[Shortlists] International Mathematical Olympiad 2007


Algebra

  1. Real numbers $ a_{1}$, $ a_{2}$, $ \ldots$, $ a_{n}$ are given. For each $ i$, $ (1 \leq i \leq n )$, define \[ d_{i} = \max \{ a_{j}\mid 1 \leq j \leq i \} - \min \{ a_{j}\mid i \leq j \leq n \} \] and let $ d = \max \{d_{i}\mid 1 \leq i \leq n \}$.
    (a) Prove that, for any real numbers $ x_{1}\leq x_{2}\leq \cdots \leq x_{n}$, \[ \max \{ |x_{i} - a_{i}| \mid 1 \leq i \leq n \}\geq \frac {d}{2}. \quad \quad (*) \]  (b) Show that there are real numbers $ x_{1}\leq x_{2}\leq \cdots \leq x_{n}$ such that the equality holds in (*).
  2. Consider those functions $ f: \mathbb{N} \mapsto \mathbb{N}$ which satisfy the condition \[ f(m + n) \geq f(m) + f(f(n)) - 1 \] for all $ m,n \in \mathbb{N}.$ Find all possible values of $ f(2007).$
  3. Let $ n$ be a positive integer, and let $ x$ and $ y$ be a positive real number such that $ x^n + y^n = 1.$ Prove that \[ \left(\sum^n_{k = 1} \frac {1 + x^{2k}}{1 + x^{4k}} \right) \cdot \left( \sum^n_{k = 1} \frac {1 + y^{2k}}{1 + y^{4k}} \right) < \frac {1}{(1 - x) \cdot (1 - y)}. \]
  4. Find all functions $ f: \mathbb{R}^{ + }\to\mathbb{R}^{ + }$ satisfying $$ f\left(x + f\left(y\right)\right) = f\left(x + y\right) + f\left(y\right)$$ for all pairs of positive reals $ x$ and $ y$. Here, $ \mathbb{R}^{ + }$ denotes the set of all positive reals.
  5. Let $ c > 2,$ and let $ a(1), a(2), \ldots$ be a sequence of nonnegative real numbers such that \[ a(m + n) \leq 2 \cdot a(m) + 2 \cdot a(n) \text{ for all } m,n \geq 1, \] and $ a\left(2^k \right) \leq \frac {1}{(k + 1)^c} \text{ for all } k \geq 0.$ Prove that the sequence $ a(n)$ is bounded.
  6. Let $ a_1, a_2, \ldots, a_{100}$ be nonnegative real numbers such that $$a^2_1 + a^2_2 + \ldots + a^2_{100} = 1.$$ Prove that \[ a^2_1 \cdot a_2 + a^2_2 \cdot a_3 + \ldots + a^2_{100} \cdot a_1 < \frac {12}{25}. \]
  7. Let $ n$ be a positive integer. Consider \[ S = \left\{ (x,y,z) \mid x,y,z \in \{ 0, 1, \ldots, n\}, x + y + z > 0 \right \} \] as a set of $ (n + 1)^{3} - 1$ points in the three-dimensional space. Determine the smallest possible number of planes, the union of which contains $ S$ but does not include $ (0,0,0)$.

Combinatorics

  1. Let $ n > 1$ be an integer. Find all sequences $ a_1, a_2, \ldots a_{n^2 + n}$ satisfying the following conditions
    • $a_i \in \left\{0,1\right\}$ for all $1 \leq i \leq n^2 + n$;
    • $a_{i + 1} + a_{i + 2} + \ldots + a_{i + n} < a_{i + n + 1} + a_{i + n + 2} + \ldots + a_{i + 2n}$ for all $0 \leq i \leq n^2 - n$.
  2. A rectangle $ D$ is partitioned in several ($ \ge2$) rectangles with sides parallel to those of $ D$. Given that any line parallel to one of the sides of $ D$, and having common points with the interior of $ D$, also has common interior points with the interior of at least one rectangle of the partition; prove that there is at least one rectangle of the partition having no common points with $ D$'s boundary.
  3. Find all positive integers $ n$ for which the numbers in the set $ S = \{1,2, \ldots,n \}$ can be colored red and blue, with the following condition being satisfied: The set $ S \times S \times S$ contains exactly $ 2007$ ordered triples $ \left(x, y, z\right)$ such that
    • the numbers $ x$, $ y$, $ z$ are of the same color, and
    • the number $ x + y + z$ is divisible by $ n$.
