$hide=mobile

[Solutions] Baltic Way Mathematical Competition 2015

  1. For $n\geq 2$, an equilateral triangle is divided into $n^2$ congruent smaller equilateral triangles. Detemine all ways in which real numbers can be assigned to the $\frac{(n+1)(n+2)}{2}$ vertices so that three such numbers sum to zero whenever the three vertices form a triangle with edges parallel to the sides of the big triangle.
  2. Let $n$ be a positive integer and let $a_1,\cdots ,a_n$ be real numbers satisfying $0\le a_i\le 1$ for $i=1,\cdots ,n.$ Prove the inequality \[(1-{a_i}^n)(1-{a_2}^n)\cdots (1-{a_n}^n)\le (1-a_1a_2\cdots a_n)^n.\]
  3. Let $n>1$ be an integer. Find all non-constant real polynomials $P(x)$ satisfying , for any real $x$ , the identy \[P(x)P(x^2)P(x^3)\cdots P(x^n)=P(x^{\frac{n(n+1)}{2}})\]
  4. A family wears clothes of three colors: red,blue and green,with a separate,identical laundry bin for each color. At the beginning of the first week,all bins are empty.Each week,the family generates a total of $10 kg $ of laundry(the proportion of each color is subject to variation).The laundry is sorted by color and placed in the bins.Next,the heaviest bin(only one of them,if there are several that are heaviest)is emptied and its content swashed.What is the minimal possible storing capacity required of the laundry bins in order for them never to overflow?
  5. Find all functions $f:\mathbb{R}\to\mathbb{R}$ satisfying the equation \[|x|f(y)+yf(x)=f(xy)+f(x^2)+f(f(y))\]for all real numbers $x$ and $y$.
  6. Two players play the following game. At the outset there are two piles, containing $10,000$ and $20,000$ tokens,respectively. A move consists of removing any positive number of tokens from a single pile $or$ removing $x>0$ tokens from one pile and $y>0$ tokens from the other , where $x+y$ is divisible by $2015$. The player who can not make a move loses. Which player has a winning strategy
  7. There are $100$ members in a ladies' club.Each lady has had tea (in private) with exactly $56$ of her lady friends.The Board,consisting of the $50$ most distinguished ladies,have all had tea with one another.Prove that the entire club may be split into two groups in such a way that,with in each group,any lady has had tea with any other.
  8. With inspiration drawn from the rectilinear network of streets in New York , the Manhattan distance between two points $(a,b)$ and $(c,d)$ in the plane is defined to be \[|a-c|+|b-d|\]Suppose only two distinct Manhattan distance occur between all pairs of distinct points of some point set. What is the maximal number of points in such a set?
  9. Let $n>2$ be an integer. A deck contains $\frac{n(n-1)}{2}$ cards, numbered \[1,2,3,\cdots , \frac{n(n-1)}{2}\]Two cards form a magic pair if their numbers are consecutive, or if their numbers are $1$ and $\frac{n(n+1)}{2}$. For which $n$ is it possible to distribute the cards into $n$ stacks in such a manner that, among the cards in any two stacks, there is exactly one magic pair?
