[Shortlists] International Mathematical Olympiad 1995


  1. Let $ a$, $ b$, $ c$ be positive real numbers such that $ abc = 1$. Prove that \[ \frac {1}{a^{3}\left(b + c\right)} + \frac {1}{b^{3}\left(c + a\right)} + \frac {1}{c^{3}\left(a + b\right)}\geq \frac {3}{2}. \]
  2. Let $ a$ and $ b$ be non-negative integers such that $ ab \geq c^2,$ where $ c$ is an integer. Prove that there is a number $ n$ and integers $ x_1, x_2, \ldots, x_n, y_1, y_2, \ldots, y_n$ such that \[ \sum^n_{i=1} x^2_i = a, \sum^n_{i=1} y^2_i = b, \text{ and } \sum^n_{i=1} x_iy_i = c.\]
  3. Let $ n$ be an integer, $ n \geq 3.$ Let $ a_1, a_2, \ldots, a_n$ be real numbers such that $ 2 \leq a_i \leq 3$ for $ i = 1, 2, \ldots, n.$ If $ s = a_1 + a_2 + \ldots + a_n,$ prove that \[ \frac{a^2_1 + a^2_2 - a^2_3}{a_1 + a_2 - a_3} + \frac{a^2_2 + a^2_3 - a^2_4}{a_2 + a_3 - a_4} + \ldots + \frac{a^2_n + a^2_1 - a^2_2}{a_n + a_1 - a_2} \leq 2s - 2n.\]
  4. Find all of the positive real numbers like $ x,y,z,$ such that
    i) $ x + y + z = a + b + c$
    ii) $ 4xyz = a^2x + b^2y + c^2z + abc$
  5. Let $ \mathbb{R}$ be the set of real numbers. Does there exist a function $ f: \mathbb{R} \mapsto \mathbb{R}$ which simultaneously satisfies the following three conditions?
    a) There is a positive number $ M$ such that $ \forall x:$ $ - M \leq f(x) \leq M.$
    b) The value of $f(1)$ is $1$.
    c) If $ x \neq 0,$ then \[ f \left(x + \frac {1}{x^2} \right) = f(x) + \left[ f \left(\frac {1}{x} \right) \right]^2 \]
  6. Let $ n$ be an integer,$ n \geq 3.$ Let $ x_1, x_2, \ldots, x_n$ be real numbers such that $ x_i < x_{i+1}$ for $ 1 \leq i \leq n - 1$. Prove that \[ \frac{n(n-1)}{2} \sum_{i < j} x_ix_j > \left(\sum^{n-1}_{i=1} (n-i)\cdot x_i \right) \cdot \left(\sum^{n}_{j=2} (j-1) \cdot x_j \right)\]


  1. Let $ A,B,C,D$ be four distinct points on a line, in that order. The circles with diameters $ AC$ and $ BD$ intersect at $ X$ and $ Y$. The line $ XY$ meets $ BC$ at $ Z$. Let $ P$ be a point on the line $ XY$ other than $ Z$. The line $ CP$ intersects the circle with diameter $ AC$ at $ C$ and $ M$, and the line $ BP$ intersects the circle with diameter $ BD$ at $ B$ and $ N$. Prove that the lines $ AM,DN,XY$ are concurrent.
  2. Let $ A, B$ and $ C$ be non-collinear points. Prove that there is a unique point $ X$ in the plane of $ ABC$ such that \[ XA^2 + XB^2 + AB^2 = XB^2 + XC^2 + BC^2 = XC^2 + XA^2 + CA^2.\]
  3. The incircle of triangle $ \triangle ABC$ touches the sides $ BC$, $ CA$, $ AB$ at $ D, E, F$ respectively. $ X$ is a point inside triangle of $ \triangle ABC$ such that the incircle of triangle $ \triangle XBC$ touches $ BC$ at $ D$, and touches $ CX$ and $ XB$ at $ Y$ and $ Z$ respectively. Show that $ E, F, Z, Y$ are concyclic.
