$hide=mobile

[Solutions] Baltic Way Mathematical Competition 2004

  1. Given a sequence $a_1,a_2,\ldots $ of non-negative real numbers satisfying the conditions:  $a_n + a_{2n} \geq 3n$; $a_{n+1}+n \leq 2\sqrt{a_n \left(n+1\right)}$ for all $n\in\mathbb N$ (where $\mathbb N=\left\{1,2,3,...\right\}$).
    a) Prove that the inequality $a_n \geq n$ holds for every $n \in \mathbb N$.
    b) Give an example of such a sequence.
  2. Let $ P(x)$ be a polynomial with a non-negative coefficients. Prove that if the inequality $ P\left(\frac {1}{x}\right)P(x)\geq 1$ holds for $ x = 1$, then this inequality holds for each positive $ x$.
  3. Let $p, q, r$ be positive real numbers and $n$ a natural number. Show that if $pqr = 1$, then \[ \frac{1}{p^n+q^n+1} + \frac{1}{q^n+r^n+1} + \frac{1}{r^n+p^n+1} \leq 1. \]
  4. Let $x_1$, $x_2$, ..., $x_n$ be real numbers with arithmetic mean $X$. Prove that there is a positive integer $K$ such that for any integer $i$ satisfying $0\leq i<K$, we have $$\frac{1}{K-i}\sum_{j=i+1}^{K} x_j \leq X.$$ In other words, prove that there is a positive integer $K$ such that the arithmetic mean of each of the lists $\left\{x_1,x_2,...,x_K\right\}$, $\left\{x_2,x_3,...,x_K\right\}$, $\left\{x_3,...,x_K\right\}$, ..., $\left\{x_{K-1},x_K\right\}$, $\left\{x_K\right\}$ is not greater than $X$.
  5. Determine the range of the following function defined for integer $k$, \[f(k)=(k)_3+(2k)_5+(3k)_7-6k\] where $(k)_{2n+1}$ denotes the multiple of $2n+1$ closest to $k$
  6. A positive integer is written on each of the six faces of a cube. For each vertex of the cube we compute the product of the numbers on the three adjacent faces. The sum of these products is $1001$. What is the sum of the six numbers on the faces?
  7. Find all sets $X$ consisting of at least two positive integers such that for every two elements $m,n\in X$, where $n>m$, there exists an element $k\in X$ such that $n=mk^2$.
  8. Let $f\left(x\right)$ be a non-constant polynomial with integer coefficients, and let $u$ be an arbitrary positive integer. Prove that there is an integer $n$ such that $f\left(n\right)$ has at least $u$ distinct prime factors and $f\left(n\right) \neq 0$.
  9. A set $S$ of $n-1$ natural numbers is given ($n\ge 3$). There exist at least at least two elements in this set whose difference is not divisible by $n$. Prove that it is possible to choose a non-empty subset of $S$ so that the sum of its elements is divisible by $n$.
  10. Is there an infinite sequence of prime numbers $p_1$, $p_2$, $\ldots$, $p_n$, $p_{n+1}$, $\ldots$ such that $|p_{n+1}-2p_n|=1$ for each $n \in \mathbb{N}$?
  11. Given a table $m\times n$, in each cell of which a number $+1$ or $-1$ is written. It is known that initially exactly one $-1$ is in the table, all the other numbers being $+1$. During a move, it is allowed to chose any cell containing $-1$, replace this $-1$ by $0$, and simultaneously multiply all the numbers in the neighbouring cells by $-1$ (we say that two cells are neighbouring if they have a common side). Find all $(m,n)$ for which using such moves one can obtain the table containing zeros only, regardless of the cell in which the initial $-1$ stands.