  10. A subset $S$ of $ {1,2,...,n}$ is called balanced if for every $a $ from $S $ there exists some $b$ from $S$, $b\neq a$, such that $ \frac{(a+b)}{2}$ is in $S$ as well.
    a) Let $k > 1 $be an integer and let $n = 2k$. Show that every subset $ S$ of ${1,2,...,n} $ with $|S| > \frac{3n}{4}$ is balanced.
    b) Does there exist an $n =2k$, with $ k > 1 $ an integer, for which every subset $ S$ of ${1,2,...,n} $ with $ |S| >\frac{2n}{3} $ is balanced?
  11. The diagonals of parallelogram $ABCD$ intersect at $E$. The bisectors of $\angle DAE$ and $\angle EBC$ intersect at $F$. Assume $ECFD$ is a parellelogram. Determine the ratio $AB:AD$.
  12. A circle passes through vertex $B$ of the triangle $ABC$, intersects its sides $ AB $and $BC$ at points $K$ and $L$, respectively, and touches the side $ AC$ at its midpoint $M$. The point $N$ on the arc $BL$ (which does not contain $K$) is such that $\angle LKN = \angle ACB$. Find $\angle BAC $ given that the triangle $CKN$ is equilateral.
  13. Let $D$ be the footpoint of the altitude from $B$ in the triangle $ABC$ , where $AB=1$ . The incircle of triangle $BCD$ coincides with the centroid of triangle $ABC$. Find the lengths of $AC$ and $BC$.
  14. In the non-isosceles triangle $ABC$ an altitude from $A$ meets side $BC$ in $D$ . Let $M$ be the midpoint of $BC$ and let $N$ be the reflection of $M$ in $D$. The circumcirle of triangle $AMN$ intersects the side $AB$ in $P\ne A$ and the side $AC$ in $Q\ne A$. Prove that $AN$, $BQ$ and $CP$ are concurrent.
  15. In triangle $ABC$, the interior and exterior angle bisectors of $ \angle BAC$ intersect the line $BC$ in $D $ and $E$, respectively. Let $F$ be the second point of intersection of the line $AD$ with the circumcircle of the triangle $ ABC$. Let $O$ be the circumcentre of the triangle $ ABC $and let $D'$ be the reflection of $D$ in $O$. Prove that $ \angle D'FE =90^\circ.$
  16. Denote by $P(n)$ the greatest prime divisor of $n$. Find all integers $n\geq 2$ for which \[P(n)+\lfloor\sqrt{n}\rfloor=P(n+1)+\lfloor\sqrt{n+1}\rfloor\]
  17. Find all positive integers $n$ for which $n^{n-1} - 1$ is divisible by $2^{2015}$, but not by $2^{2016}$.
  18. Let $f(x)=x^n + a_{n-1}x^{n-1} + ...+ a_0 $ be a polynomial of degree $ n\ge 1 $ with $ n$ (not necessarily distinct) integer roots. Assume that there exist distinct primes $p_0,p_1,..,p_{n-1}$ such that $a_i > 1$ is a power of $p_i$, for all $ i=0,1,..,n-1$. Find all possible values of $ n$.
  19. Three pairwairs distinct positive integers $a,b,c,$ with $\gcd(a,b,c)=1$, satisfy $a|(b-c)^2$, $b|(a-c)^2$ and $c|(a-b)^2$. Prove that there doesnt exist a non-degenerate triangle with side lengths $a,b,c.$
  20. For any integer $n \ge2$, we define $ A_n$ to be the number of positive integers $ m$ with the following property: the distance from $n$ to the nearest multiple of $m$ is equal to the distance from $n^3$ to the nearest multiple of $ m$. Find all integers $n \ge 2 $ for which $ A_n$ is odd. (Note: The distance between two integers $ a$ and $b$ is defined as $|a -b|$.)

