$hide=mobile

Đề Thi Chọn Học Sinh Giỏi Lớp 12 THPT Chuyên KHTN TP Hà Nội 2012-2013 (Vòng 2)

  1. Cho $n$ là số nguyên dương. Trên mặt phẳng tọa độ $Oxy$ xét các điểm $A(0,n)$, $B(n,n)$, $C(n,0)$. Hỏi có tất cả bao nhiêu cặp điểm $(M,N)$ với $M$, $N$ có các tọa độ nguyên, nằm trên cạnh hoặc bên trong hình vuông $OABC$ và trung điểm của $MN$ thuộc đường chéo $OB$.
  2. Tìm tất cả các bộ số nguyên $(a,b,c,d)$ thỏa mãn $$a^2+7b^2=3c^2+2cd+5d^2$$
  3. Cho tam giác nhọn $ABC$, $D$ là một điểm thuộc đoạn $AC$. Giả sử đường tròn ngoại tiếp tam giác $ABD$ cắt đoạn thẳng $BC$ tại $E$ khác $B$. Tiếp tuyến tại $B$, $D$ của đường tròn ngoại tiếp tam giác $ABD$ cắt nhau tại $T$; $AT$ cắt đường tròn ngọai tiếp tam giác $ABD$ tại $F$ khác $A$; $CF$ giao $DE$ tại $G$; $AG$ giao $BC$ tại $H$; $M$ là trung điểm của $AF$. Chứng minh rằng $HN$ song song với $AT$.
  4. a) Một chiếc bàn có $22$ chiếc ghế. Tìm giá trị nhỏ nhất của $n$ sao cho nếu một nhóm $n$ người ngồi vào bàn thì luôn có hai người sao cho một trong hai phần của bàn bị ngăn bởi họ có đúng $2$ hoặc $8$ chiếc ghế.
    b) Nếu ta xếp thêm một chiếc ghế nữa vào bàn và giữ nguyên các điều kiện còn lại thì giá trị nhỏ nhất của $n$ là bao nhiêu?.
  5. Cho dãy số ${x_n}$ xác định bởi $$x_1=5,\, x_2=\frac{17}{2},\quad  x_{n+2}=\frac{1}{4}x_{n+1}x_{n}^2-2x_{n+1}-4,\,\forall n \in\mathbb N^*.$$ Tìm tất cả các số nguyên dương $n$ sao cho $[x_n] + 3$ là lập phương của một số tự nhiên.
  6. Giải hệ phương trình $$\begin{cases}x^2(y+3) &=4(2-y) \\ y^2(z+3) &=4(2-z) \\z^2(x+3) &=4(2-x) \end{cases}.$$
  7. Cho $ABC$ cân tại $A$ và $ABC$ là tam giác nhọn. $D$ là một điểm thuộc đoạn thẳng $BC$ sao cho $\angle{ADB} < 90^0 $. Từ điểm $C$ kẻ các tiếp tuyến $CM$, $CN$ tới đường tròn ngoại tiếp tam giác $ABD$ ($M$, $N$ thuộc đường tròn ngoại tiếp tam giác $ABD$). Gọi $P$, $Q$ lầm lượt là trung điểm $CM$, $CN$. Giả sử $PQ$ cắt đoạn thẳng $BC$ tại $E$. Lấy điểm $F$ trên đoạn thẳng $AE$ sao cho $\angle{EFC}= \angle{DAC}$. Chứng minh rằng $\angle{BEF}= \angle{BAC}$.
  8. Có $19$ người xếp thành hàng vào xem một buổi biểu diễn ảo thuật. Phòng biểu diễn có đúng $19$ chiếc ghế được xếp thành hàng ngang và ảo thuật gia đánh số chúng từ $1$ đến $19$ theo thứ tự từ trái qua phải. Sau đó anh ta phát cho mỗi người đến xem $1$ tấm vé có ghi một số từ $1$ đến $19$. Các vị khách được mời vào phòng biểu diễn theo thứ tự xếp hàng. Mỗi người đi vào sẽ đi thẳng đến chiếc ghế có số ghi trên tấm vé của mình. Nếu chiếc ghế này còn trống họ sẽ ngồi vào đó, nếu không họ sẽ đi tiếp và ngồi vào chiếc ghế đầu tiên vê bên phải chưa có người ngồi. Khi một vị khách đi đến chiếc ghế cuối cùng mà vẫn chưa có ghế để ngồi, họ sẽ bỏ về. Hỏi ảo thuật gia có bao nhiêu cách phát vé để cả $19$ vị khách sẽ ở lại xem buổi biểu diễn?.

