$hide=mobile

Baltic Way Mathematical Competition 1998 Solutions

  1. Find all functions $f$ of two variables, whose arguments $x,y$ and values $f(x,y)$ are positive integers, satisfying the following conditions (for all positive integers $x$ and $y$): \begin{align*} f(x,x)& =x,\\ f(x,y)& =f(y,x),\\ (x+y)f(x,y)& =yf(x,x+y).\end{align*}
  2. A triple $(a,b,c)$ of positive integers is called quasi-Pythagorean if there exists a triangle with lengths of the sides $a,b,c$ and the angle opposite to the side $c$ equal to $120^{\circ}$. Prove that if $(a,b,c)$ is a quasi-Pythagorean triple then $c$ has a prime divisor bigger than $5$.
  3. Find all positive integer solutions to $2x^2+5y^2=11(xy-11)$.
  4. Let $P$ be a polynomial with integer coefficients. Suppose that for $n=1,2,3,\ldots ,1998$ the number $P(n)$ is a three-digit positive integer. Prove that the polynomial $P$ has no integer roots.
  5. Let $a$ be an odd digit and $b$ an even digit. Prove that for every positive integer $n$ there exists a positive integer, divisible by $2^n$, whose decimal representation contains no digits other than $a$ and $b$.
  6. Let $P$ be a polynomial of degree $6$ and let $a,b$ be real numbers such that $0<a<b$. Suppose that $P(a)=P(-a),P(b)=P(-b),P'(0)=0$. Prove that $P(x)=P(-x)$ for all real $x$.
  7. Let $\mathbb{R}$ be the set of all real numbers. Find all functions $f:\mathbb{R}\rightarrow\mathbb{R}$ satisfying for all $x,y\in\mathbb{R}$ the equation $f(x)+f(y)=f(f(x)f(y))$.
  8. Let $P_k(x)=1+x+x^2+\ldots +x^{k-1}$. Show that \[ \sum_{k=1}^n \binom{n}{k} P_k(x)=2^{n-1} P_n \left( \frac{x+1}{2} \right) \] for every real number $x$ and every positive integer $n$.
  9. Let the numbers $\alpha ,\beta $ satisfy $0<\alpha <\beta <\frac{\pi}{2}$ and let $\gamma $ and $\delta $ be the numbers defined by the conditions:
    • $0<\gamma<\frac{\pi}{2}$, and $\tan\gamma$ is the arithmetic mean of $\tan\alpha$ and $\tan\beta$;
    • $0<\delta<\frac{\pi}{2}$, and $\frac{1}{\cos\delta}$ is the arithmetic mean of $\frac{1}{\cos\alpha}$ and $\frac{1}{\cos\beta}$.
    Prove that $\gamma <\delta $.
  10. Let $n\ge 4$ be an even integer. A regular $n$-gon and a regular $(n-1)$-gon are inscribed into the unit circle. For each vertex of the $n$-gon consider the distance from this vertex to the nearest vertex of the $(n-1)$-gon, measured along the circumference. Let $S$ be the sum of these $n$ distances. Prove that $S$ depends only on $n$, and not on the relative position of the two polygons.
  11. If $a,b,c$ be the lengths of the sides of a triangle. Let $R$ denote its circumradius. Prove that \[ R\ge \frac{a^2+b^2}{2\sqrt{2a^2+2b^2-c^2}}.\] When does equality hold?
  12. In a triangle $ABC$, $\angle BAC =90^{\circ}$. Point $D$ lies on the side $BC$ and satisfies $\angle BDA=2\angle BAD$. Prove that \[\frac{2}{AD}=\frac{1}{BD}+\frac{1}{CD} \]
  13. In convex pentagon $ABCDE$, the sides $AE,BC$ are parallel and $\angle ADE=\angle BDC$. The diagonals $AC$ and $BE$ intersect at $P$. Prove that $\angle EAD=\angle BDP$ and $\angle CBD=\angle ADP$.
  14. Given triangle $ABC$ with $AB<AC$. The line passing through $B$ and parallel to $AC$ meets the external angle bisector of $\angle BAC$ at $D$. The line passing through $C$ and parallel to $AB$ meets this bisector at $E$. Point $F$ lies on the side $AC$ and satisfies the equality $FC=AB$. Prove that $DF=FE$.
  15. Given acute triangle $ABC$. Point $D$ is the foot of the perpendicular from $A$ to $BC$. Point $E$ lies on the segment $AD$ and satisfies the equation \[\frac{AE}{ED}=\frac{CD}{DB}.\] Point $F$ is the foot of the perpendicular from $D$ to $BE$. Prove that $\angle AFC=90^{\circ}$.
  16. Is it possible to cover a $13\times 13$ chessboard with forty-two pieces of dimensions $4\times 1$ such that only the central square of the chessboard remains uncovered?
  17. Let $n$ and $k$ be positive integers. There are $nk$ objects (of the same size) and $k$ boxes, each of which can hold $n$ objects. Each object is coloured in one of $k$ different colours. Show that the objects can be packed in the boxes so that each box holds objects of at most two colours.
  18. Determine all positive integers $n$ for which there exists a set $S$ with the following properties:
    • $S$ consists of $n$ positive integers, all smaller than $2^{n-1}$;
    • for any two distinct subsets $A$ and $B$ of $S$, the sum of the elements of $A$ is different from the sum of the elements of $B$.
  19. Consider a ping-pong match between two teams, each consisting of $1000$ players. Each player played against each player of the other team exactly once (there are no draws in ping-pong). Prove that there exist ten players, all from the same team, such that every member of the other team has lost his game against at least one of those ten players.
  20. We say that some positive integer $m$ covers the number $1998$, if $1,9,9,8$ appear in this order as digits of $m$. (For instance $1998$ is covered by $2\textbf{1}59\textbf{9}36\textbf{98}$ but not by $213326798$.) Let $k(n)$ be the number of positive integers that cover $1998$ and have exactly $n$ digits ($n\ge 5$), all different from $0$. What is the remainder of $k(n)$ on division by $8$?