  4. An acute triangle $ ABC$ is given. Points $ A_1$ and $ A_2$ are taken on the side $ BC$ (with $ A_2$ between $ A_1$ and $ C$), $ B_1$ and $ B_2$ on the side $ AC$ (with $ B_2$ between $ B_1$ and $ A$), and $ C_1$ and $ C_2$ on the side $ AB$ (with $ C_2$ between $ C_1$ and $ B$) so that $$\angle AA_1A_2 = \angle AA_2A_1 = \angle BB_1B_2 = \angle BB_2B_1 = \angle CC_1C_2 = \angle CC_2C_1.$$ The lines $ AA_1,BB_1,$ and $ CC_1$ bound a triangle, and the lines $ AA_2,BB_2,$ and $ CC_2$ bound a second triangle. Prove that all six vertices of these two triangles lie on a single circle.
  5. Let $ ABCDEF$ be a convex hexagon with $ AB = BC = CD$ and $ DE = EF = FA$, such that $ \angle BCD = \angle EFA = \frac {\pi}{3}$. Suppose $ G$ and $ H$ are points in the interior of the hexagon such that $ \angle AGB = \angle DHE = \frac {2\pi}{3}$. Prove that $$AG + GB + GH + DH + HE \geq CF.$$
  6. Let $ A_1A_2A_3A_4$ be a tetrahedron, $ G$ its centroid, and $ A'_1, A'_2, A'_3,$ and $ A'_4$ the points where the circumsphere of $ A_1A_2A_3A_4$ intersects $ GA_1,GA_2,GA_3,$ and $ GA_4,$ respectively. Prove that \[ GA_1 \cdot GA_2 \cdot GA_3 \cdot GA_ \cdot4 \leq GA'_1 \cdot GA'_2 \cdot GA'_3 \cdot GA'_4\] and \[ \frac{1}{GA'_1} + \frac{1}{GA'_2} + \frac{1}{GA'_3} + \frac{1}{GA'_4} \leq \frac{1}{GA_1} + \frac{1}{GA_2} + \frac{1}{GA_3} + \frac{1}{GA_4}.\]
  7. Let ABCD be a convex quadrilateral and O a point inside it. Let the parallels to the lines BC, AB, DA, CD through the point O meet the sides AB, BC, CD, DA of the quadrilateral ABCD at the points E, F, G, H, respectively. Then, prove that $ \sqrt {\left|AHOE\right|} + \sqrt {\left|CFOG\right|}\leq\sqrt {\left|ABCD\right|}$, where $ \left|P_1P_2...P_n\right|$ is an abbreviation for the non-directed area of an arbitrary polygon $ P_1P_2...P_n$.
  8. Suppose that $ ABCD$ is a cyclic quadrilateral. Let $ E = AC\cap BD$ and $ F = AB\cap CD$. Denote by $ H_{1}$ and $ H_{2}$ the orthocenters of triangles $ EAD$ and $ EBC$, respectively. Prove that the points $ F$, $ H_{1}$, $ H_{2}$ are collinear.

Number Theory, Combinatorics

  1. Let $ k$ be a positive integer. Show that there are infinitely many perfect squares of the form $ n \cdot 2^k - 7$ where $ n$ is a positive integer.
  2. Let $ \mathbb{Z}$ denote the set of all integers. Prove that for any integers $ A$ and $ B,$ one can find an integer $ C$ for which $$M_1 = \{x^2 + Ax + B : x \in \mathbb{Z}\} \\ M_2 = {2x^2 + 2x + C : x \in \mathbb{Z}}$$ do not intersect.
  3. Determine all integers $ n > 3$ for which there exist $ n$ points $ A_{1},\cdots ,A_{n}$ in the plane, no three collinear, and real numbers $ r_{1},\cdots ,r_{n}$ such that for $ 1\leq i < j < k\leq n$, the area of $ \triangle A_{i}A_{j}A_{k}$ is $ r_{i} + r_{j} + r_{k}$.
