[Shortlists] International Mathematical Olympiad 2003


  1. Let $ABCD$ be a cyclic quadrilateral. Let $P$, $Q$, $R$ be the feet of the perpendiculars from $D$ to the lines $BC$, $CA$, $AB$, respectively. Show that $PQ=QR$ if and only if the bisectors of $\angle ABC$ and $\angle ADC$ are concurrent with $AC$.
  2. Given three fixed pairwisely distinct points $A$, $B$, $C$ lying on one straight line in this order. Let $G$ be a circle passing through $A$ and $C$ whose center does not lie on the line $AC$. The tangents to $G$ at $A$ and $C$ intersect each other at a point $P$. The segment $PB$ meets the circle $G$ at $Q$. Show that the point of intersection of the angle bisector of the angle $AQC$ with the line $AC$ does not depend on the choice of the circle $G$.
  3. Let $ABC$ be a triangle, and $P$ a point in the interior of this triangle. Let $D$, $E$, $F$ be the feet of the perpendiculars from the point $P$ to the lines $BC$, $CA$, $AB$, respectively. Assume that $AP^{2}+PD^{2}$ $=BP^{2}+PE^{2}$ $=CP^{2}+PF^{2}$. Furthermore, let $I_{a}$, $I_{b}$, $I_{c}$ be the excenters of triangle $ABC$. Show that the point $P$ is the circumcenter of triangle $I_{a}I_{b}I_{c}$.
  4. Let $\Gamma_1$, $\Gamma_2$, $\Gamma_3$, $\Gamma_4$ be distinct circles such that $\Gamma_1$, $\Gamma_3$ are externally tangent at $P$, and $\Gamma_2$, $\Gamma_4$ are externally tangent at the same point $P$. Suppose that $\Gamma_1$ and $\Gamma_2$; $\Gamma_2$ and $\Gamma_3$; $\Gamma_3$ and $\Gamma_4$; $\Gamma_4$ and $\Gamma_1$ meet at $A$, $B$, $C$, $D$, respectively, and that all these points are different from $P$. Prove that \[ \frac{AB\cdot BC}{AD\cdot DC}=\frac{PB^2}{PD^2}. \]
  5. Let $ABC$ be an isosceles triangle with $AC=BC$, whose incentre is $I$. Let $P$ be a point on the circumcircle of the triangle $AIB$ lying inside the triangle $ABC$. The lines through $P$ parallel to $CA$ and $CB$ meet $AB$ at $D$ and $E$, respectively. The line through $P$ parallel to $AB$ meets $CA$ and $CB$ at $F$ and $G$, respectively. Prove that the lines $DF$ and $EG$ intersect on the circumcircle of the triangle $ABC$.
  6. Each pair of opposite sides of a convex hexagon has the following property: the distance between their midpoints is equal to $\dfrac{\sqrt{3}}{2}$ times the sum of their lengths. Prove that all the angles of the hexagon are equal.
  7. Let $ABC$ be a triangle with semiperimeter $s$ and inradius $r$. The semicircles with diameters $BC$, $CA$, $AB$ are drawn on the outside of the triangle $ABC$. The circle tangent to all of these three semicircles has radius $t$. Prove that \[\frac{s}{2}<t\le\frac{s}{2}+\left(1-\frac{\sqrt{3}}{2}\right)r. \]

Number Theory

  1. Let $m$ be a fixed integer greater than $1$. The sequence $x_0$, $x_1$, $x_2$, $\ldots$ is defined as follows: $x_i= 2^i$ if $0 \leq i\leq m-1$, $x_i = \sum_{j=1}^{m}x_{i-j},$ if $i\geq m$. Find the greatest $k$ for which the sequence contains $k$ consecutive terms divisible by $m$ .
  2. Each positive integer $a$ is subjected to the following procedure, yielding the number $d = d\left(a\right)$:
    a) The last digit of $a$ is moved to the first position. The resulting number is called $b$.
    b) The number $b$ is squared. The resulting number is called $c$.
    c) The first digit of $c$ is moved to the last position. The resulting number is called $d$. (All numbers are considered in the decimal system.) For instance, $a = 2003$ gives $b = 3200$, $c = 10240000$ and $d = 02400001$ $= 2400001$ $= d\left(2003\right)$.  Find all integers a such that $d\left( a\right) =a^2$.