  4. Let $ A_0 = (a_1,\dots,a_n)$ be a finite sequence of real numbers. For each $ k\geq 0$, from the sequence $ A_k = (x_1,\dots,x_k)$ we construct a new sequence $ A_{k + 1}$ in the following way.
    • We choose a partition $ \{1,\dots,n\} = I\cup J$, where $ I$ and $ J$ are two disjoint sets, such that the expression \[ \left|\sum_{i\in I}x_i - \sum_{j\in J}x_j\right| \] attains the smallest value. (We allow $ I$ or $ J$ to be empty; in this case the corresponding sum is 0.) If there are several such partitions, one is chosen arbitrarily.
    • We set $ A_{k + 1} = (y_1,\dots,y_n)$ where $ y_i = x_i + 1$ if $ i\in I$, and $ y_i = x_i - 1$ if $ i\in J$.
    Prove that for some $ k$, the sequence $ A_k$ contains an element $ x$ such that $ |x|\geq\frac n2$.
  5. In the Cartesian coordinate plane define the strips $$S_n = \{(x,y)|n\le x < n + 1\},\quad n\in\mathbb{Z}$$ and color each strip black or white. Prove that any rectangle which is not a square can be placed in the plane so that its vertices have the same color.
  6. In a mathematical competition some competitors are friends. Friendship is always mutual. Call a group of competitors a clique if each two of them are friends. (In particular, any group of fewer than two competitiors is a clique.) The number of members of a clique is called its size. Given that, in this competition, the largest size of a clique is even, prove that the competitors can be arranged into two rooms such that the largest size of a clique contained in one room is the same as the largest size of a clique contained in the other room.
  7. Let $ \alpha < \frac {3 - \sqrt {5}}{2}$ be a positive real number. Prove that there exist positive integers $ n$ and $ p > \alpha \cdot 2^n$ for which one can select $ 2 \cdot p$ pairwise distinct subsets $S_1, \ldots, S_p$, $T_1, \ldots, T_p$ of the set $ \{1,2, \ldots, n\}$ such that $ S_i \cap T_j \neq \emptyset$ for all $ 1 \leq i,j \leq p$.
  8. Given is a convex polygon $ P$ with $ n$ vertices. Triangle whose vertices lie on vertices of $ P$ is called good if all its sides are equal in length. Prove that there are at most $ \frac {2n}{3}$ good triangles.

Geometry

  1. In triangle $ ABC$ the bisector of angle $ BCA$ intersects the circumcircle again at $ R$, the perpendicular bisector of $ BC$ at $ P$, and the perpendicular bisector of $ AC$ at $ Q$. The midpoint of $ BC$ is $ K$ and the midpoint of $ AC$ is $ L$. Prove that the triangles $ RPK$ and $ RQL$ have the same area.
  2. Denote by $ M$ midpoint of side $ BC$ in an isosceles triangle $ \triangle ABC$ with $ AC = AB$. Take a point $ X$ on a smaller arc $ \angle MA$ of circumcircle of triangle $ \triangle ABM$. Denote by $ T$ point inside of angle $ BMA$ such that $ \angle TMX = 90$ and $ TX = BX$. Prove that $ \angle MTB - \angle CTM$ does not depend on choice of $ X$.
  3. The diagonals of a trapezoid $ ABCD$ intersect at point $ P$. Point $ Q$ lies between the parallel lines $ BC$ and $ AD$ such that $ \angle AQD = \angle CQB$, and line $ CD$ separates points $ P$ and $ Q$. Prove that $ \angle BQP = \angle DAQ$.
  4. Consider five points $ A$, $ B$, $ C$, $ D$ and $ E$ such that $ ABCD$ is a parallelogram and $ BCED$ is a cyclic quadrilateral. Let $ \ell$ be a line passing through $ A$. Suppose that $ \ell$ intersects the interior of the segment $ DC$ at $ F$ and intersects line $ BC$ at $ G$. Suppose also that $ EF = EG = EC$. Prove that $ \ell$ is the bisector of angle $ DAB$.