  12. There are $2n$ different numbers in a row. By one move we can interchange any two numbers or interchange any $3$ numbers cyclically (choose $a,b,c$ and place $a$ instead of $b$, $b$ instead of $c$, $c$ instead of $a$). What is the minimal number of moves that is always sufficient to arrange the numbers in increasing order ?
  13. The $25$ member states of the European Union set up a committee with the following rules:
    • the committee should meet daily;
    • at each meeting, at least one member should be represented;
    • at any two different meetings, a different set of member states should be represented;
    • at $n^{th}$ meeting, for every $k<n$, the set of states represented should include at least one state that was represented at the $k^{th}$ meeting.
    For how many days can the committee have its meetings?
  14. We say that a pile is a set of four or more nuts. Two persons play the following game. They start with one pile of $n \geq 4$ nuts. During a move a player takes one of the piles that they have and split it into two nonempty sets (these sets are not necessarily piles, they can contain arbitrary number of nuts). If the player cannot move, he loses. For which values of $n$ does the first player have a winning strategy?
  15. A circle is divided into $13$ segments, numbered consecutively from $1$ to $13$. Five fleas called $A,B,C,D$ and $E$ are sitting in the segments $1,2,3,4$ and $5$. A flea is allowed to jump to an empty segment five positions away in either direction around the circle. Only one flea jumps at the same time, and two fleas cannot be in the same segment. After some jumps, the fleas are back in the segments $1,2,3,4,5$, but possibly in some other order than they started. Which orders are possible ?
  16. Through a point $P$ exterior to a given circle pass a secant and a tangent to the circle. The secant intersects the circle at $A$ and $B$, and the tangent touches the circle at $C$ on the same side of the diameter through $P$ as the points $A$ and $B$. The projection of the point $C$ on the diameter is called $Q$. Prove that the line $QC$ bisects the angle $\angle AQB$.
  17. Consider a rectangle with sidelengths 3 and 4, pick an arbitrary inner point on each side of this rectangle. Let $x, y, z$ and $u$ denote the side lengths of the quadrilateral spanned by these four points. Prove that $25 \leq x^2+y^2+z^2+u^2 \leq 50$.
  18. A ray emanating from the vertex $A$ of the triangle $ABC$ intersects the side $BC$ at $X$ and the circumcircle of triangle $ABC$ at $Y$. Prove that $$\frac{1}{AX}+\frac{1}{XY}\geq \frac{4}{BC}.$$
  19. Let $D$ be the midpoint of the side $BC$ of a triangle $ABC$. Let $M$ be a point on the side $BC$ such that $\angle BAM = \angle DAC$. Further, let $L$ be the second intersection point of the circumcircle of the triangle $CAM$ with the side $AB$, and let $K$ be the second intersection point of the circumcircle of the triangle $BAM$ with the side $AC$. Prove that $KL \parallel BC$.
  20. Three fixed circles pass through the points $A$ and $B$. Let $X$ be a variable point on the first circle different from $A$ and $B$. The line $AX$ intersects the other two circles at $Y$ and $Z$ (with $Y$ between $X$ and $Z$). Show that the ratio $\dfrac{XY}{YZ}$ is independent of the position of $X$.