  3. Determine all pairs of positive integers $(a,b)$ such that \[ \dfrac{a^2}{2ab^2-b^3+1} \] is a positive integer.
  4. Let $ b$ be an integer greater than $ 5$. For each positive integer $ n$, consider the number \[ x_n = \underbrace{11\cdots1}_{n - 1}\underbrace{22\cdots2}_{n}5, \] written in base $ b$. Prove that the following condition holds if and only if $ b = 10$: there exists a positive integer $ M$ such that for any integer $ n$ greater than $ M$, the number $ x_n$ is a perfect square.
  5. An integer $n$ is said to be good if $|n|$ is not the square of an integer. Determine all integers $m$ with the following property: $m$ can be represented, in infinitely many ways, as a sum of three distinct good integers whose product is the square of an odd integer.
  6. Let $p$ be a prime number. Prove that there exists a prime number $q$ such that for every integer $n$, the number $n^p-p$ is not divisible by $q$.
  7. The sequence $a_0$, $a_1$, $a_2,$ $\ldots$ is defined as follows: $$a_0=2, \quad a_{k+1}=2a_k^2-1 \quad$ for $k \geq 0.$$ Prove that if an odd prime $p$ divides $a_n$, then $2^{n+3}$ divides $p^2-1$.
  8. Let $p$ be a prime number and let $A$ be a set of positive integers that satisfies the following conditions: (1) the set of prime divisors of the elements in $A$ consists of $p-1$ elements; (2) for any nonempty subset of $A$, the product of its elements is not a perfect $p$-th power. What is the largest possible number of elements in $A$ ?


  1. Let $a_{ij}$ (with the indices $i$ and $j$ from the set $\left\{1,\ 2,\ 3\right\}$) be real numbers such that $a_{ij}>0$ for $i = j$; $a_{ij}<0$ for $i\neq j$. Prove the existence of positive real numbers $c_{1}$, $c_{2}$, $c_{3}$ such that the numbers $$a_{11}c_{1}+a_{12}c_{2}+a_{13}c_{3},$$ $$a_{21}c_{1}+a_{22}c_{2}+a_{23}c_{3},$$ $$a_{31}c_{1}+a_{32}c_{2}+a_{33}c_{3}$$ are either all negative, or all zero, or all positive.
  2. Find all nondecreasing functions $f: \mathbb{R}\rightarrow\mathbb{R}$ such that
    • $f(0) = 0, f(1) = 1;$
    • $f(a) + f(b) = f(a)f(b) + f(a + b - ab)$ for all real numbers $a, b$ such that $a < 1 < b$.
  3. Consider two monotonically decreasing sequences $ \left( a_k\right)$ and $ \left( b_k\right)$, where $ k \geq 1$, and $ a_k$ and $ b_k$ are positive real numbers for every k. Now, define the sequences $$ c_k = \min \left( a_k, b_k \right)$$ $$ A_k = a_1 + a_2 + ... + a_k$$ $$ B_k = b_1 + b_2 + ... + b_k$$ $$ C_k = c_1 + c_2 + ... + c_k$$ for all natural numbers k.
    a) Do there exist two monotonically decreasing sequences $ \left( a_k\right)$ and $ \left( b_k\right)$ of positive real numbers such that the sequences $ \left( A_k\right)$ and $ \left( B_k\right)$ are not bounded, while the sequence $ \left( C_k\right)$ is bounded?
    b) Does the answer to problem (a) change if we stipulate that the sequence $ \left( b_k\right)$ must be $ \displaystyle b_k = \frac {1}{k}$ for all k ?
  4. Let $n$ be a positive integer and let $x_1\le x_2\le\cdots\le x_n$ be real numbers. Prove that \[ \left(\sum_{i,j=1}^{n}|x_i-x_j|\right)^2\le\frac{2(n^2-1)}{3}\sum_{i,j=1}^{n}(x_i-x_j)^2. \] Show that the equality holds if and only if $x_1, \ldots, x_n$ is an arithmetic sequence.