  5. Let $ ABC$ be a fixed triangle, and let $ A_1$, $ B_1$, $ C_1$ be the midpoints of sides $ BC$, $ CA$, $ AB$, respectively. Let $ P$ be a variable point on the circumcircle. Let lines $ PA_1$, $ PB_1$, $ PC_1$ meet the circumcircle again at $ A'$, $ B'$, $ C'$, respectively. Assume that the points $ A$, $ B$, $ C$, $ A'$, $ B'$, $ C'$ are distinct, and lines $ AA'$, $ BB'$, $ CC'$ form a triangle. Prove that the area of this triangle does not depend on $ P$.
  6. Determine the smallest positive real number $ k$ with the following property. Let $ ABCD$ be a convex quadrilateral, and let points $ A_1$, $ B_1$, $ C_1$, and $ D_1$ lie on sides $ AB$, $ BC$, $ CD$, and $ DA$, respectively. Consider the areas of triangles $ AA_1D_1$, $ BB_1A_1$, $ CC_1B_1$ and $ DD_1C_1$; let $ S$ be the sum of the two smallest ones, and let $ S_1$ be the area of quadrilateral $ A_1B_1C_1D_1$. Then we always have $ kS_1\ge S$.
  7. Given an acute triangle $ ABC$ with $ \angle B > \angle C$. Point $ I$ is the incenter, and $ R$ the circumradius. Point $ D$ is the foot of the altitude from vertex $ A$. Point $ K$ lies on line $ AD$ such that $ AK = 2R$, and $ D$ separates $ A$ and $ K$. Lines $ DI$ and $ KI$ meet sides $ AC$ and $ BC$ at $ E,F$ respectively. Let $ IE = IF$. Prove that $ \angle B\leq 3\angle C$.
  8. Point $ P$ lies on side $ AB$ of a convex quadrilateral $ ABCD$. Let $ \omega$ be the incircle of triangle $ CPD$, and let $ I$ be its incenter. Suppose that $ \omega$ is tangent to the incircles of triangles $ APD$ and $ BPC$ at points $ K$ and $ L$, respectively. Let lines $ AC$ and $ BD$ meet at $ E$, and let lines $ AK$ and $ BL$ meet at $ F$. Prove that points $ E$, $ I$, and $ F$ are collinear.

Number Theory

  1. Find all pairs of natural numbers $ (a, b)$ such that $ 7^a - 3^b$ divides $ a^4 + b^2$.
  2. Let $b,n > 1$ be integers. Suppose that for each $k > 1$ there exists an integer $a_k$ such that $b - a^n_k$ is divisible by $k$. Prove that $b = A^n$ for some integer $A$.
  3. Let $ X$ be a set of 10,000 integers, none of them is divisible by 47. Prove that there exists a 2007-element subset $ Y$ of $ X$ such that $ a - b + c - d + e$ is not divisible by 47 for any $ a,b,c,d,e \in Y.$
  4. For every integer $ k \geq 2,$ prove that $ 2^{3k}$ divides the number \[ \binom{2^{k + 1}}{2^{k}} - \binom{2^{k}}{2^{k - 1}} \] but $ 2^{3k + 1}$ does not.
  5. Find all surjective functions $ f: \mathbb{N} \to \mathbb{N}$ such that for every $ m,n \in \mathbb{N}$ and every prime $ p,$ the number $ f(m + n)$ is divisible by $ p$ if and only if $ f(m) + f(n)$ is divisible by $ p$.
  6. Let $ k$ be a positive integer. Prove that the number $ (4 \cdot k^2 - 1)^2$ has a positive divisor of the form $ 8kn - 1$ if and only if $ k$ is even
  7. For a prime $ p$ and a given integer $ n$ let $ \nu_p(n)$ denote the exponent of $ p$ in the prime factorisation of $ n!$. Given $ d \in \mathbb{N}$ and $ \{p_1,p_2,\ldots,p_k\}$ a set of $ k$ primes, show that there are infinitely many positive integers $ n$ such that $ d\mid \nu_{p_i}(n)$ for all $ 1 \leq i \leq k$.