Post a Comment


$hide=mobile

$hide=mobile

$hide=mobile

$show=post$type=three$count=6$sr=random$t=oot$h=1$l=0$meta=hide$rm=hide$sn=0

Kỷ Yếu$cl=violet$type=three$count=6$sr=random$t=oot$h=1$l=0$meta=hide$rm=hide$sn=0$hide=mobile

Journals$cl=green$type=three$count=6$sr=random$t=oot$h=1$l=0$meta=hide$rm=hide$sn=0$hide=mobile

Name

Ả-rập Xê-út,1,Abel,5,Albania,2,AMM,3,Amsterdam,5,Ấn Độ,2,An Giang,23,Andrew Wiles,1,Anh,2,Áo,1,APMO,19,Ba Đình,2,Ba Lan,1,Bà Rịa Vũng Tàu,52,Bắc Giang,50,Bắc Kạn,1,Bạc Liêu,9,Bắc Ninh,48,Bắc Trung Bộ,7,Bài Toán Hay,5,Balkan,38,Baltic Way,30,BAMO,1,Bất Đẳng Thức,66,Bến Tre,46,Benelux,14,Bình Định,45,Bình Dương,23,Bình Phước,38,Bình Thuận,34,Birch,1,Booklet,11,Bosnia Herzegovina,3,BoxMath,3,Brazil,2,Bùi Đắc Hiên,1,Bùi Thị Thiện Mỹ,1,Bùi Văn Tuyên,1,Bùi Xuân Diệu,1,Bulgaria,6,Buôn Ma Thuột,1,BxMO,13,Cà Mau,14,Cần Thơ,14,Canada,40,Cao Bằng,7,Cao Quang Minh,1,Câu Chuyện Toán Học,36,Caucasus,2,CGMO,10,China,10,Chọn Đội Tuyển,352,Chu Tuấn Anh,1,Chuyên Đề,124,Chuyên Sư Phạm,31,Chuyên Trần Hưng Đạo,3,Collection,8,College Mathematic,1,Concours,1,Cono Sur,1,Contest,618,Correspondence,1,Cosmin Poahata,1,Crux,2,Czech-Polish-Slovak,26,Đà Nẵng,39,Đa Thức,2,Đại Số,20,Đắk Lắk,56,Đắk Nông,7,Đan Phượng,1,Danube,7,Đào Thái Hiệp,1,ĐBSCL,2,Đề Thi,1,Đề Thi HSG,1767,Đề Thi JMO,1,Điện Biên,8,Định Lý,1,Định Lý Beaty,1,Đỗ Hữu Đức Thịnh,1,Do Thái,3,Doãn Quang Tiến,4,Đoàn Quỳnh,1,Đoàn Văn Trung,1,Đống Đa,4,Đồng Nai,49,Đồng Tháp,52,Du Hiền Vinh,1,Đức,1,Duyên Hải Bắc Bộ,25,E-Book,33,EGMO,17,ELMO,19,EMC,9,Epsilon,1,Estonian,5,Euler,1,Evan Chen,1,Fermat,3,Finland,4,Forum Of Geometry,2,Furstenberg,1,G. Polya,3,Gặp Gỡ Toán Học,26,Gauss,1,GDTX,3,Geometry,12,Gia Lai,26,Gia Viễn,2,Giải Tích Hàm,1,Giảng Võ,1,Giới hạn,2,Goldbach,1,Hà Giang,2,Hà Lan,1,Hà Nam,29,Hà Nội,232,Hà Tĩnh,73,Hà Trung Kiên,1,Hải Dương,50,Hải Phòng,42,Hàn Quốc,5,Hậu Giang,4,Hậu Lộc,1,Hilbert,1,Hình Học,33,HKUST,7,Hòa Bình,13,Hoài Nhơn,1,Hoàng Bá Minh,1,Hoàng Minh Quân,1,Hodge,1,Hojoo Lee,2,HOMC,5,HongKong,8,HSG 10,101,HSG 11,91,HSG 12,585,HSG 9,425,HSG Cấp Trường,78,HSG Quốc Gia,106,HSG Quốc Tế,16,Hứa Lâm Phong,1,Hứa Thuần Phỏng,1,Hùng Vương,2,Hưng Yên,33,Hương Sơn,2,Huỳnh Kim Linh,1,Hy Lạp,1,IMC,26,IMO,56,IMT,1,India,45,Inequality,13,InMC,1,International,315,Iran,11,Jakob,1,JBMO,41,Jewish,1,Journal,20,Junior,38,K2pi,1,Kazakhstan,1,Khánh Hòa,17,KHTN,54,Kiên Giang,64,Kim Liên,1,Kon Tum,18,Korea,5,Kvant,2,Kỷ Yếu,42,Lai Châu,4,Lâm Đồng,33,Lạng Sơn,21,Langlands,1,Lào Cai,17,Lê Hải Châu,1,Lê Hải Khôi,1,Lê Hoành Phò,4,Lê Khánh Sỹ,3,Lê Minh Cường,1,Lê Phúc Lữ,1,Lê Phương,1,Lê Quý Đôn,1,Lê Viết Hải,1,Lê Việt Hưng,1,Leibniz,1,Long An,42,Lớp 10,10,Lớp 10 Chuyên,455,Lớp 10 Không Chuyên,229,Lớp 11,1,Lục Ngạn,1,Lượng giác,1,Lương Tài,1,Lưu Giang Nam,2,Lý Thánh Tông,1,Macedonian,1,Malaysia,1,Margulis,2,Mark Levi,1,Mathematical Excalibur,1,Mathematical Reflections,1,Mathematics Magazine,1,Mathematics Today,1,Mathley,1,MathLinks,1,MathProblems Journal,1,Mathscope,8,MathsVN,5,MathVN,1,MEMO,11,Metropolises,4,Mexico,1,MIC,1,Michael Guillen,1,Mochizuki,1,Moldova,1,Moscow,1,Mỹ,10,MYM,227,MYTS,4,Nam Định,33,Nam Phi,1,Nam Trung Bộ,1,National,249,Nesbitt,1,Newton,4,Nghệ An,52,Ngô Bảo Châu,2,Ngô Việt Hải,1,Ngọc Huyền,2,Nguyễn Anh Tuyến,1,Nguyễn Bá Đang,1,Nguyễn Đình Thi,1,Nguyễn Đức Tấn,1,Nguyễn Đức Thắng,1,Nguyễn Duy Khương,1,Nguyễn Duy Tùng,1,Nguyễn Hữu Điển,3,Nguyễn Mình Hà,1,Nguyễn Minh Tuấn,8,Nguyễn Phan Tài Vương,1,Nguyễn Phú Khánh,1,Nguyễn Phúc Tăng,1,Nguyễn Quản Bá Hồng,1,Nguyễn Quang Sơn,1,Nguyễn Tài Chung,5,Nguyễn Tăng Vũ,1,Nguyễn Tất Thu,1,Nguyễn Thúc Vũ Hoàng,1,Nguyễn Trung Tuấn,8,Nguyễn Tuấn Anh,2,Nguyễn Văn Huyện,3,Nguyễn Văn Mậu,25,Nguyễn Văn Nho,1,Nguyễn Văn Quý,2,Nguyễn Văn Thông,1,Nguyễn Việt Anh,1,Nguyễn Vũ Lương,2,Nhật Bản,4,Nhóm $\LaTeX$,4,Nhóm Toán,1,Ninh Bình,42,Ninh Thuận,15,Nội Suy Lagrange,2,Nội Suy Newton,1,Nordic,19,Olympiad Corner,1,Olympiad Preliminary,2,Olympic 10,99,Olympic 10/3,5,Olympic 11,92,Olympic 12,30,Olympic 24/3,7,Olympic 27/4,20,Olympic 30/4,69,Olympic KHTN,6,Olympic Sinh Viên,73,Olympic Tháng 4,12,Olympic Toán,304,Olympic Toán Sơ Cấp,3,PAMO,1,Phạm Đình Đồng,1,Phạm Đức Tài,1,Phạm Huy Hoàng,1,Pham Kim Hung,3,Phạm Quốc Sang,2,Phan Huy Khải,1,Phan Thành Nam,1,Pháp,2,Philippines,8,Phú Thọ,30,Phú Yên,29,Phùng Hồ Hải,1,Phương Trình Hàm,11,Phương Trình Pythagoras,1,Pi,1,Polish,32,Problems,1,PT-HPT,14,PTNK,45,Putnam,25,Quảng Bình,44,Quảng Nam,32,Quảng Ngãi,34,Quảng Ninh,43,Quảng Trị,27,Quỹ Tích,1,Riemann,1,RMM,12,RMO,24,Romania,36,Romanian Mathematical,1,Russia,1,Sách Thường Thức Toán,7,Sách Toán,69,Sách Toán Cao Học,1,Sách Toán THCS,7,Saudi Arabia,7,Scholze,1,Serbia,17,Sharygin,24,Shortlists,56,Simon Singh,1,Singapore,1,Số Học - Tổ Hợp,27,Sóc Trăng,28,Sơn La,12,Spain,8,Star Education,5,Stars of Mathematics,11,Swinnerton-Dyer,1,Talent