  5. Let $\mathbb{R}^+$ be the set of all positive real numbers. Find all functions $f: \mathbb{R}^+ \to \mathbb{R}^+$ that satisfy the following conditions: - $f(xyz)+f(x)+f(y)+f(z)=f(\sqrt{xy})f(\sqrt{yz})f(\sqrt{zx})$ for all $x,y,z\in\mathbb{R}^+$; - $f(x)<f(y)$ for all $1\le x<y$.
  6. Let $n$ be a positive integer and let $(x_1,\ldots,x_n)$, $(y_1,\ldots,y_n)$ be two sequences of positive real numbers. Suppose $(z_2,\ldots,z_{2n})$ is a sequence of positive real numbers such that $z_{i+j}^2 \geq x_iy_j$ for all $1\le i,j \leq n$. Let $M=\max\{z_2,\ldots,z_{2n}\}$. Prove that \[ \left( \frac{M+z_2+\dots+z_{2n}}{2n} \right)^2 \ge \left( \frac{x_1+\dots+x_n}{n} \right) \left( \frac{y_1+\dots+y_n}{n} \right). \]


  1. Let $A$ be a $101$-element subset of the set $S=\{1,2,\ldots,1000000\}$. Prove that there exist numbers $t_1$, $t_2, \ldots, t_{100}$ in $S$ such that the sets \[ A_j=\{x+t_j\mid x\in A\},\qquad j=1,2,\ldots,100 \] are pairwise disjoint.
  2. Let $D_1$, $D_2$, ..., $D_n$ be closed discs in the plane. (A closed disc is the region limited by a circle, taken jointly with this circle.) Suppose that every point in the plane is contained in at most $2003$ discs $D_i$. Prove that there exists a disc $D_k$ which intersects at most $7\cdot 2003 - 1 = 14020$ other discs $D_i$.
  3. Let $n \geq 5$ be an integer. Find the maximal integer $k$ such that there exists a polygon with $n$ vertices (convex or not, but not self-intersecting!) having $k$ internal $90^{\circ}$ angles.
  4. Given $n$ real numbers $x_1$, $x_2$, ..., $x_n$, and $n$ further real numbers $y_1$, $y_2$, ..., $y_n$. The entries $a_{ij}$ (with $1\leq i,\;j\leq n$) of an $n\times n$ matrix $A$ are defined as follows: $$a_{ij}=\left\{ \begin{array}{c} 1\text{ if }x_{i}+y_{j}\geq 0; \\ 0\text{ if }x_{i}+y_{j}<0. \end{array} \right.$$ Further, let $B$ be an $n\times n$ matrix whose elements are numbers from the set $\left\{0;\ 1\right\}$ satisfying the following condition: The sum of all elements of each row of $B$ equals the sum of all elements of the corresponding row of $A$; the sum of all elements of each column of $B$ equals the sum of all elements of the corresponding column of $A$. Show that in this case, $A = B$.
  5. Regard a plane with a Cartesian coordinate system; for each point with integer coordinates, draw a circular disk centered at this point and having the radius $\frac{1}{1000}$.
    a) Prove the existence of an equilateral triangle whose vertices lie in the interior of different disks;
    b) Show that every equilateral triangle whose vertices lie in the interior of different disks has a sidelength > 96.
  6. Let $f(k)$ be the number of all non-negative integers $n$ satisfying the following conditions
    • The integer $n$ has exactly $k$ digits in the decimal representation (where the first digit is not necessarily non-zero!), i. e. we have $0 \leq n <10^k$.
    • These $k$ digits of n can be permuted in such a way that the resulting number is divisible by $11$.