  4. Find all $ x,y$ and $ z$ in positive integer: $ z + y^{2} + x^{3} = xyz$ and $ x = \gcd(y,z)$.
  5. At a meeting of $ 12k$ people, each person exchanges greetings with exactly $ 3k+6$ others. For any two people, the number who exchange greetings with both is the same. How many people are at the meeting?
  6. Let $ p$ be an odd prime number. How many $ p$-element subsets $ A$ of $ \{1,2,\dots,2p\}$ are there, the sum of whose elements is divisible by $ p$?
  7. Does there exist an integer $ n > 1$ which satisfies the following condition? The set of positive integers can be partitioned into $ n$ nonempty subsets, such that an arbitrary sum of $ n - 1$ integers, one taken from each of any $ n - 1$ of the subsets, lies in the remaining subset.
  8. Let $ p$ be an odd prime. Determine positive integers $ x$ and $ y$ for which $ x \leq y$ and $ \sqrt{2p} - \sqrt{x} - \sqrt{y}$ is non-negative and as small as possible.


    1. Does there exist a sequence $ F(1), F(2), F(3), \ldots$ of non-negative integers that simultaneously satisfies the following three conditions?
      a) Each of the integers $ 0, 1, 2, \ldots$ occurs in the sequence.
      b) Each positive integer occurs in the sequence infinitely often.
      c) For any $ n \geq 2,$ \[ F(F(n^{163})) = F(F(n)) + F(F(361)). \]
    2. Find the maximum value of $ x_{0}$ for which there exists a sequence $ x_{0},x_{1}\cdots ,x_{1995}$ of positive reals with $ x_{0} = x_{1995}$, such that \[ x_{i - 1} + \frac {2}{x_{i - 1}} = 2x_{i} + \frac {1}{x_{i}}, \] for all $ i = 1,\cdots ,1995$.
    3. For an integer $x \geq 1$, let $p(x)$ be the least prime that does not divide $x$, and define $q(x)$ to be the product of all primes less than $p(x)$. In particular, $p(1) = 2.$ For $x$ having $p(x) = 2$, define $q(x) = 1$. Consider the sequence $x_0, x_1, x_2, \ldots$ defined by $x_0 = 1$ and \[ x_{n+1} = \frac{x_n p(x_n)}{q(x_n)} \] for $n \geq 0$. Find all $n$ such that $x_n = 1995$.
    4. Suppose that $ x_1, x_2, x_3, \ldots$ are positive real numbers for which \[ x^n_n = \sum^{n-1}_{j=0} x^j_n\] for $ n = 1, 2, 3, \ldots$ Prove that $ \forall n,$ \[ 2 - \frac{1}{2^{n-1}} \leq x_n < 2 - \frac{1}{2^n}.\]
    5. For positive integers $ n,$ the numbers $ f(n)$ are defined inductively as follows: $ f(1) = 1,$ and for every positive integer $ n,$ $ f(n+1)$ is the greatest integer $ m$ such that there is an arithmetic progression of positive integers $ a_1 < a_2 < \ldots < a_m = n$ for which \[ f(a_1) = f(a_2) = \ldots = f(a_m).\] Prove that there are positive integers $ a$ and $ b$ such that $ f(an+b) = n+2$ for every positive integer $ n.$