Search,1,Tăng Hải Tuân,2,Tạp Chí,14,Tập San,6,Tây Ban Nha,1,Tây Ninh,29,Thạch Hà,1,Thái Bình,39,Thái Nguyên,49,Thái Vân,2,Thanh Hóa,62,THCS,2,Thổ Nhĩ Kỳ,5,Thomas J. Mildorf,1,THPT Chuyên Lê Quý Đôn,1,THPTQG,15,THTT,7,Thừa Thiên Huế,36,Tiền Giang,19,Tin Tức Toán Học,1,Titu Andreescu,2,Toán 12,7,Toán Cao Cấp,3,Toán Chuyên,2,Toán Rời Rạc,5,Toán Tuổi Thơ,3,Tôn Ngọc Minh Quân,2,TOT,1,TPHCM,126,Trà Vinh,6,Trắc Nghiệm,1,Trắc Nghiệm Toán,2,Trại Hè,34,Trại Hè Hùng Vương,25,Trại Hè Phương Nam,5,Trần Đăng Phúc,1,Trần Minh Hiền,2,Trần Nam Dũng,9,Trần Phương,1,Trần Quang Hùng,1,Trần Quốc Anh,2,Trần Quốc Luật,1,Trần Quốc Nghĩa,1,Trần Tiến Tự,1,Trịnh Đào Chiến,2,Trung Quốc,14,Trường Đông,19,Trường Hè,7,Trường Thu,1,Trường Xuân,2,TST,56,Tuyên Quang,6,Tuyển Sinh,3,Tuyển Sinh 10,680,Tuyển Tập,44,Tuymaada,4,Undergraduate,67,USA,44,USAJMO,10,USATST,7,Uzbekistan,1,Vasile Cîrtoaje,4,Vật Lý,1,Viện Toán Học,2,Vietnam,4,Viktor Prasolov,1,VIMF,1,Vinh,27,Vĩnh Long,21,Vĩnh Phúc,64,Virginia Tech,1,VLTT,1,VMEO,4,VMF,12,VMO,47,VNTST,22,Võ Anh Khoa,1,Võ Quốc Bá Cẩn,26,Võ Thành Văn,1,Vojtěch Jarník,6,Vũ Hữu Bình,7,Vương Trung Dũng,1,WFNMC Journal,1,Wiles,1,Yên Bái,18,Yên Định,1,Yên Thành,1,Zhautykov,11,Zhou Yuan Zhe,1,
ltr
item
MOlympiad: [Solutions] Baltic Way Mathematical Competition 2015
[Solutions] Baltic Way Mathematical Competition 2015
MOlympiad
https://www.molympiad.net/2017/08/baltic-way-mathematical-competition-2015-solutions.html
https://www.molympiad.net/
https://www.molympiad.net/
https://www.molympiad.net/2017/08/baltic-way-mathematical-competition-2015-solutions.html
true
2506595080985176441
UTF-8
Loaded All Posts Not found any posts VIEW ALL Readmore Reply Cancel reply Delete By Home PAGES POSTS View All RECOMMENDED FOR YOU LABEL ARCHIVE SEARCH ALL POSTS Not found any post match with your request Back Home Sunday Monday Tuesday Wednesday Thursday Friday Saturday Sun Mon Tue Wed Thu Fri Sat January February March April May June July August September October November December Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec just now 1 minute ago $$1$$ minutes ago 1 hour ago $$1$$ hours ago Yesterday $$1$$ days ago $$1$$ weeks ago more than 5 weeks ago Followers Follow THIS PREMIUM CONTENT IS LOCKED Please share to unlock Copy All Code Select All Code All codes were copied to your clipboard Can not copy the codes / texts, please press [CTRL]+[C] (or CMD+C with Mac) to copy