Post a Comment


$hide=home

$type=three$count=6$sr=random$t=oot$h=1$l=0$meta=hide$rm=hide$sn=0

$hide=post$type=three$count=6$sr=random$t=oot$h=1$l=0$meta=hide$rm=hide$sn=0

$hide=home

Kỷ Yếu$cl=violet$type=three$count=6$sr=random$t=oot$h=1$l=0$meta=hide$rm=hide$sn=0

Journals$cl=green$type=three$count=6$sr=random$t=oot$h=1$l=0$meta=hide$rm=hide$sn=0

Name

Ả-rập Xê-út,1,Abel,5,Albania,2,AMM,2,Amsterdam,5,Ấn Độ,1,An Giang,21,Andrew Wiles,1,Anh,2,Áo,1,APMO,19,Ba Đình,2,Ba Lan,1,Bà Rịa Vũng Tàu,52,Bắc Giang,49,Bắc Kạn,1,Bạc Liêu,9,Bắc Ninh,47,Bắc Trung Bộ,7,Bài Toán Hay,5,Balkan,37,Baltic Way,30,BAMO,1,Bất Đẳng Thức,66,Bến Tre,46,Benelux,13,Bình Định,44,Bình Dương,21,Bình Phước,38,Bình Thuận,34,Birch,1,Booklet,11,Bosnia Herzegovina,3,BoxMath,3,Brazil,2,Bùi Đắc Hiên,1,Bùi Thị Thiện Mỹ,1,Bùi Văn Tuyên,1,Bùi Xuân Diệu,1,Bulgaria,5,Buôn Ma Thuột,1,BxMO,12,Cà Mau,13,Cần Thơ,14,Canada,39,Cao Bằng,6,Cao Quang Minh,1,Câu Chuyện Toán Học,36,Caucasus,2,CGMO,10,China,10,Chọn Đội Tuyển,347,Chu Tuấn Anh,1,Chuyên Đề,124,Chuyên Sư Phạm,31,Chuyên Trần Hưng Đạo,3,Collection,8,College Mathematic,1,Concours,1,Cono Sur,1,Contest,610,Correspondence,1,Cosmin Poahata,1,Crux,2,Czech-Polish-Slovak,25,Đà Nẵng,39,Đa Thức,2,Đại Số,20,Đắk Lắk,54,Đắk Nông,7,Đan Phượng,1,Danube,7,Đào Thái Hiệp,1,ĐBSCL,2,Đề Thi HSG,1641,Đề Thi JMO,1,Điện Biên,8,Định Lý,1,Định Lý Beaty,1,Đỗ Hữu Đức Thịnh,1,Do Thái,3,Doãn Quang Tiến,4,Đoàn Quỳnh,1,Đoàn Văn Trung,1,Đống Đa,4,Đồng Nai,49,Đồng Tháp,51,Du Hiền Vinh,1,Đức,1,Duyên Hải Bắc Bộ,25,E-Book,33,EGMO,16,ELMO,19,EMC,8,Epsilon,1,Estonian,5,Euler,1,Evan Chen,1,Fermat,3,Finland,4,Forum Of Geometry,2,Furstenberg,1,G. Polya,3,Gặp Gỡ Toán Học,26,Gauss,1,GDTX,3,Geometry,12,Gia Lai,25,Gia Viễn,2,Giải Tích Hàm,1,Giảng Võ,1,Giới hạn,2,Goldbach,1,Hà Giang,2,Hà Lan,1,Hà Nam,29,Hà Nội,231,Hà Tĩnh,72,Hà Trung Kiên,1,Hải Dương,49,Hải Phòng,42,Hàn Quốc,5,Hậu Giang,4,Hậu Lộc,1,Hilbert,1,Hình Học,33,HKUST,7,Hòa Bình,13,Hoài Nhơn,1,Hoàng Bá Minh,1,Hoàng Minh Quân,1,Hodge,1,Hojoo Lee,2,HOMC,5,HongKong,8,HSG 10,100,HSG 11,86,HSG 12,580,HSG 9,402,HSG Cấp Trường,78,HSG Quốc Gia,99,HSG Quốc Tế,16,Hứa Lâm Phong,1,Hứa Thuần Phỏng,1,Hùng Vương,2,Hưng Yên,32,Hương Sơn,2,Huỳnh Kim Linh,1,Hy Lạp,1,IMC,25,IMO,54,India,45,Inequality,13,InMC,1,International,307,Iran,11,Jakob,1,JBMO,41,Jewish,1,Journal,20,Junior,38,K2pi,1,Kazakhstan,1,Khánh Hòa,16,KHTN,53,Kiên Giang,63,Kim Liên,1,Kon Tum,18,Korea,5,Kvant,2,Kỷ Yếu,42,Lai