Nẵng,38,Đa Thức,2,Đại Số,20,Đắk Lắk,54,Đắk Nông,7,Đan Phượng,1,Danube,7,Đào Thái Hiệp,1,ĐBSCL,2,Đề Thi HSG,1632,Đề Thi JMO,1,Điện Biên,8,Định Lý,1,Định Lý Beaty,1,Đỗ Hữu Đức Thịnh,1,Do Thái,3,Doãn Quang Tiến,4,Đoàn Quỳnh,1,Đoàn Văn Trung,1,Đống Đa,4,Đồng Nai,49,Đồng Tháp,51,Du Hiền Vinh,1,Đức,1,Duyên Hải Bắc Bộ,25,E-Book,33,EGMO,16,ELMO,19,EMC,8,Epsilon,1,Estonian,5,Euler,1,Evan Chen,1,Fermat,3,Finland,4,Forum Of Geometry,2,Furstenberg,1,G. Polya,3,Gặp Gỡ Toán Học,26,Gauss,1,GDTX,3,Geometry,12,Gia Lai,25,Gia Viễn,2,Giải Tích Hàm,1,Giảng Võ,1,Giới hạn,2,Goldbach,1,Hà Giang,2,Hà Lan,1,Hà Nam,28,Hà Nội,231,Hà Tĩnh,72,Hà Trung Kiên,1,Hải Dương,49,Hải Phòng,42,Hàn Quốc,5,Hậu Giang,4,Hậu Lộc,1,Hilbert,1,Hình Học,33,HKUST,7,Hòa Bình,13,Hoài Nhơn,1,Hoàng Bá Minh,1,Hoàng Minh Quân,1,Hodge,1,Hojoo Lee,2,HOMC,5,HongKong,8,HSG 10,100,HSG 11,84,HSG 12,580,HSG 9,398,HSG Cấp Trường,78,HSG Quốc Gia,98,HSG Quốc Tế,16,Hứa Lâm Phong,1,Hứa Thuần Phỏng,1,Hùng Vương,2,Hưng Yên,31,Hương Sơn,2,Huỳnh Kim Linh,1,Hy Lạp,1,IMC,25,IMO,54,India,45,Inequality,13,InMC,1,International,307,Iran,11,Jakob,1,JBMO,41,Jewish,1,Journal,20,Junior,38,K2pi,1,Kazakhstan,1,Khánh Hòa,16,KHTN,53,Kiên Giang,63,Kim Liên,1,Kon Tum,18,Korea,5,Kvant,2,Kỷ Yếu,42,Lai Châu,4,Lâm Đồng,33,Lạng Sơn,21,Langlands,1,Lào Cai,16,Lê Hải Châu,1,Lê Hải Khôi,1,Lê Hoành Phò,4,Lê Khánh Sỹ,3,Lê Minh Cường,1,Lê Phúc Lữ,1,Lê Phương,1,Lê Quý Đôn,1,Lê Viết Hải,1,Lê Việt Hưng,1,Leibniz,1,Long An,42,Lớp 10,10,Lớp 10 Chuyên,452,Lớp 10 Không Chuyên,229,Lớp 11,1,Lục Ngạn,1,Lượng giác,1,Lương Tài,1,Lưu Giang Nam,2,Lý Thánh Tông,1,Macedonian,1,Malaysia,1,Margulis,2,Mark Levi,1,Mathematical Excalibur,1,Mathematical Reflections,1,Mathematics Magazine,1,Mathematics Today,1,Mathley,1,MathLinks,1,MathProblems Journal,1,Mathscope,8,MathsVN,5,MathVN,1,MEMO,10,Metropolises,4,Mexico,1,MIC,1,Michael Guillen,1,Mochizuki,1,Moldova,1,Moscow,1,Mỹ,9,MYTS,4,Nam Định,32,Nam Phi,1,Nam Trung Bộ,1,National,249,Nesbitt,1,Newton,4,Nghệ An,50,Ngô Bảo Châu,2,Ngô Việt Hải,1,Ngọc Huyền,2,Nguyễn Anh Tuyến,1,Nguyễn Bá Đang,1,Nguyễn Đình Thi,1,Nguyễn Đức Tấn,1,Nguyễn Đức Thắng,1,Nguyễn Duy Khương,1,Nguyễn Duy Tùng,1,Nguyễn Hữu Điển,3,Nguyễn Mình Hà,1,Nguyễn Minh Tuấn,8,Nguyễn Phan Tài Vương,1,Nguyễn Phú Khánh,1,Nguyễn Phúc Tăng,1,Nguyễn Quản Bá Hồng,1,Nguyễn Quang Sơn,1,Nguyễn Tài Chung,5,Nguyễn Tăng Vũ,1,Nguyễn Tất Thu,1,Nguyễn Thúc Vũ Hoàng,1,Nguyễn Trung Tuấn,8,Nguyễn Tuấn Anh,2,Nguyễn Văn Huyện,3,Nguyễn Văn Mậu,25,Nguyễn Văn Nho,1,Nguyễn Văn Quý,2,Nguyễn Văn Thông,1,Nguyễn Việt Anh,1,Nguyễn Vũ Lương,2,Nhật Bản,3,Nhóm $\LaTeX$,4,Nhóm Toán,1,Ninh Bình,41,Ninh Thuận,15,Nội Suy Lagrange,2,Nội Suy Newton,1,Nordic,19,Olympiad Corner,1,Olympiad Preliminary,2,Olympic 10,96,Olympic 10/3,5,Olympic 11,88,Olympic 12,30,Olympic 24/3,6,Olympic 27/4,19,Olympic 30/4,64,Olympic KHTN,6,Olympic Sinh Viên,73,Olympic Tháng 4,10,Olympic Toán,297,Olympic Toán Sơ Cấp,3,PAMO,1,Phạm Đình Đồng,1,Phạm Đức Tài,1,Phạm Huy Hoàng,1,Pham Kim