MOlympiad.NET là dự án thu thập và phát hành các đề thi tuyển sinh và học sinh giỏi toán. Quý bạn đọc muốn giúp chúng tôi chỉnh sửa đề thi này, xin hãy để lại bình luận facebook (có thể đính kèm hình ảnh) hoặc google (có thể sử dụng $\LaTeX$) bên dưới. BBT rất mong bạn đọc ủng hộ UPLOAD đề thi và đáp án mới hoặc liên hệ
Chúng tôi nhận tất cả các định dạng của tài liệu: $\TeX$, PDF, WORD, IMG,...



Name

Abel Albania AMM Amsterdam An Giang Andrew Wiles Anh APMO Austria (Áo) Ba Đình Ba Lan Bà Rịa Vũng Tàu Bắc Bộ Bắc Giang Bắc Kạn Bạc Liêu Bắc Ninh Bắc Trung Bộ Bài Toán Hay Balkan Baltic Way BAMO Bất Đẳng Thức Bến Tre Benelux Bình Định Bình Dương Bình Phước Bình Thuận Birch BMO Booklet Bosnia Herzegovina BoxMath Brazil British Bùi Đắc Hiên Bùi Thị Thiện Mỹ Bùi Văn Tuyên Bùi Xuân Diệu Bulgaria Buôn Ma Thuột BxMO Cà Mau Cần Thơ Canada Cao Bằng Cao Quang Minh Câu Chuyện Toán Học Caucasus CGMO China - Trung Quốc Chọn Đội Tuyển Chu Tuấn Anh Chuyên Đề Chuyên Sư Phạm Chuyên Trần Hưng Đạo Collection College Mathematic Concours Cono Sur Contest Correspondence Cosmin Poahata Crux Czech-Polish-Slovak Đà Nẵng Đa Thức Đại Số Đắk Lắk Đắk Nông Đan Phượng Danube Đào Thái Hiệp ĐBSCL Đề Thi Đề Thi HSG Đề Thi JMO Điện Biên Định Lý Định Lý Beaty Đỗ Hữu Đức Thịnh Do Thái Doãn Quang Tiến Đoàn Quỳnh Đoàn Văn Trung Đống Đa Đồng Nai Đồng Tháp Du Hiền Vinh Đức Duyên Hải Bắc Bộ E-Book EGMO ELMO EMC Epsilon Estonian Euler Evan Chen Fermat Finland Forum Of Geometry Furstenberg G. Polya Gặp Gỡ Toán Học Gauss GDTX Geometry Gia Lai Gia Viễn Giải Tích Hàm Giảng Võ Giới hạn Goldbach Hà Giang Hà Lan Hà Nam Hà Nội Hà Tĩnh Hà Trung Kiên Hải Dương Hải Phòng Hậu Giang Hậu Lộc Hilbert Hình Học HKUST Hòa Bình Hoài Nhơn Hoàng Bá Minh Hoàng Minh Quân Hodge Hojoo Lee HOMC HongKong HSG 10 HSG 10 Bắc Giang HSG 10 Thái Nguyên HSG 11 HSG 11 Bắc Giang HSG 11 Thái Nguyên HSG 12 HSG 12 2010-2011 HSG 12 2011-2012 HSG 12 2012-2013 HSG 12 2013-2014 HSG 12 2014-2015 HSG 12 2015-2016 HSG 12 2016-2017 HSG 12 2017-2018 HSG 12 2018-2019 HSG 12 2019-2020 HSG 12 2020-2021 HSG 12 2021-2022 HSG 12 Bắc Giang HSG 12 Đồng Tháp HSG 12 Quảng Nam HSG 12 Quảng Ninh HSG 12 Thái Nguyên HSG 9 HSG 9 2010-2011 HSG 9 2011-2012 HSG 9 2012-2013 HSG 9 2013-2014 HSG 9 2014-2015 HSG 9 2015-2016 HSG 9 2016-2017 HSG 9 2017-2018 HSG 9 2018-2019 HSG 9 2019-2020 HSG 9 2020-2021 HSG 9 2021-202 HSG 9 2021-2022 HSG 9 Bắc Giang HSG 9 Đồng Tháp HSG 9 Quảng Nam HSG 9 Quảng Ninh HSG Cấp Trường HSG Quốc Gia HSG Quốc Tế Hứa Lâm Phong Hứa Thuần Phỏng Hùng Vương Hưng Yên Hương Sơn Huỳnh Kim Linh Hy Lạp IMC IMO IMT India - Ấn Độ Inequality InMC International Iran Jakob JBMO Jewish Journal