    6. Let $ \mathbb{N}$ denote the set of all positive integers. Prove that there exists a unique function $ f: \mathbb{N} \mapsto \mathbb{N}$ satisfying \[ f(m + f(n)) = n + f(m + 95) \] for all $ m$ and $ n$ in $ \mathbb{N}.$ What is the value of $ \sum^{19}_{k = 1} f(k)?$

    Post a Comment





    Kỷ Yếu$cl=violet$type=three$count=6$sr=random$t=oot$h=1$l=0$meta=hide$rm=hide$sn=0$hide=mobile



    Ả-rập Xê-út,1,Abel,5,Albania,2,AMM,3,Amsterdam,5,Ấn Độ,2,An Giang,23,Andrew Wiles,1,Anh,2,Áo,1,APMO,19,Ba Đình,2,Ba Lan,1,Bà Rịa Vũng Tàu,52,Bắc Giang,50,Bắc Kạn,1,Bạc Liêu,9,Bắc Ninh,48,Bắc Trung Bộ,7,Bài Toán Hay,5,Balkan,38,Baltic Way,30,BAMO,1,Bất Đẳng Thức,66,Bến Tre,46,Benelux,14,Bình Định,45,Bình Dương,23,Bình Phước,38,Bình Thuận,34,Birch,1,Booklet,11,Bosnia Herzegovina,3,BoxMath,3,Brazil,2,Bùi Đắc Hiên,1,Bùi Thị Thiện Mỹ,1,Bùi Văn Tuyên,1,Bùi Xuân Diệu,1,Bulgaria,6,Buôn Ma Thuột,1,BxMO,13,Cà Mau,14,Cần Thơ,14,Canada,40,Cao Bằng,7,Cao Quang Minh,1,Câu Chuyện Toán Học,36,Caucasus,2,CGMO,10,China,10,Chọn Đội Tuyển,352,Chu Tuấn Anh,1,Chuyên Đề,124,Chuyên Sư Phạm,31,Chuyên Trần Hưng Đạo,3,Collection,8,College Mathematic,1,Concours,1,Cono Sur,1,Contest,618,Correspondence,1,Cosmin Poahata,1,Crux,2,Czech-Polish-Slovak,26,Đà Nẵng,39,Đa Thức,2,Đại Số,20,Đắk Lắk,56,Đắk Nông,7,Đan Phượng,1,Danube,7,Đào Thái Hiệp,1,ĐBSCL,2,Đề Thi,1,Đề Thi HSG,1767,Đề Thi JMO,1,Điện Biên,8,Định Lý,1,Định Lý Beaty,1,Đỗ Hữu Đức Thịnh,1,Do Thái,3,Doãn Quang Tiến,4,Đoàn Quỳnh,1,Đoàn Văn Trung,1,Đống Đa,4,Đồng Nai,49,Đồng Tháp,52,Du Hiền Vinh,1,Đức,1,Duyên Hải Bắc Bộ,25,E-Book,33,EGMO,17,ELMO,19,EMC,9,Epsilon,1,Estonian,5,Euler,1,Evan Chen,1,Fermat,3,Finland,4,Forum Of Geometry,2,Furstenberg,1,G. Polya,3,Gặp Gỡ Toán Học,26,Gauss,1,GDTX,3,Geometry,12,Gia Lai,26,Gia Viễn,2,Giải Tích Hàm,1,Giảng Võ,1,Giới hạn,2,Goldbach,1,Hà Giang,2,Hà Lan,1,Hà Nam,29,Hà Nội,232,Hà Tĩnh,73,Hà Trung Kiên,1,Hải Dương,50,Hải Phòng,42,Hàn Quốc,5,Hậu Giang,4,Hậu Lộc,1,Hilbert,1,Hình Học,33,HKUST,7,Hòa Bình,13,Hoài Nhơn,1,Hoàng Bá Minh,1,Hoàng Minh Quân,1,Hodge,1,Hojoo Lee,2,HOMC,5,HongKong,8,HSG 10,101,HSG 11,91,HSG 12,585,HSG 9,425,HSG Cấp Trường,78,HSG Quốc Gia,106,HSG Quốc Tế,16,Hứa Lâm Phong,1,Hứa