Hung,3,Phạm Quốc Sang,2,Phan Huy Khải,1,Phan Thành Nam,1,Pháp,2,Philippines,8,Phú Thọ,30,Phú Yên,26,Phùng Hồ Hải,1,Phương Trình Hàm,11,Phương Trình Pythagoras,1,Pi,1,Polish,32,Problems,1,PT-HPT,14,PTNK,44,Putnam,25,Quảng Bình,44,Quảng Nam,31,Quảng Ngãi,33,Quảng Ninh,43,Quảng Trị,26,Quỹ Tích,1,Riemann,1,RMM,12,RMO,24,Romania,36,Romanian Mathematical,1,Russia,1,Sách Thường Thức Toán,7,Sách Toán,69,Sách Toán Cao Học,1,Sách Toán THCS,7,Saudi Arabia,7,Scholze,1,Serbia,17,Sharygin,24,Shortlists,56,Simon Singh,1,Singapore,1,Số Học - Tổ Hợp,27,Sóc Trăng,28,Sơn La,11,Spain,8,Star Education,5,Stars of Mathematics,11,Swinnerton-Dyer,1,Talent Search,1,Tăng Hải Tuân,2,Tạp Chí,14,Tập San,6,Tây Ban Nha,1,Tây Ninh,29,Thạch Hà,1,Thái Bình,39,Thái Nguyên,49,Thái Vân,2,Thanh Hóa,57,THCS,2,Thổ Nhĩ Kỳ,5,Thomas J. Mildorf,1,THPT Chuyên Lê Quý Đôn,1,THPTQG,15,THTT,6,Thừa Thiên Huế,35,Tiền Giang,19,Tin Tức Toán Học,1,Titu Andreescu,2,Toán 12,7,Toán Cao Cấp,3,Toán Chuyên,2,Toán Rời Rạc,5,Toán Tuổi Thơ,3,Tôn Ngọc Minh Quân,2,TOT,1,TPHCM,123,Trà Vinh,5,Trắc Nghiệm,1,Trắc Nghiệm Toán,2,Trại Hè,34,Trại Hè Hùng Vương,25,Trại Hè Phương Nam,5,Trần Đăng Phúc,1,Trần Minh Hiền,2,Trần Nam Dũng,9,Trần Phương,1,Trần Quang Hùng,1,Trần Quốc Anh,2,Trần Quốc Luật,1,Trần Quốc Nghĩa,1,Trần Tiến Tự,1,Trịnh Đào Chiến,2,Trung Quốc,12,Trường Đông,19,Trường Hè,7,Trường Thu,1,Trường Xuân,2,TST,55,Tuyên Quang,6,Tuyển Sinh,3,Tuyển Tập,44,Tuymaada,4,Undergraduate,66,USA,44,USAJMO,10,USATST,7,Uzbekistan,1,Vasile Cîrtoaje,4,Vật Lý,1,Viện Toán Học,2,Vietnam,4,Viktor Prasolov,1,VIMF,1,Vinh,27,Vĩnh Long,19,Vĩnh Phúc,63,Virginia Tech,1,VLTT,1,VMEO,4,VMF,12,VMO,46,VNTST,21,Võ Anh Khoa,1,Võ Quốc Bá Cẩn,26,Võ Thành Văn,1,Vojtěch Jarník,6,Vũ Hữu Bình,7,Vương Trung Dũng,1,WFNMC Journal,1,Wiles,1,Yên Bái,17,Yên Định,1,Yên Thành,1,Zhautykov,11,Zhou Yuan Zhe,1,
ltr
item
MOlympiad: [Đề Xuất] Đề Thi Toán Quốc Tế IMO 2015
[Đề Xuất] Đề Thi Toán Quốc Tế IMO 2015
MOlympiad
https://www.molympiad.net/2017/08/imo-2015-shortlist-ban-tieng-viet.html
https://www.molympiad.net/
https://www.molympiad.net/
https://www.molympiad.net/2017/08/imo-2015-shortlist-ban-tieng-viet.html
true
2506595080985176441
UTF-8
Loaded All Posts Not found any posts VIEW ALL Readmore Reply Cancel reply Delete By Home PAGES POSTS View All RECOMMENDED FOR YOU LABEL ARCHIVE SEARCH ALL POSTS Not found any post match with your request Back Home Sunday Monday Tuesday Wednesday Thursday Friday Saturday Sun Mon Tue Wed Thu Fri Sat January February March April May June July August September October November December Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec just now 1 minute ago $$1$$ minutes ago 1 hour ago $$1$$ hours ago Yesterday $$1$$ days ago $$1$$ weeks ago more than 5 weeks ago Followers Follow THIS PREMIUM CONTENT IS LOCKED Please share to unlock Copy All Code Select All Code All codes were copied to your clipboard Can not copy the codes / texts, please press [CTRL]+[C] (or CMD+C with Mac) to copy