Junior K2pi Kazakhstan Khánh Hòa KHTN Kiên Giang Kim Liên Kon Tum Korea - Hàn Quốc Kvant Kỷ Yếu Lai Châu Lâm Đồng Lạng Sơn Langlands Lào Cai Lê Hải Châu Lê Hải Khôi Lê Hoành Phò Lê Khánh Sỹ Lê Minh Cường Lê Phúc Lữ Lê Phương Lê Quý Đôn Lê Viết Hải Lê Việt Hưng Leibniz Long An Lớp 10 Lớp 10 Chuyên Lớp 10 Không Chuyên Lớp 11 Lục Ngạn Lượng giác Lương Tài Lưu Giang Nam Lý Thánh Tông Macedonian Malaysia Margulis Mark Levi Mathematical Excalibur Mathematical Reflections Mathematics Magazine Mathematics Today Mathley MathLinks MathProblems Journal Mathscope MathsVN MathVN MEMO Metropolises Mexico MIC Michael Guillen Mochizuki Moldova Moscow MYM MYTS Nam Định Nam Phi National Nesbitt Newton Nghệ An Ngô Bảo Châu Ngô Việt Hải Ngọc Huyền Nguyễn Anh Tuyến Nguyễn Bá Đang Nguyễn Đình Thi Nguyễn Đức Tấn Nguyễn Đức Thắng Nguyễn Duy Khương Nguyễn Duy Tùng Nguyễn Hữu Điển Nguyễn Mình Hà Nguyễn Minh Tuấn Nguyễn Phan Tài Vương Nguyễn Phú Khánh Nguyễn Phúc Tăng Nguyễn Quản Bá Hồng Nguyễn Quang Sơn Nguyễn Tài Chung Nguyễn Tăng Vũ Nguyễn Tất Thu Nguyễn Thúc Vũ Hoàng Nguyễn Trung Tuấn Nguyễn Tuấn Anh Nguyễn Văn Huyện Nguyễn Văn Mậu Nguyễn Văn Nho Nguyễn Văn Quý Nguyễn Văn Thông Nguyễn Việt Anh Nguyễn Vũ Lương Nhật Bản Nhóm $\LaTeX$ Nhóm Toán Ninh Bình Ninh Thuận Nội Suy Lagrange Nội Suy Newton Nordic Olympiad Corner Olympiad Preliminary Olympic 10 Olympic 10/3 Olympic 11 Olympic 12 Olympic 24/3 Olympic 24/3 Quảng Nam Olympic 27/4 Olympic 30/4 Olympic KHTN Olympic Sinh Viên Olympic Tháng 4 Olympic Toán Olympic Toán Sơ Cấp PAMO Phạm Đình Đồng Phạm Đức Tài Phạm Huy Hoàng Pham Kim Hung Phạm Quốc Sang Phan Huy Khải Phan Thành Nam Pháp Philippines Phú Thọ Phú Yên Phùng Hồ Hải Phương Trình Hàm Phương Trình Pythagoras Pi Polish Problems PT-HPT PTNK Putnam Quảng Bình Quảng Nam Quảng Ngãi Quảng Ninh Quảng Trị Quỹ Tích Riemann RMM RMO Romania Romanian Mathematical Russia Sách Thường Thức Toán Sách Toán Sách Toán Cao Học Sách Toán THCS Saudi Arabia - Ả Rập Xê Út Scholze Serbia Sharygin Shortlists Simon Singh Singapore Số Học - Tổ Hợp Sóc Trăng Sơn La Spain Star Education Stars of Mathematics Swinnerton-Dyer Talent Search Tăng Hải Tuân Tạp Chí Tập San Tây Ban Nha Tây Ninh Thạch Hà Thái Bình Thái Nguyên Thái Vân Thanh Hóa THCS Thổ Nhĩ Kỳ Thomas J. Mildorf THPT Chuyên Lê Quý Đôn THPTQG THTT Thừa Thiên Huế Tiền Giang Tin Tức Toán Học Titu Andreescu Toán 12 Toán Cao Cấp Toán Chuyên Toán Rời Rạc Toán Tuổi Thơ Tôn Ngọc Minh Quân TOT TPHCM Trà Vinh Trắc Nghiệm Trắc Nghiệm Toán Trại Hè Trại Hè Hùng Vương Trại Hè Phương Nam Trần Đăng Phúc Trần Minh Hiền Trần Nam Dũng Trần Phương Trần Quang Hùng Trần Quốc Anh Trần Quốc Luật Trần Quốc