Post a Comment


$hide=home

$type=three$count=6$sr=random$t=oot$h=1$l=0$meta=hide$rm=hide$sn=0

$hide=post$type=three$count=6$sr=random$t=oot$h=1$l=0$meta=hide$rm=hide$sn=0

$hide=home

Kỷ Yếu$cl=violet$type=three$count=6$sr=random$t=oot$h=1$l=0$meta=hide$rm=hide$sn=0

Journals$cl=green$type=three$count=6$sr=random$t=oot$h=1$l=0$meta=hide$rm=hide$sn=0

Name

Ả-rập Xê-út,1,Abel,5,Albania,2,AMM,2,Amsterdam,5,Ấn Độ,1,An Giang,21,Andrew Wiles,1,Anh,2,Áo,1,APMO,19,Ba Đình,2,Ba Lan,1,Bà Rịa Vũng Tàu,52,Bắc Giang,49,Bắc Kạn,1,Bạc Liêu,9,Bắc Ninh,47,Bắc Trung Bộ,7,Bài Toán Hay,5,Balkan,37,Baltic Way,30,BAMO,1,Bất Đẳng Thức,66,Bến Tre,46,Benelux,13,Bình Định,44,Bình Dương,21,Bình Phước,38,Bình Thuận,34,Birch,1,Booklet,11,Bosnia Herzegovina,3,BoxMath,3,Brazil,2,Bùi Đắc Hiên,1,Bùi Thị Thiện Mỹ,1,Bùi Văn Tuyên,1,Bùi Xuân Diệu,1,Bulgaria,5,Buôn Ma Thuột,1,BxMO,12,Cà Mau,13,Cần Thơ,14,Canada,39,Cao Bằng,6,Cao Quang Minh,1,Câu Chuyện Toán Học,36,Caucasus,2,CGMO,10,China,10,Chọn Đội Tuyển,347,Chu Tuấn Anh,1,Chuyên Đề,124,Chuyên Sư Phạm,31,Chuyên Trần Hưng Đạo,3,Collection,8,College Mathematic,1,Concours,1,Cono Sur,1,Contest,610,Correspondence,1,Cosmin Poahata,1,Crux,2,Czech-Polish-Slovak,25,Đà Nẵng,39,Đa Thức,2,Đại Số,20,Đắk Lắk,54,Đắk Nông,7,Đan Phượng,1,Danube,7,Đào Thái Hiệp,1,ĐBSCL,2,Đề Thi HSG,1641,Đề Thi JMO,1,Điện Biên,8,Định Lý,1,Định Lý Beaty,1,Đỗ Hữu Đức Thịnh,1,Do Thái,3,Doãn Quang Tiến,4,Đoàn Quỳnh,1,Đoàn Văn Trung,1,Đống Đa,4,Đồng Nai,49,Đồng Tháp,51,Du Hiền Vinh,1,Đức,1,Duyên Hải Bắc Bộ,25,E-Book,33,EGMO,16,ELMO,19,EMC,8,Epsilon,1,Estonian,5,Euler,1,Evan Chen,1,Fermat,3,Finland,4,Forum Of Geometry,2,Furstenberg,1,G. Polya,3,Gặp Gỡ Toán Học,26,Gauss,1,GDTX,3,Geometry,12,Gia Lai,25,Gia Viễn,2,Giải Tích Hàm,1,Giảng Võ,1,Giới hạn,2,Goldbach,1,Hà Giang,2,Hà Lan,1,Hà Nam,29,Hà Nội,231,Hà Tĩnh,72,Hà Trung Kiên,1,Hải Dương,49,Hải Phòng,42,Hàn Quốc,5,Hậu Giang,4,Hậu Lộc,1,Hilbert,1,Hình Học,33,HKUST,7,Hòa Bình,13,Hoài Nhơn,1,Hoàng Bá Minh,1,Hoàng Minh Quân,1,Hodge,1,Hojoo Lee,2,HOMC,5,HongKong,8,HSG 10,100,HSG 11,86,HSG 12,580,HSG 9,402,HSG Cấp Trường,78,HSG Quốc Gia,99,HSG Quốc Tế,16,Hứa Lâm Phong,1,Hứa Thuần Phỏng,1,Hùng Vương,2,Hưng Yên,32,Hương Sơn,2,Huỳnh Kim Linh,1,Hy Lạp,1,IMC,25,IMO,54,India,45,Inequality,13,InMC,1,International,307,Iran,11,Jakob,1,JBMO,41,Jewish,1,Journal,20,Junior,38,K2pi,1,Kazakhstan,1,Khánh Hòa,16,KHTN,53,Kiên Giang,63,Kim Liên,1,Kon