Post a Comment


$hide=home

$type=three$count=6$sr=random$t=oot$h=1$l=0$meta=hide$rm=hide$sn=0

$hide=post$type=three$count=6$sr=random$t=oot$h=1$l=0$meta=hide$rm=hide$sn=0

$hide=home

Kỷ Yếu$cl=violet$type=three$count=6$sr=random$t=oot$h=1$l=0$meta=hide$rm=hide$sn=0

Journals$cl=green$type=three$count=6$sr=random$t=oot$h=1$l=0$meta=hide$rm=hide$sn=0

Name

Ả-rập Xê-út,1,Abel,5,Albania,2,AMM,2,Amsterdam,5,Ấn Độ,1,An Giang,21,Andrew Wiles,1,Anh,2,Áo,1,APMO,19,Ba Đình,2,Ba Lan,1,Bà Rịa Vũng Tàu,52,Bắc Giang,49,Bắc Kạn,1,Bạc Liêu,9,Bắc Ninh,47,Bắc Trung Bộ,7,Bài Toán Hay,5,Balkan,37,Baltic Way,30,BAMO,1,Bất Đẳng Thức,66,Bến Tre,46,Benelux,13,Bình Định,44,Bình Dương,21,Bình Phước,38,Bình Thuận,34,Birch,1,Booklet,11,Bosnia Herzegovina,3,BoxMath,3,Brazil,2,Bùi Đắc Hiên,1,Bùi Thị Thiện Mỹ,1,Bùi Văn Tuyên,1,Bùi Xuân Diệu,1,Bulgaria,5,Buôn Ma Thuột,1,BxMO,12,Cà Mau,13,Cần Thơ,14,Canada,39,Cao Bằng,6,Cao Quang Minh,1,Câu Chuyện Toán Học,36,Caucasus,2,CGMO,10,China,10,Chọn Đội Tuyển,347,Chu Tuấn Anh,1,Chuyên Đề,124,Chuyên Sư Phạm,31,Chuyên Trần Hưng Đạo,3,Collection,8,College Mathematic,1,Concours,1,Cono Sur,1,Contest,610,Correspondence,1,Cosmin Poahata,1,Crux,2,Czech-Polish-Slovak,25,Đà Nẵng,39,Đa Thức,2,Đại Số,20,Đắk Lắk,54,Đắk Nông,7,Đan Phượng,1,Danube,7,Đào Thái Hiệp,1,ĐBSCL,2,Đề Thi HSG,1641,Đề Thi JMO,1,Điện Biên,8,Định Lý,1,Định Lý Beaty,1,Đỗ Hữu Đức Thịnh,1,Do Thái,3,Doãn Quang Tiến,4,Đoàn Quỳnh,1,Đoàn Văn Trung,1,Đống Đa,4,Đồng Nai,49,Đồng Tháp,51,Du Hiền Vinh,1,Đức,1,Duyên Hải Bắc Bộ,25,E-Book,33,EGMO,16,ELMO,19,EMC,8,Epsilon,1,Estonian,5,Euler,1,Evan Chen,1,Fermat,3,Finland,4,Forum Of Geometry,2,Furstenberg,1,G. Polya,3,Gặp Gỡ Toán Học,26,Gauss,1,GDTX,3,Geometry,12,Gia Lai,25,Gia Viễn,2,Giải Tích Hàm,1,Giảng Võ,1,Giới hạn,2,Goldbach,1,Hà Giang,2,Hà Lan,1,Hà Nam,29,Hà Nội,231,Hà Tĩnh,72,Hà Trung Kiên,1,Hải Dương,49,Hải Phòng,42,Hàn Quốc,5,Hậu Giang,4,Hậu Lộc,1,Hilbert,1,Hình Học,33,HKUST,7,Hòa Bình,13,Hoài Nhơn,1,Hoàng Bá Minh,1,Hoàng Minh Quân,1,Hodge,1,Hojoo Lee,2,HOMC,5,HongKong,8,HSG 10,100,HSG 11,86,HSG 12,580,HSG 9,402,HSG Cấp Trường,78,HSG Quốc Gia,99,HSG Quốc Tế,16,Hứa Lâm Phong,1,Hứa Thuần Phỏng,1,Hùng Vương,2,Hưng Yên,32,Hương Sơn,2,Huỳnh Kim Linh,1,Hy Lạp,1,IMC,25,IMO,54,India,45,Inequality,13,InMC,1,International,307,Iran,11,Jakob,1,JBMO,41,Jewish,1,Journal,20,Junior,38,K2pi,1,Kazakhstan,1,Khánh Hòa,16,KHTN,53,Kiên Giang,63,Kim Liên,1,Kon