$hide=mobile$type=ticker$c=12$cols=3$l=0$sr=random$b=0

Poincaré, Perelman, Khưu Thành Đồng Và.....

This article has
views, Facebook comments and 0 Blogger comments. Leave a comment.
Ức đoán Poincaré, bài toán của thiên niên kỉ (được Viện Clay treo giải 1 triệu đô la) đã được G. Perelman chứng minh. Nhưng nhà toán học 40 tuổi từ chối huy chương Fields, và có lẽ cả 1 triệu đô la. Câu chuyện không ngừng ở đây khi ông Khưu muốn tranh công...

Huy chương Fields 2006

Tháng 8 vừa qua, nhân Đại hội Thế giới họp tại Madrid, Liên hiệp Quốc tế các nhà Toán học (IMU) đã trao tặng huy chương Fields (về toán học, tương đương với giải Nobel), như thường lệ bốn năm một lần. Bốn người được giải : hai chuyên gia về tính xác suất Werner (Pháp) và Okoundov (Nga) – công trình của họ cũng liên quan tới những ngành khác – một nhà giải tích học và lí thuyết số người Úc gốc Hoa Terence Yao (Đào Triết Hiên), và một người Nga nữa, nhà tô pô hình học Grigori Perelman (viện Steklov, St-Petersburg). Phải nói là tiếng tăm của Perelman trên các media quốc tế đã vượt xa ba đồng nghiệp. Tên tuổi của ông đã ra khỏi lãnh vực khoa học thuần tuý, hiển hiện trên trang nhất của những nhật báo lớn. Đây là lần đầu tiên toán học trở thành đề tài sôi nổi của báo chí kể từ sự tích « anh hùng » của Andrew Wiles (chứng minh được định lí « lớn » của Fermat), cuối thế kỉ XX. Cũng phải nói là trong « vụ Perelman » này, có đầy đủ những tố chất « glamour » chẳng mấy khi tìm thấy nơi các nhà toán học và bộ môn khắc khổ của họ : đầu tiên là sự « hóc búa » phi thường của ức đoán Poincaré (bằng chứng là Viện Clay đã xếp nó trong « 7 bài toán của thiên niên kỉ », và treo thưởng 1 triệu đô la cho ai giải được một trong 7 bài ấy) ; sau đó là cá tính phi phàm của chính Perelman, sau khi chứng minh xong đã từ chối, không nhận huy chương Fields, và chắc cũng sẽ từ chối cả giải thưởng 1 triệu đô la ; thêm vào đó là cuộc tranh cãi hơi bị nhầu về « ai trước ai », « ai hơn ai » đang tác động tới sự « thanh cao » của toán học....

PERELMAN và POINCARE

Với ngoại hình như Rasputin, móng tay dài như đồ nho, phong độ như ẩn sĩ, Grigory (Grisha, đối với người thân – nhưng biết ai là « thân » ?) đúng là bức chân dung biếm hoạ của nhà bác học lập dị trong quan niệm của đại chúng. Nhưng ngay cả những người dị ứng với tác phong của Perelman cũng phải thừa nhận khía cạnh « trước sau như một » của ông : năm 1990, Perelman đã từ chối huy chương Nhà toán học trẻ của Châu Âu (Société européenne de mathématiques), bây giờ từ chối huy chương Fields (mặc dầu chủ tịch MIU đã đích thân bay sang St. Petersburg tìm cách thuyết phục), mai kia chắc sẽ từ chối giải Clay. Một người đàn ông bốn mươi tuổi vẫn còn ở với mẹ, sống với 100 đô một tháng, mà từ chối 1 triệu đô la, thì không thể chỉ là làm điệu. Trong lịch sử khoa học, hành xử như Perelman hầu như không có tiền lệ. Mặc dầu trong giới toán học, không thiếu những nhân vật kì dị, chẳng hạn như nhà hình học đại số Alexandre Grothendieck, đang ở đỉnh cao vinh quang, đã từ bỏ tất cả để đi chăn dê, nghe nói trên núi Pyrénées. Nhưng ngay cả Grothendieck, tuy không chịu sang Moskva năm 1966 để nhận huy chương Fields vì bất đồng chính trị, cũng không từ chối giải thưởng này. Trong một lãnh vực khác, trường hợp duy nhất còn ở trong kí ức là trường hợp Jean-Paul Sartre từ chối giải Nobel văn học.