Thuần Phỏng,1,Hùng Vương,2,Hưng Yên,33,Hương Sơn,2,Huỳnh Kim Linh,1,Hy Lạp,1,IMC,26,IMO,56,IMT,1,India,45,Inequality,13,InMC,1,International,315,Iran,11,Jakob,1,JBMO,41,Jewish,1,Journal,20,Junior,38,K2pi,1,Kazakhstan,1,Khánh Hòa,17,KHTN,54,Kiên Giang,64,Kim Liên,1,Kon Tum,18,Korea,5,Kvant,2,Kỷ Yếu,42,Lai Châu,4,Lâm Đồng,33,Lạng Sơn,21,Langlands,1,Lào Cai,17,Lê Hải Châu,1,Lê Hải Khôi,1,Lê Hoành Phò,4,Lê Khánh Sỹ,3,Lê Minh Cường,1,Lê Phúc Lữ,1,Lê Phương,1,Lê Quý Đôn,1,Lê Viết Hải,1,Lê Việt Hưng,1,Leibniz,1,Long An,42,Lớp 10,10,Lớp 10 Chuyên,455,Lớp 10 Không Chuyên,229,Lớp 11,1,Lục Ngạn,1,Lượng giác,1,Lương Tài,1,Lưu Giang Nam,2,Lý Thánh Tông,1,Macedonian,1,Malaysia,1,Margulis,2,Mark Levi,1,Mathematical Excalibur,1,Mathematical Reflections,1,Mathematics Magazine,1,Mathematics Today,1,Mathley,1,MathLinks,1,MathProblems Journal,1,Mathscope,8,MathsVN,5,MathVN,1,MEMO,11,Metropolises,4,Mexico,1,MIC,1,Michael Guillen,1,Mochizuki,1,Moldova,1,Moscow,1,Mỹ,10,MYM,227,MYTS,4,Nam Định,33,Nam Phi,1,Nam Trung Bộ,1,National,249,Nesbitt,1,Newton,4,Nghệ An,52,Ngô Bảo Châu,2,Ngô Việt Hải,1,Ngọc Huyền,2,Nguyễn Anh Tuyến,1,Nguyễn Bá Đang,1,Nguyễn Đình Thi,1,Nguyễn Đức Tấn,1,Nguyễn Đức Thắng,1,Nguyễn Duy Khương,1,Nguyễn Duy Tùng,1,Nguyễn Hữu Điển,3,Nguyễn Mình Hà,1,Nguyễn Minh Tuấn,8,Nguyễn Phan Tài Vương,1,Nguyễn Phú Khánh,1,Nguyễn Phúc Tăng,1,Nguyễn Quản Bá Hồng,1,Nguyễn Quang Sơn,1,Nguyễn Tài Chung,5,Nguyễn Tăng Vũ,1,Nguyễn Tất Thu,1,Nguyễn Thúc Vũ Hoàng,1,Nguyễn Trung Tuấn,8,Nguyễn Tuấn Anh,2,Nguyễn Văn Huyện,3,Nguyễn Văn Mậu,25,Nguyễn Văn Nho,1,Nguyễn Văn Quý,2,Nguyễn Văn Thông,1,Nguyễn Việt Anh,1,Nguyễn Vũ Lương,2,Nhật Bản,4,Nhóm $\LaTeX$,4,Nhóm Toán,1,Ninh Bình,42,Ninh Thuận,15,Nội Suy Lagrange,2,Nội Suy Newton,1,Nordic,19,Olympiad Corner,1,Olympiad Preliminary,2,Olympic 10,99,Olympic 10/3,5,Olympic 11,92,Olympic 12,30,Olympic 24/3,7,Olympic 27/4,20,Olympic 30/4,69,Olympic KHTN,6,Olympic Sinh Viên,73,Olympic Tháng 4,12,Olympic Toán,304,Olympic Toán Sơ Cấp,3,PAMO,1,Phạm Đình Đồng,1,Phạm Đức Tài,1,Phạm Huy Hoàng,1,Pham Kim Hung,3,Phạm Quốc Sang,2,Phan Huy Khải,1,Phan Thành Nam,1,Pháp,2,Philippines,8,Phú Thọ,30,Phú Yên,29,Phùng Hồ Hải,1,Phương Trình Hàm,11,Phương Trình Pythagoras,1,Pi,1,Polish,32,Problems,1,PT-HPT,14,PTNK,45,Putnam,25,Quảng Bình,44,Quảng Nam,32,Quảng Ngãi,34,Quảng Ninh,43,Quảng Trị,27,Quỹ Tích,1,Riemann,1,RMM,12,RMO,24,Romania,36,Romanian Mathematical,1,Russia,1,Sách