# [Shortlists] International Mathematical Olympiad 2002

### Geometry

1. Let $B$ be a point on a circle $S_1$, and let $A$ be a point distinct from $B$ on the tangent at $B$ to $S_1$. Let $C$ be a point not on $S_1$ such that the line segment $AC$ meets $S_1$ at two distinct points. Let $S_2$ be the circle touching $AC$ at $C$ and touching $S_1$ at a point $D$ on the opposite side of $AC$ from $B$. Prove that the circumcentre of triangle $BCD$ lies on the circumcircle of triangle $ABC$.
2. Let $ABC$ be a triangle for which there exists an interior point $F$ such that $\angle AFB=\angle BFC=\angle CFA$. Let the lines $BF$ and $CF$ meet the sides $AC$ and $AB$ at $D$ and $E$ respectively. Prove that $AB+AC\geq4DE.$
3. The circle $S$ has centre $O$, and $BC$ is a diameter of $S$. Let $A$ be a point of $S$ such that $\angle AOB<120{{}^\circ}$. Let $D$ be the midpoint of the arc $AB$ which does not contain $C$. The line through $O$ parallel to $DA$ meets the line $AC$ at $I$. The perpendicular bisector of $OA$ meets $S$ at $E$ and at $F$. Prove that $I$ is the incentre of the triangle $CEF.$
4. Circles $S_1$ and $S_2$ intersect at points $P$ and $Q$. Distinct points $A_1$ and $B_1$ (not at $P$ or $Q$) are selected on $S_1$. The lines $A_1P$ and $B_1P$ meet $S_2$ again at $A_2$ and $B_2$ respectively, and the lines $A_1B_1$ and $A_2B_2$ meet at $C$. Prove that, as $A_1$ and $B_1$ vary, the circumcentres of triangles $A_1A_2C$ all lie on one fixed circle.
5. For any set $S$ of five points in the plane, no three of which are collinear, let $M(S)$ and $m(S)$ denote the greatest and smallest areas, respectively, of triangles determined by three points from $S$. What is the minimum possible value of $M(S)/m(S)$ ?
6. Let $n\geq3$ be a positive integer. Let $C_1,C_2,C_3,\ldots,C_n$ be unit circles in the plane, with centres $O_1,O_2,O_3,\ldots,O_n$ respectively. If no line meets more than two of the circles, prove that $\sum\limits^{}_{1\leq i<j\leq n}{1\over O_iO_j}\leq{(n-1)\pi\over 4}.$
7. The incircle $\Omega$ of the acute-angled triangle $ABC$ is tangent to its side $BC$ at a point $K$. Let $AD$ be an altitude of triangle $ABC$, and let $M$ be the midpoint of the segment $AD$. If $N$ is the common point of the circle $\Omega$ and the line $KM$ (distinct from $K$), then prove that the incircle $\Omega$ and the circumcircle of triangle $BCN$ are tangent to each other at the point $N$.
8. Let two circles $S_{1}$ and $S_{2}$ meet at the points $A$ and $B$. A line through $A$ meets $S_{1}$ again at $C$ and $S_{2}$ again at $D$. Let $M$, $N$, $K$ be three points on the line segments $CD$, $BC$, $BD$ respectively, with $MN$ parallel to $BD$ and $MK$ parallel to $BC$. Let $E$ and $F$ be points on those arcs $BC$ of $S_{1}$ and $BD$ of $S_{2}$ respectively that do not contain $A$. Given that $EN$ is perpendicular to $BC$ and $FK$ is perpendicular to $BD$ prove that $\angle EMF=90^{\circ}$.

### Number Theory

1. What is the smallest positive integer $t$ such that there exist integers $x_1,x_2,\ldots,x_t$ with $x^3_1+x^3_2+\,\ldots\,+x^3_t=2002^{2002}\,?$
2. Let $n\geq2$ be a positive integer, with divisors $1=d_1<d_2<\,\ldots<d_k=n$. Prove that $d_1d_2+d_2d_3+\,\ldots\,+d_{k-1}d_k$ is always less than $n^2$, and determine when it is a divisor of $n^2$.
3. Let $p_1,p_2,\ldots,p_n$ be distinct primes greater than $3$. Show that $2^{p_1p_2\cdots p_n}+1$ has at least $4^n$ divisors.
4. Is there a positive integer $m$ such that the equation ${1\over a}+{1\over b}+{1\over c}+{1\over abc}={m\over a+b+c}$ has infinitely many solutions in positive integers $a,b,c$?
5. Let $m,n\geq2$ be positive integers, and let $a_1,a_2,\ldots ,a_n$ be integers, none of which is a multiple of $m^{n-1}$. Show that there exist integers $e_1,e_2,\ldots,e_n$, not all zero, with $\left|{\,e}_i\,\right|<m$ for all $i$, such that $e_1a_1+e_2a_2+\,\ldots\,+e_na_n$ is a multiple of $m^n$.
6. Find all pairs of positive integers $m,n\geq3$ for which there exist infinitely many positive integers $a$ such that $\frac{a^m+a-1}{a^n+a^2-1}$ is itself an integer.