Dù sao chăng nữa, cá tính của Perelman có thể không được nhất trí tán thưởng, song Perelman với tư cách nhà toán học thì không ai có thể phủ nhận : năm 1982, ở tuổi 16, đã được giải nhất trong cuộc thi Olympiad toán học với số điểm tuyệt đối (42/42) ; đỗ tiến sĩ vào cuối thập niên 1980, là người duy nhất trong cùng khoá, được tuyển mộ làm nghiên cứu viên ở Viện Steklov (tương đương với Viện quốc gia nghiên cứu khoa học CNRS của Pháp) ; trong những năm 1990, làm nghiên cứu « sau tiến sĩ » ở New York, được mấy trường, viện mời làm việc thường trực ở Hoa Kì, nhưng đều khước từ và trở về St. Petersburg. Từ đó, hầu như mất tăm mất tích, cho đến 2002-2003, Perelman đưa lên mạng internet ba bài viết ngắn. Chính ba bài viết trứ danh ấy, bốn năm sau, đã được tưởng thưởng vì « những đóng góp vào hình học, mang lại những hiểu biết cách mạng về cấu trúc hình học và giải tích của dòng chảy Ricci ».
 
Câu văn « bí hiểm » đó của Uỷ ban xét duyệt giải Fields (chúng tôi sẽ trở lại ở dưới) không hề đá động tới nhân vật « đầu tiên » của câu chuyện : Henri Poincaré (1854-1912) – đừng nhầm với anh em họ là Raymond Poincaré, thủ tướng – mà nhân thân hoàn toàn trái nghịch với G. Perelman. Đỉnh cao của khoa học đương đại, nhà toán học kiêm vật lí học, triết lí khoa học, được rất nhiều giải thưởng quốc tế, thành viên hay chủ tịch không biết bao nhiêu hiệp hội bác học, thành viên Viện hàn lâm khoa học Pháp, Henri Poincaré là hình ảnh tiêu biểu tốt đẹp nhất về sự thành đạt trí tuệ và xã hội mà giai cấp tư sản thế kỉ XIX có thể sản sinh. Ông cũng là nhà bác học « xuyên ngành » cuối cùng : là nhà triết học về phương pháp luận, ông là tác giả những công trình kinh điển về nền tảng phương pháp khoa học, về cơ cấu não trạng của quá trình khám phá ; là nhà vật lí, ông đã 12 lần được đề nghị giải Nobel, và ngày nay được coi là đồng tác giả của thuyết tương đối « thu hẹp » ; với tư cách nhà toán học, bên cạnh David Hilbert, ông được coi là nhà toán học vĩ đại nhất, đồng thời là « bậc thầy phổ quát cuối cùng », bao trùm đại số học lẫn hình học, lí thuyết số và hình học. Chính ông, trong một công trình năm 1895, đã sáng lập ra một ngành mới của hình học mà ông đặt tên là « analysis situs », ngày nay gọi là tôpô học (topo, tiếng Hi Lạp, có nghĩa : nơi, không gian). Trong một trong những tác phẩm cuối cùng (viết năm 1904), ông đã « nhân tiện » nêu câu hỏi (câu hỏi này sẽ được gọi là « ức đoán của Poincaré ») mà không đào sâu thêm vì « sợ nó dẫn chúng ta đi quá xa ». Nói theo ngôn ngữ toán học hiện đại dưới dạng tổng quát nhất, ức đoán Poincaré có thể phát biểu như sau : « Mọi đa tạp tô pô (không biên) $n$ chiều, compac, liên thông đơn thuần, đều đồng phôi với mặt cầu $n$ chiều ». Có thể nói, đối với các nhà tô pô học, mệnh đề ấy đã trở thành một thứ « Chén thiêng » , mục tiêu của không biết bao cuộc tìm kiếm, giống như định lí « lớn » của Fermat đối với các nhà số học trong suốt ba trăm năm trời. Không thể nào liệt kê được tên tuổi của tất cả các nhà toán học, trong đó có những tay cự phách, đã mắc « hội chứng Poincaré ». Giáo sư John Morgan, chủ nhiệm khoa Toán trường Đại học Columbia, thú nhận thoải mái : « Cuộc đời toán học của tôi đã bị ức đoán Poincaré chế ngự. Tôi tưởng sẽ không bao giờ được thấy nó được chứng minh. Tôi tưởng sẽ chẳng có ai tiếp cận được chứng minh ».