Nghĩa Trần Tiến Tự Trịnh Đào Chiến Trường Đông Trường Hè Trường Thu Trường Xuân TST TST 2010-2011 TST 2011-2012 TST 2012-2013 TST 2013-2014 TST 2014-2015 TST 2015-2016 TST 2016-2017 TST 2017-2018 TST 2018-2019 TST 2019-2020 TST 2020-2021 TST 2021-2022 TST Bắc Giang TST Đồng Tháp TST Quảng Nam TST Quảng Ninh TST Thái Nguyên Tuyên Quang Tuyển Sinh Tuyển Sinh 10 Tuyển Sinh 10 Đồng Tháp Tuyển Sinh 10 Quảng Nam Tuyển Sinh 10 Quảng Ninh Tuyển Sinh 10 Thái Nguyên Tuyển Sinh 2010-2011 Tuyển Sinh 2011-2012 Tuyển Sinh 2011-2022 Tuyển Sinh 2012-2013 Tuyển Sinh 2013-2014 Tuyển Sinh 2014-2015 Tuyển Sinh 2015-2016 Tuyển Sinh 2016-2017 Tuyển Sinh 2017-2018 Tuyển Sinh 2018-2019 Tuyển Sinh 2019-2020 Tuyển Sinh 2020-2021 Tuyển Sinh 2021-202 Tuyển Sinh 2021-2022 Tuyển Sinh THPT Bắc Giang Tuyển Tập Tuymaada UK - Anh Undergraduate USA - Mỹ USA TSTST USAJMO USATST USEMO Uzbekistan Vasile Cîrtoaje Vật Lý Viện Toán Học Vietnam Viktor Prasolov VIMF Vinh Vĩnh Long Vĩnh Phúc Virginia Tech VLTT VMEO VMF VMO VNTST Võ Anh Khoa Võ Quốc Bá Cẩn Võ Thành Văn Vojtěch Jarník Vũ Hữu Bình Vương Trung Dũng WFNMC Journal Wiles Yên Bái Yên Định Yên Thành Zhautykov Zhou Yuan Zhe
false
ltr
item
MOlympiad.NET: [Shortlists] International Mathematical Olympiad 2007
[Shortlists] International Mathematical Olympiad 2007
MOlympiad.NET
https://www.molympiad.net/2017/08/imo-2007-shortlists.html
https://www.molympiad.net/
https://www.molympiad.net/
https://www.molympiad.net/2017/08/imo-2007-shortlists.html
true
2506595080985176441
UTF-8
Not found any posts Not found any related posts VIEW ALL Readmore Reply Cancel reply Delete By Home PAGES POSTS View All RECOMMENDED FOR YOU Tag ARCHIVE SEARCH ALL POSTS Not found any post match with your request Back Home Contents See also related Sunday Monday Tuesday Wednesday Thursday Friday Saturday Sun Mon Tue Wed Thu Fri Sat January February March April May June July August September October November December Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec just now 1 minute ago $$1$$ minutes ago 1 hour ago $$1$$ hours ago Yesterday $$1$$ days ago $$1$$ weeks ago more than 5 weeks ago Followers Follow Copy All Code Select All Code All codes were copied to your clipboard Can not copy the codes / texts, please press [CTRL]+[C] (or CMD+C with Mac) to copy THIS PREMIUM CONTENT IS LOCKED
PLEASE FOLLOW THE INSTRUCTIONS TO VIEW THIS CONTENT
NỘI DUNG CAO CẤP NÀY ĐÃ BỊ KHÓA
XIN HÃY LÀM THEO HƯỚNG DẪN ĐỂ XEM NỘI DUNG NÀY
STEP 1: SHARE THIS ARTICLE TO A SOCIAL NETWORK
BƯỚC 1: CHIA SẺ BÀI VIẾT NÀY LÊN MẠNG XÃ HỘI
STEP 2: CLICK THE LINK ON YOUR SOCIAL NETWORK
BƯỚC 2: BẤM VÀO ĐƯỜNG DẪN TRÊN MẠNG XÃ HỘI CỦA BẠN