Tum,18,Korea,5,Kvant,2,Kỷ Yếu,42,Lai Châu,4,Lâm Đồng,33,Lạng Sơn,21,Langlands,1,Lào Cai,16,Lê Hải Châu,1,Lê Hải Khôi,1,Lê Hoành Phò,4,Lê Khánh Sỹ,3,Lê Minh Cường,1,Lê Phúc Lữ,1,Lê Phương,1,Lê Quý Đôn,1,Lê Viết Hải,1,Lê Việt Hưng,1,Leibniz,1,Long An,42,Lớp 10,10,Lớp 10 Chuyên,452,Lớp 10 Không Chuyên,229,Lớp 11,1,Lục Ngạn,1,Lượng giác,1,Lương Tài,1,Lưu Giang Nam,2,Lý Thánh Tông,1,Macedonian,1,Malaysia,1,Margulis,2,Mark Levi,1,Mathematical Excalibur,1,Mathematical Reflections,1,Mathematics Magazine,1,Mathematics Today,1,Mathley,1,MathLinks,1,MathProblems Journal,1,Mathscope,8,MathsVN,5,MathVN,1,MEMO,10,Metropolises,4,Mexico,1,MIC,1,Michael Guillen,1,Mochizuki,1,Moldova,1,Moscow,1,Mỹ,9,MYTS,4,Nam Định,32,Nam Phi,1,Nam Trung Bộ,1,National,249,Nesbitt,1,Newton,4,Nghệ An,50,Ngô Bảo Châu,2,Ngô Việt Hải,1,Ngọc Huyền,2,Nguyễn Anh Tuyến,1,Nguyễn Bá Đang,1,Nguyễn Đình Thi,1,Nguyễn Đức Tấn,1,Nguyễn Đức Thắng,1,Nguyễn Duy Khương,1,Nguyễn Duy Tùng,1,Nguyễn Hữu Điển,3,Nguyễn Mình Hà,1,Nguyễn Minh Tuấn,8,Nguyễn Phan Tài Vương,1,Nguyễn Phú Khánh,1,Nguyễn Phúc Tăng,1,Nguyễn Quản Bá Hồng,1,Nguyễn Quang Sơn,1,Nguyễn Tài Chung,5,Nguyễn Tăng Vũ,1,Nguyễn Tất Thu,1,Nguyễn Thúc Vũ Hoàng,1,Nguyễn Trung Tuấn,8,Nguyễn Tuấn Anh,2,Nguyễn Văn Huyện,3,Nguyễn Văn Mậu,25,Nguyễn Văn Nho,1,Nguyễn Văn Quý,2,Nguyễn Văn Thông,1,Nguyễn Việt Anh,1,Nguyễn Vũ Lương,2,Nhật Bản,3,Nhóm $\LaTeX$,4,Nhóm Toán,1,Ninh Bình,41,Ninh Thuận,15,Nội Suy Lagrange,2,Nội Suy Newton,1,Nordic,19,Olympiad Corner,1,Olympiad Preliminary,2,Olympic 10,98,Olympic 10/3,5,Olympic 11,89,Olympic 12,30,Olympic 24/3,6,Olympic 27/4,20,Olympic 30/4,66,Olympic KHTN,6,Olympic Sinh Viên,73,Olympic Tháng 4,12,Olympic Toán,300,Olympic Toán Sơ Cấp,3,PAMO,1,Phạm Đình Đồng,1,Phạm Đức Tài,1,Phạm Huy Hoàng,1,Pham Kim Hung,3,Phạm Quốc Sang,2,Phan Huy Khải,1,Phan Thành Nam,1,Pháp,2,Philippines,8,Phú Thọ,30,Phú Yên,26,Phùng Hồ Hải,1,Phương Trình Hàm,11,Phương Trình Pythagoras,1,Pi,1,Polish,32,Problems,1,PT-HPT,14,PTNK,44,Putnam,25,Quảng Bình,44,Quảng Nam,31,Quảng Ngãi,33,Quảng Ninh,43,Quảng Trị,26,Quỹ Tích,1,Riemann,1,RMM,12,RMO,24,Romania,36,Romanian Mathematical,1,Russia,1,Sách Thường Thức Toán,7,Sách Toán,69,Sách Toán Cao Học,1,Sách Toán THCS,7,Saudi Arabia,7,Scholze,1,Serbia,17,Sharygin,24,Shortlists,56,Simon Singh,1,Singapore,1,Số Học - Tổ Hợp,27,Sóc Trăng,28,Sơn La,11,Spain,8,Star Education,5,Stars of Mathematics,11,Swinnerton-Dyer,1,Talent