Trước khi đi xa hơn, không thể không giải thích đôi chút để độc giả « ngoại đạo » có một ý niệm về nội dung mệnh đề « ức đoán » quá bí hiểm nói trên. Như chúng tôi đã có dịp đề cập trên cột báo này, viết bài « phổ biến » về toán học là một việc làm nguy hiểm, bởi vì ngôn ngữ toán học hết sức chuẩn xác, chệch đi một chút có thể làm lệch ý nghĩa, thậm chí đảo ngược ý nghĩa, và điều này thường hay xảy ra khi người trình bày dùng những hình ảnh trực quan và ngôn ngữ thường ngày. Ý thức rõ điều đó, chúng ta hãy thử xem xét từng từ ngữ của ức đoán Poincaré :

Từ đầu bài đến đây, chúng tôi đã dùng mà không định nghĩa hai danh từ « hình học » và « tô pô học ». Theo trực quan, mọi người dễ chấp nhận định nghĩa hình học là bộ môn nghiên cứu các hình, dạng. Theo từ nguyên, chữ géométrie (hình học) trong tiếng Hi Lạp lại có nghĩa là đo đạc đất đai. Đối với các nhà toán học Cổ Hi Lạp, không có gì mâu thuẫn giữa hai khái niệm, bởi vì trong quan niệm của họ, khoa học là một thể thống nhất, nó phải vừa giải thích vừa làm chủ Thiên nhiên, nhà hình học và nhà trắc địa đều làm cùng một nghề. Còn thế nào là « nghiên cứu các hình, dạng » ? Hình dạng thì vô số, không thể nào kê khai cho xuể, mà có làm được cũng vô ích. Cho nên cách xử lí tự nhiên nhất là làm thế nào xếp loại theo những tiêu chuẩn nhất định, cũng như nhà thực vật học, nhà côn trùng học xếp cây cỏ, sâu bọ thành loại lớn, loại nhỏ, nhánh, họ... Toán học quan tâm tới cấu trúc, nên các nhà toán học xếp loại các đối tượng họ nghiên cứu bằng cái mà họ gọi là « quan hệ tương đương », tức là những quy tắc biến đổi một đối một mà vẫn giữ nguyên các cấu trúc (phép « đẳng cấu ») ; theo cách xếp loại như vậy, hai cá thể « đẳng cấu » có thể được đồng nhất hoá với nhau (đồng nhất hoá, chứ không đồng nhất, không « bình đẳng », nói rõ như vậy để trả lời những đồ đệ « dậy non » của Jean-Paul Sartre). Ta hãy lấy « analysis situs » của Poincaré làm ví dụ : các cơ cấu mà tô pô học nghiên cứu là những « không gian tô pô », nghĩa là những tập hợp trong đó người ta có thể định nghĩa khái niệm « lân cận », nói nôm na : thế nào là hai điểm « gần » nhau ; một phép đẳng cấu do đó là một phép biến đổi một đối một giữ nguyên được sự « gần nhau » ấy (hai điểm A và B « gần nhau » được biến thành hai điểm A’ và B’ cũng « gần nhau »). Phép đẳng cấu giữa hai không gian tô pô được gọi là phép « đồng phôi » (homéomorphisme), hay nôm na hơn, phép biến dạng liên tục (déformation continue). Cho nên người ta thường gọi tô pô học bằng cái tên nôm na gợi hình là « hình học cao su » : hai cái hình làm bằng màng cao su, thí dụ hình tròn và hình bầu dục, có thể biến hoá cái nọ thành cái kia bằng cách co kéo cái màng cao su mà không làm rách hay phải cắt nó. Có rất nhiều thí dụ dễ hiểu về không gian tô pô. Ai cũng biết những « không gian thực $n$ chiều » mà kí hiệu là $\mathbb{R}^n$ : khi $n=1$ đó là đường thẳng, 2 