Tum,18,Korea,5,Kvant,2,Kỷ Yếu,42,Lai Châu,4,Lâm Đồng,33,Lạng Sơn,21,Langlands,1,Lào Cai,16,Lê Hải Châu,1,Lê Hải Khôi,1,Lê Hoành Phò,4,Lê Khánh Sỹ,3,Lê Minh Cường,1,Lê Phúc Lữ,1,Lê Phương,1,Lê Quý Đôn,1,Lê Viết Hải,1,Lê Việt Hưng,1,Leibniz,1,Long An,42,Lớp 10,10,Lớp 10 Chuyên,452,Lớp 10 Không Chuyên,229,Lớp 11,1,Lục Ngạn,1,Lượng giác,1,Lương Tài,1,Lưu Giang Nam,2,Lý Thánh Tông,1,Macedonian,1,Malaysia,1,Margulis,2,Mark Levi,1,Mathematical Excalibur,1,Mathematical Reflections,1,Mathematics Magazine,1,Mathematics Today,1,Mathley,1,MathLinks,1,MathProblems Journal,1,Mathscope,8,MathsVN,5,MathVN,1,MEMO,10,Metropolises,4,Mexico,1,MIC,1,Michael Guillen,1,Mochizuki,1,Moldova,1,Moscow,1,Mỹ,9,MYTS,4,Nam Định,32,Nam Phi,1,Nam Trung Bộ,1,National,249,Nesbitt,1,Newton,4,Nghệ An,50,Ngô Bảo Châu,2,Ngô Việt Hải,1,Ngọc Huyền,2,Nguyễn Anh Tuyến,1,Nguyễn Bá Đang,1,Nguyễn Đình Thi,1,Nguyễn Đức Tấn,1,Nguyễn Đức Thắng,1,Nguyễn Duy Khương,1,Nguyễn Duy Tùng,1,Nguyễn Hữu Điển,3,Nguyễn Mình Hà,1,Nguyễn Minh Tuấn,8,Nguyễn Phan Tài Vương,1,Nguyễn Phú Khánh,1,Nguyễn Phúc Tăng,1,Nguyễn Quản Bá Hồng,1,Nguyễn Quang Sơn,1,Nguyễn Tài Chung,5,Nguyễn Tăng Vũ,1,Nguyễn Tất Thu,1,Nguyễn Thúc Vũ Hoàng,1,Nguyễn Trung Tuấn,8,Nguyễn Tuấn Anh,2,Nguyễn Văn Huyện,3,Nguyễn Văn Mậu,25,Nguyễn Văn Nho,1,Nguyễn Văn Quý,2,Nguyễn Văn Thông,1,Nguyễn Việt Anh,1,Nguyễn Vũ Lương,2,Nhật Bản,3,Nhóm $\LaTeX$,4,Nhóm Toán,1,Ninh Bình,41,Ninh Thuận,15,Nội Suy Lagrange,2,Nội Suy Newton,1,Nordic,19,Olympiad Corner,1,Olympiad Preliminary,2,Olympic 10,98,Olympic 10/3,5,Olympic 11,89,Olympic 12,30,Olympic 24/3,6,Olympic 27/4,20,Olympic 30/4,66,Olympic KHTN,6,Olympic Sinh Viên,73,Olympic Tháng 4,12,Olympic Toán,300,Olympic Toán Sơ Cấp,3,PAMO,1,Phạm Đình Đồng,1,Phạm Đức Tài,1,Phạm Huy Hoàng,1,Pham Kim Hung,3,Phạm Quốc Sang,2,Phan Huy Khải,1,Phan Thành Nam,1,Pháp,2,Philippines,8,Phú Thọ,30,Phú Yên,26,Phùng Hồ Hải,1,Phương Trình Hàm,11,Phương Trình Pythagoras,1,Pi,1,Polish,32,Problems,1,PT-HPT,14,PTNK,44,Putnam,25,Quảng Bình,44,Quảng Nam,31,Quảng Ngãi,33,Quảng Ninh,43,Quảng Trị,26,Quỹ Tích,1,Riemann,1,RMM,12,RMO,24,Romania,36,Romanian Mathematical,1,Russia,1,Sách Thường Thức Toán,7,Sách Toán,69,Sách Toán Cao Học,1,Sách Toán THCS,7,Saudi Arabia,7,Scholze,1,Serbia,17,Sharygin,24,Shortlists,56,Simon Singh,1,Singapore,1,Số Học - Tổ Hợp,27,Sóc Trăng,28,Sơn La,11,Spain,8,Star Education,5,Stars of Mathematics,11,Swinnerton-Dyer,1,Talent