Châu,4,Lâm Đồng,33,Lạng Sơn,21,Langlands,1,Lào Cai,16,Lê Hải Châu,1,Lê Hải Khôi,1,Lê Hoành Phò,4,Lê Khánh Sỹ,3,Lê Minh Cường,1,Lê Phúc Lữ,1,Lê Phương,1,Lê Quý Đôn,1,Lê Viết Hải,1,Lê Việt Hưng,1,Leibniz,1,Long An,42,Lớp 10,10,Lớp 10 Chuyên,452,Lớp 10 Không Chuyên,229,Lớp 11,1,Lục Ngạn,1,Lượng giác,1,Lương Tài,1,Lưu Giang Nam,2,Lý Thánh Tông,1,Macedonian,1,Malaysia,1,Margulis,2,Mark Levi,1,Mathematical Excalibur,1,Mathematical Reflections,1,Mathematics Magazine,1,Mathematics Today,1,Mathley,1,MathLinks,1,MathProblems Journal,1,Mathscope,8,MathsVN,5,MathVN,1,MEMO,10,Metropolises,4,Mexico,1,MIC,1,Michael Guillen,1,Mochizuki,1,Moldova,1,Moscow,1,Mỹ,9,MYTS,4,Nam Định,32,Nam Phi,1,Nam Trung Bộ,1,National,249,Nesbitt,1,Newton,4,Nghệ An,50,Ngô Bảo Châu,2,Ngô Việt Hải,1,Ngọc Huyền,2,Nguyễn Anh Tuyến,1,Nguyễn Bá Đang,1,Nguyễn Đình Thi,1,Nguyễn Đức Tấn,1,Nguyễn Đức Thắng,1,Nguyễn Duy Khương,1,Nguyễn Duy Tùng,1,Nguyễn Hữu Điển,3,Nguyễn Mình Hà,1,Nguyễn Minh Tuấn,8,Nguyễn Phan Tài Vương,1,Nguyễn Phú Khánh,1,Nguyễn Phúc Tăng,1,Nguyễn Quản Bá Hồng,1,Nguyễn Quang Sơn,1,Nguyễn Tài Chung,5,Nguyễn Tăng Vũ,1,Nguyễn Tất Thu,1,Nguyễn Thúc Vũ Hoàng,1,Nguyễn Trung Tuấn,8,Nguyễn Tuấn Anh,2,Nguyễn Văn Huyện,3,Nguyễn Văn Mậu,25,Nguyễn Văn Nho,1,Nguyễn Văn Quý,2,Nguyễn Văn Thông,1,Nguyễn Việt Anh,1,Nguyễn Vũ Lương,2,Nhật Bản,3,Nhóm $\LaTeX$,4,Nhóm Toán,1,Ninh Bình,41,Ninh Thuận,15,Nội Suy Lagrange,2,Nội Suy Newton,1,Nordic,19,Olympiad Corner,1,Olympiad Preliminary,2,Olympic 10,98,Olympic 10/3,5,Olympic 11,89,Olympic 12,30,Olympic 24/3,6,Olympic 27/4,20,Olympic 30/4,66,Olympic KHTN,6,Olympic Sinh Viên,73,Olympic Tháng 4,12,Olympic Toán,300,Olympic Toán Sơ Cấp,3,PAMO,1,Phạm Đình Đồng,1,Phạm Đức Tài,1,Phạm Huy Hoàng,1,Pham Kim Hung,3,Phạm Quốc Sang,2,Phan Huy Khải,1,Phan Thành Nam,1,Pháp,2,Philippines,8,Phú Thọ,30,Phú Yên,26,Phùng Hồ Hải,1,Phương Trình Hàm,11,Phương Trình Pythagoras,1,Pi,1,Polish,32,Problems,1,PT-HPT,14,PTNK,44,Putnam,25,Quảng Bình,44,Quảng Nam,31,Quảng Ngãi,33,Quảng Ninh,43,Quảng Trị,26,Quỹ Tích,1,Riemann,1,RMM,12,RMO,24,Romania,36,Romanian Mathematical,1,Russia,1,Sách Thường Thức Toán,7,Sách Toán,69,Sách Toán Cao Học,1,Sách Toán THCS,7,Saudi Arabia,7,Scholze,1,Serbia,17,Sharygin,24,Shortlists,56,Simon Singh,1,Singapore,1,Số Học - Tổ Hợp,27,Sóc Trăng,28,Sơn La,11,Spain,8,Star Education,5,Stars of Mathematics,11,Swinnerton-Dyer,1,Talent Search,1,Tăng Hải Tuân,2,Tạp Chí,14,Tập San,6,Tây Ban Nha,1,Tây