    Show that for any positive integer number $m,$ we have $$f\left(2m\right) = 10 f\left(2m - 1\right).$$

Post a Comment





Kỷ Yếu$cl=violet$type=three$count=6$sr=random$t=oot$h=1$l=0$meta=hide$rm=hide$sn=0$hide=mobile



Ả-rập Xê-út,1,Abel,5,Albania,2,AMM,3,Amsterdam,5,Ấn Độ,2,An Giang,23,Andrew Wiles,1,Anh,2,Áo,1,APMO,19,Ba Đình,2,Ba Lan,1,Bà Rịa Vũng Tàu,53,Bắc Giang,50,Bắc Kạn,1,Bạc Liêu,9,Bắc Ninh,48,Bắc Trung Bộ,7,Bài Toán Hay,5,Balkan,38,Baltic Way,30,BAMO,1,Bất Đẳng Thức,66,Bến Tre,46,Benelux,14,Bình Định,46,Bình Dương,23,Bình Phước,38,Bình Thuận,34,Birch,1,Booklet,11,Bosnia Herzegovina,3,BoxMath,3,Brazil,2,Bùi Đắc Hiên,1,Bùi Thị Thiện Mỹ,1,Bùi Văn Tuyên,1,Bùi Xuân Diệu,1,Bulgaria,6,Buôn Ma Thuột,1,BxMO,13,Cà Mau,14,Cần Thơ,14,Canada,40,Cao Bằng,7,Cao Quang Minh,1,Câu Chuyện Toán Học,36,Caucasus,2,CGMO,10,China,10,Chọn Đội Tuyển,355,Chu Tuấn Anh,1,Chuyên Đề,124,Chuyên Sư Phạm,31,Chuyên Trần Hưng Đạo,3,Collection,8,College Mathematic,1,Concours,1,Cono Sur,1,Contest,618,Correspondence,1,Cosmin Poahata,1,Crux,2,Czech-Polish-Slovak,26,Đà Nẵng,39,Đa Thức,2,Đại Số,20,Đắk Lắk,56,Đắk Nông,7,Đan Phượng,1,Danube,7,Đào Thái Hiệp,1,ĐBSCL,2,Đề Thi,1,Đề Thi HSG,1773,Đề Thi JMO,1,Điện Biên,8,Định Lý,1,Định Lý Beaty,1,Đỗ Hữu Đức Thịnh,1,Do Thái,3,Doãn Quang Tiến,4,Đoàn Quỳnh,1,Đoàn Văn Trung,1,Đống Đa,4,Đồng Nai,50,Đồng Tháp,52,Du Hiền Vinh,1,Đức,1,Duyên Hải Bắc Bộ,25,E-Book,33,EGMO,17,ELMO,19,EMC,9,Epsilon,1,Estonian,5,Euler,1,Evan Chen,1,Fermat,3,Finland,4,Forum Of Geometry,2,Furstenberg,1,G. Polya,3,Gặp Gỡ Toán Học,26,Gauss,1,GDTX,3,Geometry,12,Gia Lai,26,Gia Viễn,2,Giải Tích Hàm,1,Giảng Võ,1,Giới hạn,2,Goldbach,1,Hà Giang,2,Hà Lan,1,Hà Nam,29,Hà Nội,232,Hà Tĩnh,73,Hà Trung Kiên,1,Hải Dương,50,Hải Phòng,42,Hàn Quốc,5,Hậu Giang,4,Hậu Lộc,1,Hilbert,1,Hình Học,33,HKUST,7,Hòa Bình,13,Hoài Nhơn,1,Hoàng Bá Minh,1,Hoàng Minh Quân,1,Hodge,1,Hojoo Lee,2,HOMC,5,HongKong,8,HSG 10,101,HSG 11,91,HSG 12,588,HSG 9,425,HSG Cấp Trường,78,HSG Quốc Gia,106,HSG Quốc Tế,16,Hứa Lâm Phong,1,Hứa Thuần Phỏng,1,Hùng Vương,2,Hưng Yên,33,Hương Sơn,2,Huỳnh Kim Linh,1,Hy Lạp,1,IMC,26,IMO,56,IMT,1,India,45,Inequality,13,InMC,1,International,315,Iran,11,Jakob,1,JBMO,41,Jewish,1,Journal,20,Junior,38,K2pi,1,Kazakhstan,1,Khánh Hòa,17,KHTN,54,Kiên Giang,64,Kim