Search,1,Tăng Hải Tuân,2,Tạp Chí,14,Tập San,6,Tây Ban Nha,1,Tây Ninh,29,Thạch Hà,1,Thái Bình,39,Thái Nguyên,49,Thái Vân,2,Thanh Hóa,57,THCS,2,Thổ Nhĩ Kỳ,5,Thomas J. Mildorf,1,THPT Chuyên Lê Quý Đôn,1,THPTQG,15,THTT,6,Thừa Thiên Huế,35,Tiền Giang,19,Tin Tức Toán Học,1,Titu Andreescu,2,Toán 12,7,Toán Cao Cấp,3,Toán Chuyên,2,Toán Rời Rạc,5,Toán Tuổi Thơ,3,Tôn Ngọc Minh Quân,2,TOT,1,TPHCM,125,Trà Vinh,5,Trắc Nghiệm,1,Trắc Nghiệm Toán,2,Trại Hè,34,Trại Hè Hùng Vương,25,Trại Hè Phương Nam,5,Trần Đăng Phúc,1,Trần Minh Hiền,2,Trần Nam Dũng,9,Trần Phương,1,Trần Quang Hùng,1,Trần Quốc Anh,2,Trần Quốc Luật,1,Trần Quốc Nghĩa,1,Trần Tiến Tự,1,Trịnh Đào Chiến,2,Trung Quốc,12,Trường Đông,19,Trường Hè,7,Trường Thu,1,Trường Xuân,2,TST,55,Tuyên Quang,6,Tuyển Sinh,3,Tuyển Tập,44,Tuymaada,4,Undergraduate,66,USA,44,USAJMO,10,USATST,7,Uzbekistan,1,Vasile Cîrtoaje,4,Vật Lý,1,Viện Toán Học,2,Vietnam,4,Viktor Prasolov,1,VIMF,1,Vinh,27,Vĩnh Long,20,Vĩnh Phúc,63,Virginia Tech,1,VLTT,1,VMEO,4,VMF,12,VMO,46,VNTST,22,Võ Anh Khoa,1,Võ Quốc Bá Cẩn,26,Võ Thành Văn,1,Vojtěch Jarník,6,Vũ Hữu Bình,7,Vương Trung Dũng,1,WFNMC Journal,1,Wiles,1,Yên Bái,17,Yên Định,1,Yên Thành,1,Zhautykov,11,Zhou Yuan Zhe,1,
ltr
item
MOlympiad: [Solutions] Baltic Way Mathematical Competition 2004
[Solutions] Baltic Way Mathematical Competition 2004
MOlympiad
https://www.molympiad.net/2017/08/baltic-way-mathematical-competition-2004-solutions.html
https://www.molympiad.net/
https://www.molympiad.net/
https://www.molympiad.net/2017/08/baltic-way-mathematical-competition-2004-solutions.html
true
2506595080985176441
UTF-8
Loaded All Posts Not found any posts VIEW ALL Readmore Reply Cancel reply Delete By Home PAGES POSTS View All RECOMMENDED FOR YOU LABEL ARCHIVE SEARCH ALL POSTS Not found any post match with your request Back Home Sunday Monday Tuesday Wednesday Thursday Friday Saturday Sun Mon Tue Wed Thu Fri Sat January February March April May June July August September October November December Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec just now 1 minute ago $$1$$ minutes ago 1 hour ago $$1$$ hours ago Yesterday $$1$$ days ago $$1$$ weeks ago more than 5 weeks ago Followers Follow THIS PREMIUM CONTENT IS LOCKED Please share to unlock Copy All Code Select All Code All codes were copied to your clipboard Can not copy the codes / texts, please press [CTRL]+[C] (or CMD+C with Mac) to copy