### Algebra

1. Find all functions $f$ from the reals to the reals such that $f\left(f(x)+y\right)=2x+f\left(f(y)-x\right)$ for all real $x,y$.
2. Let $a_1,a_2,\ldots$ be an infinite sequence of real numbers, for which there exists a real number $c$ with $0\leq a_i\leq c$ for all $i$, such that $\left\lvert a_i-a_j \right\rvert\geq \frac{1}{i+j} \quad \text{for all }i,\ j \text{ with } i \neq j.$ Prove that $c\geq1$.
3. Let $P$ be a cubic polynomial given by $P(x)=ax^3+bx^2+cx+d$, where $a,b,c,d$ are integers and $a\ne0$. Suppose that $xP(x)=yP(y)$ for infinitely many pairs $x,y$ of integers with $x\ne y$. Prove that the equation $P(x)=0$ has an integer root.
4. Find all functions $f$ from the reals to the reals such that $\left(f(x)+f(z)\right)\left(f(y)+f(t)\right)=f(xy-zt)+f(xt+yz)$ for all real $x,y,z,t$.
5. Let $n$ be a positive integer that is not a perfect cube. Define real numbers $a,b,c$ by $a=\root3\of n\kern1.5pt,\qquad b={1\over a-[a]}\kern1pt,\qquad c={1\over b-[b]}\kern1.5pt,$ where $[x]$ denotes the integer part of $x$. Prove that there are infinitely many such integers $n$ with the property that there exist integers $r,s,t$, not all zero, such that $ra+sb+tc=0$.
6. Let $A$ be a non-empty set of positive integers. Suppose that there are positive integers $b_1,\ldots b_n$ and $c_1,\ldots,c_n$ such that
• for each $i$ the set $b_iA+c_i=\left\{b_ia+c_i\colon a\in A\right\}$ is a subset of $A$, and
• the sets $b_iA+c_i$ and $b_jA+c_j$ are disjoint whenever $i\ne j$ Prove that ${1\over b_1}+\,\ldots\,+{1\over b_n}\leq1.$

### Combinatorics

1. Let $n$ be a positive integer. Each point $(x,y)$ in the plane, where $x$ and $y$ are non-negative integers with $x+y<n$, is coloured red or blue, subject to the following condition: if a point $(x,y)$ is red, then so are all points $(x',y')$ with $x'\leq x$ and $y'\leq y$. Let $A$ be the number of ways to choose $n$ blue points with distinct $x$-coordinates, and let $B$ be the number of ways to choose $n$ blue points with distinct $y$-coordinates. Prove that $A=B$.
2. For $n$ an odd positive integer, the unit squares of an $n\times n$ chessboard are coloured alternately black and white, with the four corners coloured black. A it tromino is an $L$-shape formed by three connected unit squares. For which values of $n$ is it possible to cover all the black squares with non-overlapping trominos? When it is possible, what is the minimum number of trominos needed?
3. Let $n$ be a positive integer. A sequence of $n$ positive integers (not necessarily distinct) is called full if it satisfies the following condition: for each positive integer $k\geq2$, if the number $k$ appears in the sequence then so does the number $k-1$, and moreover the first occurrence of $k-1$ comes before the last occurrence of $k$. For each $n$, how many full sequences are there ?
4. Let $T$ be the set of ordered triples $(x,y,z)$, where $x,y,z$ are integers with $0\leq x,y,z\leq9$. Players $A$ and $B$ play the following guessing game. Player $A$ chooses a triple $(x,y,z)$ in $T$, and Player $B$ has to discover $A$'s triple in as few moves as possible. A move consists of the following: $B$ gives $A$ a triple $(a,b,c)$ in $T$, and $A$ replies by giving $B$ the number $\left|x+y-a-b\right |+\left|y+z-b-c\right|+\left|z+x-c-a\right|$. Find the minimum number of moves that $B$ needs to be sure of determining $A$'s triple.
5. Let $r\geq2$ be a fixed positive integer, and let $F$ be an infinite family of sets, each of size $r$, no two of which are disjoint. Prove that there exists a set of size $r-1$ that meets each set in $F$.
6. Let $n$ be an even positive integer. Show that there is a permutation $\left(x_{1},x_{2},\ldots,x_{n}\right)$ of $\left(1,\,2,\,\ldots,n\right)$ such that for every $i\in\left\{1,\ 2,\ ...,\ n\right\}$, the number $x_{i+1}$ is one of the numbers $2x_{i}$, $2x_{i}-1$, $2x_{i}-n$, $2x_{i}-n-1$. Hereby, we use the cyclic subscript convention, so that $x_{n+1}$ means $x_{1}$.
7. Among a group of 120 people, some pairs are friends. A weak quartet is a set of four people containing exactly one pair of friends. What is the maximum possible number of weak quartets ?
 MOlympiad.NET là dự án thu thập và phát hành các đề thi tuyển sinh và học sinh giỏi toán. Quý bạn đọc muốn giúp chúng tôi chỉnh sửa đề thi này, xin hãy để lại bình luận facebook (có thể đính kèm hình ảnh) hoặc google (có thể sử dụng $\LaTeX$) bên dưới. BBT rất mong bạn đọc ủng hộ UPLOAD đề thi và đáp án mới hoặc liên hệbbt.molympiad@gmail.comChúng tôi nhận tất cả các định dạng của tài liệu: $\TeX$, PDF, WORD, IMG,...