Search,1,Tăng Hải Tuân,2,Tạp Chí,14,Tập San,6,Tây Ban Nha,1,Tây Ninh,29,Thạch Hà,1,Thái Bình,39,Thái Nguyên,49,Thái Vân,2,Thanh Hóa,57,THCS,2,Thổ Nhĩ Kỳ,5,Thomas J. Mildorf,1,THPT Chuyên Lê Quý Đôn,1,THPTQG,15,THTT,6,Thừa Thiên Huế,35,Tiền Giang,19,Tin Tức Toán Học,1,Titu Andreescu,2,Toán 12,7,Toán Cao Cấp,3,Toán Chuyên,2,Toán Rời Rạc,5,Toán Tuổi Thơ,3,Tôn Ngọc Minh Quân,2,TOT,1,TPHCM,125,Trà Vinh,5,Trắc Nghiệm,1,Trắc Nghiệm Toán,2,Trại Hè,34,Trại Hè Hùng Vương,25,Trại Hè Phương Nam,5,Trần Đăng Phúc,1,Trần Minh Hiền,2,Trần Nam Dũng,9,Trần Phương,1,Trần Quang Hùng,1,Trần Quốc Anh,2,Trần Quốc Luật,1,Trần Quốc Nghĩa,1,Trần Tiến Tự,1,Trịnh Đào Chiến,2,Trung Quốc,12,Trường Đông,19,Trường Hè,7,Trường Thu,1,Trường Xuân,2,TST,55,Tuyên Quang,6,Tuyển Sinh,3,Tuyển Tập,44,Tuymaada,4,Undergraduate,66,USA,44,USAJMO,10,USATST,7,Uzbekistan,1,Vasile Cîrtoaje,4,Vật Lý,1,Viện Toán Học,2,Vietnam,4,Viktor Prasolov,1,VIMF,1,Vinh,27,Vĩnh Long,20,Vĩnh Phúc,63,Virginia Tech,1,VLTT,1,VMEO,4,VMF,12,VMO,46,VNTST,22,Võ Anh Khoa,1,Võ Quốc Bá Cẩn,26,Võ Thành Văn,1,Vojtěch Jarník,6,Vũ Hữu Bình,7,Vương Trung Dũng,1,WFNMC Journal,1,Wiles,1,Yên Bái,17,Yên Định,1,Yên Thành,1,Zhautykov,11,Zhou Yuan Zhe,1,
ltr
item
MOlympiad: Baltic Way Mathematical Competition 1998 Solutions
Baltic Way Mathematical Competition 1998 Solutions
MOlympiad
https://www.molympiad.net/2017/08/baltic-way-mathematical-competition-1998-solutions.html
https://www.molympiad.net/
https://www.molympiad.net/
https://www.molympiad.net/2017/08/baltic-way-mathematical-competition-1998-solutions.html
true
2506595080985176441
UTF-8
Loaded All Posts Not found any posts VIEW ALL Readmore Reply Cancel reply Delete By Home PAGES POSTS View All RECOMMENDED FOR YOU LABEL ARCHIVE SEARCH ALL POSTS Not found any post match with your request Back Home Sunday Monday Tuesday Wednesday Thursday Friday Saturday Sun Mon Tue Wed Thu Fri Sat January February March April May June July August September October November December Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec just now 1 minute ago $$1$$ minutes ago 1 hour ago $$1$$ hours ago Yesterday $$1$$ days ago $$1$$ weeks ago more than 5 weeks ago Followers Follow THIS PREMIUM CONTENT IS LOCKED Please share to unlock Copy All Code Select All Code All codes were copied to your clipboard Can not copy the codes / texts, please press [CTRL]+[C] (or CMD+C with Mac) to copy