Ninh,29,Thạch Hà,1,Thái Bình,39,Thái Nguyên,49,Thái Vân,2,Thanh Hóa,57,THCS,2,Thổ Nhĩ Kỳ,5,Thomas J. Mildorf,1,THPT Chuyên Lê Quý Đôn,1,THPTQG,15,THTT,6,Thừa Thiên Huế,35,Tiền Giang,19,Tin Tức Toán Học,1,Titu Andreescu,2,Toán 12,7,Toán Cao Cấp,3,Toán Chuyên,2,Toán Rời Rạc,5,Toán Tuổi Thơ,3,Tôn Ngọc Minh Quân,2,TOT,1,TPHCM,125,Trà Vinh,5,Trắc Nghiệm,1,Trắc Nghiệm Toán,2,Trại Hè,34,Trại Hè Hùng Vương,25,Trại Hè Phương Nam,5,Trần Đăng Phúc,1,Trần Minh Hiền,2,Trần Nam Dũng,9,Trần Phương,1,Trần Quang Hùng,1,Trần Quốc Anh,2,Trần Quốc Luật,1,Trần Quốc Nghĩa,1,Trần Tiến Tự,1,Trịnh Đào Chiến,2,Trung Quốc,12,Trường Đông,19,Trường Hè,7,Trường Thu,1,Trường Xuân,2,TST,55,Tuyên Quang,6,Tuyển Sinh,3,Tuyển Tập,44,Tuymaada,4,Undergraduate,66,USA,44,USAJMO,10,USATST,7,Uzbekistan,1,Vasile Cîrtoaje,4,Vật Lý,1,Viện Toán Học,2,Vietnam,4,Viktor Prasolov,1,VIMF,1,Vinh,27,Vĩnh Long,20,Vĩnh Phúc,63,Virginia Tech,1,VLTT,1,VMEO,4,VMF,12,VMO,46,VNTST,22,Võ Anh Khoa,1,Võ Quốc Bá Cẩn,26,Võ Thành Văn,1,Vojtěch Jarník,6,Vũ Hữu Bình,7,Vương Trung Dũng,1,WFNMC Journal,1,Wiles,1,Yên Bái,17,Yên Định,1,Yên Thành,1,Zhautykov,11,Zhou Yuan Zhe,1,
ltr
item
MOlympiad: Đề Thi Chọn Học Sinh Giỏi Lớp 12 THPT Chuyên KHTN TP Hà Nội 2012-2013 (Vòng 2)
Đề Thi Chọn Học Sinh Giỏi Lớp 12 THPT Chuyên KHTN TP Hà Nội 2012-2013 (Vòng 2)
MOlympiad
https://www.molympiad.net/2017/08/de-thi-chon-hoc-sinh-gioi-lop-12-thpt-chuyen-khtn-dhqg-ha-noi-2012-2013-vong-2.html
https://www.molympiad.net/
https://www.molympiad.net/
https://www.molympiad.net/2017/08/de-thi-chon-hoc-sinh-gioi-lop-12-thpt-chuyen-khtn-dhqg-ha-noi-2012-2013-vong-2.html
true
2506595080985176441
UTF-8
Loaded All Posts Not found any posts VIEW ALL Readmore Reply Cancel reply Delete By Home PAGES POSTS View All RECOMMENDED FOR YOU LABEL ARCHIVE SEARCH ALL POSTS Not found any post match with your request Back Home Sunday Monday Tuesday Wednesday Thursday Friday Saturday Sun Mon Tue Wed Thu Fri Sat January February March April May June July August September October November December Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec just now 1 minute ago $$1$$ minutes ago 1 hour ago $$1$$ hours ago Yesterday $$1$$ days ago $$1$$ weeks ago more than 5 weeks ago Followers Follow THIS PREMIUM CONTENT IS LOCKED Please share to unlock Copy All Code Select All Code All codes were copied to your clipboard Can not copy the codes / texts, please press [CTRL]+[C] (or CMD+C with Mac) to copy