Thường Thức Toán,7,Sách Toán,69,Sách Toán Cao Học,1,Sách Toán THCS,7,Saudi Arabia,7,Scholze,1,Serbia,17,Sharygin,24,Shortlists,56,Simon Singh,1,Singapore,1,Số Học - Tổ Hợp,27,Sóc Trăng,28,Sơn La,12,Spain,8,Star Education,5,Stars of Mathematics,11,Swinnerton-Dyer,1,Talent Search,1,Tăng Hải Tuân,2,Tạp Chí,14,Tập San,6,Tây Ban Nha,1,Tây Ninh,29,Thạch Hà,1,Thái Bình,39,Thái Nguyên,49,Thái Vân,2,Thanh Hóa,62,THCS,2,Thổ Nhĩ Kỳ,5,Thomas J. Mildorf,1,THPT Chuyên Lê Quý Đôn,1,THPTQG,15,THTT,7,Thừa Thiên Huế,36,Tiền Giang,19,Tin Tức Toán Học,1,Titu Andreescu,2,Toán 12,7,Toán Cao Cấp,3,Toán Chuyên,2,Toán Rời Rạc,5,Toán Tuổi Thơ,3,Tôn Ngọc Minh Quân,2,TOT,1,TPHCM,126,Trà Vinh,6,Trắc Nghiệm,1,Trắc Nghiệm Toán,2,Trại Hè,34,Trại Hè Hùng Vương,25,Trại Hè Phương Nam,5,Trần Đăng Phúc,1,Trần Minh Hiền,2,Trần Nam Dũng,9,Trần Phương,1,Trần Quang Hùng,1,Trần Quốc Anh,2,Trần Quốc Luật,1,Trần Quốc Nghĩa,1,Trần Tiến Tự,1,Trịnh Đào Chiến,2,Trung Quốc,14,Trường Đông,19,Trường Hè,7,Trường Thu,1,Trường Xuân,2,TST,56,Tuyên Quang,6,Tuyển Sinh,3,Tuyển Sinh 10,680,Tuyển Tập,44,Tuymaada,4,Undergraduate,67,USA,44,USAJMO,10,USATST,7,Uzbekistan,1,Vasile Cîrtoaje,4,Vật Lý,1,Viện Toán Học,2,Vietnam,4,Viktor Prasolov,1,VIMF,1,Vinh,27,Vĩnh Long,21,Vĩnh Phúc,64,Virginia Tech,1,VLTT,1,VMEO,4,VMF,12,VMO,47,VNTST,22,Võ Anh Khoa,1,Võ Quốc Bá Cẩn,26,Võ Thành Văn,1,Vojtěch Jarník,6,Vũ Hữu Bình,7,Vương Trung Dũng,1,WFNMC Journal,1,Wiles,1,Yên Bái,18,Yên Định,1,Yên Thành,1,Zhautykov,11,Zhou Yuan Zhe,1,
    MOlympiad: [Shortlists] International Mathematical Olympiad 1995
    [Shortlists] International Mathematical Olympiad 1995
    Loaded All Posts Not found any posts VIEW ALL Readmore Reply Cancel reply Delete By Home PAGES POSTS View All RECOMMENDED FOR YOU LABEL ARCHIVE SEARCH ALL POSTS Not found any post match with your request Back Home Sunday Monday Tuesday Wednesday Thursday Friday Saturday Sun Mon Tue Wed Thu Fri Sat January February March April May June July August September October November December Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec just now 1 minute ago $$1$$ minutes ago 1 hour ago $$1$$ hours ago Yesterday $$1$$ days ago $$1$$ weeks ago more than 5 weeks ago Followers Follow THIS PREMIUM CONTENT IS LOCKED Please share to unlock Copy All Code Select All Code All codes were copied to your clipboard Can not copy the codes / texts, please press [CTRL]+[C] (or CMD+C with Mac) to copy