Liên,1,Kon Tum,18,Korea,5,Kvant,2,Kỷ Yếu,42,Lai Châu,4,Lâm Đồng,33,Lạng Sơn,21,Langlands,1,Lào Cai,17,Lê Hải Châu,1,Lê Hải Khôi,1,Lê Hoành Phò,4,Lê Khánh Sỹ,3,Lê Minh Cường,1,Lê Phúc Lữ,1,Lê Phương,1,Lê Quý Đôn,1,Lê Viết Hải,1,Lê Việt Hưng,1,Leibniz,1,Long An,42,Lớp 10,10,Lớp 10 Chuyên,455,Lớp 10 Không Chuyên,229,Lớp 11,1,Lục Ngạn,1,Lượng giác,1,Lương Tài,1,Lưu Giang Nam,2,Lý Thánh Tông,1,Macedonian,1,Malaysia,1,Margulis,2,Mark Levi,1,Mathematical Excalibur,1,Mathematical Reflections,1,Mathematics Magazine,1,Mathematics Today,1,Mathley,1,MathLinks,1,MathProblems Journal,1,Mathscope,8,MathsVN,5,MathVN,1,MEMO,11,Metropolises,4,Mexico,1,MIC,1,Michael Guillen,1,Mochizuki,1,Moldova,1,Moscow,1,Mỹ,10,MYM,227,MYTS,4,Nam Định,33,Nam Phi,1,Nam Trung Bộ,1,National,249,Nesbitt,1,Newton,4,Nghệ An,52,Ngô Bảo Châu,2,Ngô Việt Hải,1,Ngọc Huyền,2,Nguyễn Anh Tuyến,1,Nguyễn Bá Đang,1,Nguyễn Đình Thi,1,Nguyễn Đức Tấn,1,Nguyễn Đức Thắng,1,Nguyễn Duy Khương,1,Nguyễn Duy Tùng,1,Nguyễn Hữu Điển,3,Nguyễn Mình Hà,1,Nguyễn Minh Tuấn,8,Nguyễn Phan Tài Vương,1,Nguyễn Phú Khánh,1,Nguyễn Phúc Tăng,1,Nguyễn Quản Bá Hồng,1,Nguyễn Quang Sơn,1,Nguyễn Tài Chung,5,Nguyễn Tăng Vũ,1,Nguyễn Tất Thu,1,Nguyễn Thúc Vũ Hoàng,1,Nguyễn Trung Tuấn,8,Nguyễn Tuấn Anh,2,Nguyễn Văn Huyện,3,Nguyễn Văn Mậu,25,Nguyễn Văn Nho,1,Nguyễn Văn Quý,2,Nguyễn Văn Thông,1,Nguyễn Việt Anh,1,Nguyễn Vũ Lương,2,Nhật Bản,4,Nhóm $\LaTeX$,4,Nhóm Toán,1,Ninh Bình,43,Ninh Thuận,15,Nội Suy Lagrange,2,Nội Suy Newton,1,Nordic,19,Olympiad Corner,1,Olympiad Preliminary,2,Olympic 10,99,Olympic 10/3,5,Olympic 11,92,Olympic 12,30,Olympic 24/3,7,Olympic 27/4,20,Olympic 30/4,69,Olympic KHTN,6,Olympic Sinh Viên,73,Olympic Tháng 4,12,Olympic Toán,304,Olympic Toán Sơ Cấp,3,PAMO,1,Phạm Đình Đồng,1,Phạm Đức Tài,1,Phạm Huy Hoàng,1,Pham Kim Hung,3,Phạm Quốc Sang,2,Phan Huy Khải,1,Phan Thành Nam,1,Pháp,2,Philippines,8,Phú Thọ,30,Phú Yên,29,Phùng Hồ Hải,1,Phương Trình Hàm,11,Phương Trình Pythagoras,1,Pi,1,Polish,32,Problems,1,PT-HPT,14,PTNK,45,Putnam,25,Quảng Bình,44,Quảng Nam,32,Quảng Ngãi,34,Quảng Ninh,43,Quảng Trị,27,Quỹ Tích,1,Riemann,1,RMM,12,RMO,24,Romania,36,Romanian Mathematical,1,Russia,1,Sách Thường Thức Toán,7,Sách Toán,69,Sách Toán Cao Học,1,Sách Toán THCS,7,Saudi Arabia,7,Scholze,1,Serbia,17,Sharygin,24,Shortlists,56,Simon