chiều mặt phẳng (ở trường học, ai chẳng học trên đường thẳng, mỗi điểm được xác định bằng 1 hoành độ, trên mặt phẳng, mỗi điểm được xác định bằng 2 toạ độ), không gian $\mathbb{R}^3$ là không gian « quanh ta » mà cơ học Newton nghiên cứu, R4 là không – thời gian của thuyết tương đối (hẹp)... Hình dung ra không gian nhiều chiều cũng không có gì khó : chẳng cần đọc tiểu thuyết viễn tưởng, ta hãy xem sổ hộ tịch trong đó người ta kê khai tên họ, giới tính, tuổi, chiều cao, quốc tịch, tổng cộng là 5 tham số (được mã hoá thành số), mỗi cá nhân với « 5 toạ độ » ấy là một « điểm » trong không gian R5 ! Và để xếp loại các không gian tô pô (không phân biệt các không gian « đồng phôi »), người ta căn cứ vào những cái « bất biến », tức là những tính chất bất biến qua những phép đồng phôi. Để xếp loại côn trùng, các nhà động vật học đếm số chân, số cánh... Đối với các không gian $\mathbb{R}^n$ , tất nhiên nhà tô pô học nghĩ tới chiều kích của chúng, và đúng như vậy, một định lí nổi tiếng của Whitney (đầu thế kỉ XX) cho biết rằng hai không gian $\mathbb{R}^n$ và $\mathbb{R}^p$ đồng phôi với nhau nếu và chỉ nếu $n=p$. Định lí này dễ cảm nhận bằng trực quan, nhưng muốn chứng minh nó, phải có trình độ tối thiểu là MA đại học về toán, điều này cho thấy sự thâm sâu của những bài toán tô pô học. Một con số – chiều kích $n$ – cũng đủ làm đặc trưng cho các không gian $\mathbb{R}^n$, song sẽ quá ngây thơ nếu ta tưởng rằng đối với các không gian tô pô cũng đơn giản như vậy. Thực ra bài toán đặt ra quá tổng quát, chẳng cần nghiên cứu Sartre (làm sao mà hai cá nhân có thể « bình đằng », « bằng » nhau được ?) cũng có thể nhận thấy. Vì thế, các nhà tô pô học, theo chân Poincaré, sẽ khiêm tốn tự giới hạn trong « các đa tạp tô pô $n$ chiều » mà đại khái ta có thể coi là các « hình » trong hình học đã nói ở trên. Một đa tạp $n$ chiều như vậy là một không gian tô pô « đồng phôi cục bộ » (nghĩa là ở vùng lân cận của mỗi điểm ; chứ nếu « đồng phôi toàn bộ » thì chẳng còn gì để nói nữa) với không gian $\mathbb{R}^n$. Xin lấy một ví dụ để bạn đọc có thể hình dung : Mặt Đất chúng ta đang sống trên đó « nằm trong » không gian (3 chiều) $\mathbb{R}^3$, nhưng ở cục bộ mỗi điểm trên địa cầu, nó đồng phôi với R2 (một mặt phẳng, tức là một đa tạp 2 chiều). Nói nôm na : đứng ở bất cứ nơi nào trên Mặt Đất, người quan sát cũng có cảm tưởng nó là mặt phẳng (chứ không phải mặt cầu). Nhưng ai chẳng biết rằng Mặt Đất không phải là mặt phẳng ! Magellan đã chứng minh điều đó khi ông đi một vòng quanh địa cầu. Đối với nhà tô pô học, hiển nhiên là mặt cầu không thể đồng phôi với mặt phẳng : mặt cầu là compac, mặt phẳng không. Tính compac rất khó giải thích bằng ngôn ngữ hàng ngày, song có thể nói thế này : một không gian tô pô nằm trong một không gian $\mathbb{R}^n$, nếu nó compac thì tất nhiên nó « đóng kín, bị chặn » (hai từ này có thể hiểu theo nghĩa đời thường).