Singh,1,Singapore,1,Số Học - Tổ Hợp,27,Sóc Trăng,28,Sơn La,12,Spain,8,Star Education,5,Stars of Mathematics,11,Swinnerton-Dyer,1,Talent Search,1,Tăng Hải Tuân,2,Tạp Chí,14,Tập San,6,Tây Ban Nha,1,Tây Ninh,29,Thạch Hà,1,Thái Bình,39,Thái Nguyên,49,Thái Vân,2,Thanh Hóa,62,THCS,2,Thổ Nhĩ Kỳ,5,Thomas J. Mildorf,1,THPT Chuyên Lê Quý Đôn,1,THPTQG,15,THTT,7,Thừa Thiên Huế,36,Tiền Giang,19,Tin Tức Toán Học,1,Titu Andreescu,2,Toán 12,7,Toán Cao Cấp,3,Toán Chuyên,2,Toán Rời Rạc,5,Toán Tuổi Thơ,3,Tôn Ngọc Minh Quân,2,TOT,1,TPHCM,126,Trà Vinh,6,Trắc Nghiệm,1,Trắc Nghiệm Toán,2,Trại Hè,34,Trại Hè Hùng Vương,25,Trại Hè Phương Nam,5,Trần Đăng Phúc,1,Trần Minh Hiền,2,Trần Nam Dũng,9,Trần Phương,1,Trần Quang Hùng,1,Trần Quốc Anh,2,Trần Quốc Luật,1,Trần Quốc Nghĩa,1,Trần Tiến Tự,1,Trịnh Đào Chiến,2,Trung Quốc,14,Trường Đông,19,Trường Hè,7,Trường Thu,1,Trường Xuân,2,TST,56,Tuyên Quang,6,Tuyển Sinh,3,Tuyển Sinh 10,680,Tuyển Tập,44,Tuymaada,4,Undergraduate,67,USA,44,USAJMO,10,USATST,7,Uzbekistan,1,Vasile Cîrtoaje,4,Vật Lý,1,Viện Toán Học,2,Vietnam,4,Viktor Prasolov,1,VIMF,1,Vinh,27,Vĩnh Long,21,Vĩnh Phúc,64,Virginia Tech,1,VLTT,1,VMEO,4,VMF,12,VMO,47,VNTST,22,Võ Anh Khoa,1,Võ Quốc Bá Cẩn,26,Võ Thành Văn,1,Vojtěch Jarník,6,Vũ Hữu Bình,7,Vương Trung Dũng,1,WFNMC Journal,1,Wiles,1,Yên Bái,20,Yên Định,1,Yên Thành,1,Zhautykov,11,Zhou Yuan Zhe,1,
MOlympiad: [Shortlists] International Mathematical Olympiad 2003
[Shortlists] International Mathematical Olympiad 2003
Loaded All Posts Not found any posts VIEW ALL Readmore Reply Cancel reply Delete By Home PAGES POSTS View All RECOMMENDED FOR YOU LABEL ARCHIVE SEARCH ALL POSTS Not found any post match with your request Back Home Sunday Monday Tuesday Wednesday Thursday Friday Saturday Sun Mon Tue Wed Thu Fri Sat January February March April May June July August September October November December Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec just now 1 minute ago $$1$$ minutes ago 1 hour ago $$1$$ hours ago Yesterday $$1$$ days ago $$1$$ weeks ago more than 5 weeks ago Followers Follow THIS PREMIUM CONTENT IS LOCKED Please share to unlock Copy All Code Select All Code All codes were copied to your clipboard Can not copy the codes / texts, please press [CTRL]+[C] (or CMD+C with Mac) to copy