Hai kiểu bất biến vừa nói ở trên – chiều kích và tính compac – được coi là « sơ cấp » vì chúng liên quan tới khái niệm lân cận gắn liền với định nghĩa đa tạp. Một trong những đóng góp quan trọng của Henri Poincaré là đề ra một bất biến kiểu mới, là khái niệm « nhóm cơ bản », một khái niệm liên quan tới lí thuyết nhóm. Một đa tạp sẽ được gọi là « liên thông đơn thuần » nếu nhóm cơ bản chỉ vỏn vẹn có một phần tử. Để cảm nhận bằng trực giác khái niệm « liên thông đơn thuần », ta hãy hình dung một mặt cong trên đó ta vẽ một « đường vòng », một thứ « dây thòng lọng » : nếu ta có thể « rút dây », thắt nó nhỏ dần, cho đến khi nó nhỏ tí, thành một điểm mà sợi dây vẫn nằm hoàn toàn trên mặt cong, thì mặt cong có tính « liên thông đơn thuần ». Nói khác đi, một đa tạp liên thông đơn thuần nếu bất cứ đường vòng nào nằm trong đa tạp có thể được biến dạng liên tục thành một điểm. Ta hãy lấy vài ví dụ đa tạp 2 chiều nằm trong không gian 3 chiều R$\mathbb{R}^3$ : mặt phẳng, mặt cầu rõ ràng là liên thông đơn thuần, ngược lại mặt xuyến (thí dụ nhưng cái săm bánh ô tô hay bánh xe đạp) không liên thông đơn thuần (dây thòng lọng buộc quanh cái săm, « xuyên qua lỗ ở giữa », không thể « thắt » nhỏ thành một điểm mà không cắt đứt cái săm). Như vậy là mặt phẳng, mặt cầu và mặt xuyến là 3 đa tạp không đồng phôi đôi một với nhau : mặt phẳng và mặt cầu vì tính compac, mặt cầu và mặt xuyến vì tính liên thông đơn thuần. Mấy thí dụ trực quan này cho ta hình dung cách đặt vấn đề của ức đoán Poincaré.

THURSTON, HAMILTON, PERELMAN và KHƯU (YAU)

Trước khi Perelman thượng đài, tình hình bài toán Poincaré là như thế nào ? Trường hợp 2 chiều đã được Riemann lí giải từ trước khi Poincaré sáng lập ra tô pô học (tất nhiên, do đó, Riemann dùng một ngôn ngữ khác). Từ Poincaré trở đi, bộ môn này đã phát triển tột bực, tích luỹ một khối lượng những khái niệm, định lí nhờ đó Stephen Smale đã chứng minh được ức đoán Poincaré cho tất cả các đa tạp chiều kích bằng 5 hay lớn hơn (huy chương Fields 1961), sau đó Michael Freedman thanh lí trường hợp chiều kích 4 – cũng lạ là trường hợp này phức tạp hơn về mặt kĩ thuật – (huy chương Fields 1982) . Còn trường hợp chiều kích 3 vẫn « trơ gan cùng tuế nguyệt », dường như ở cấp độ của vũ trụ vật lí (chúng ta nên nhớ vũ trụ Einstein là một đa tạp 4 chiều, tính compac của một đa tạp nằm trong vũ trụ này tuỳ thuộc vào tỉ trọng của vật chất chứa đựng trong đó), khó khăn không chỉ đơn thuần là những khó khăn toán học. Bao giờ cũng vậy, tình hình khai thông là nhờ có sự đột phá về quan niệm. Đầu tiên là do William Thurston (huy chương Fields 1982) đề ra một cách phân loại các đa tạp 3 chiều. Ở đây, ta lại gặp một tình huống thường xảy ra, bài toán hóc búa, vì quá đơn lẻ, được lồng vào một lí thuyết bao quát hơn, mở ra những viễn tượng mới. Thurston đề ra mộc ức đoán mới, gọi là ức đoán về sự hình học hoá, theo đó tổng cộng có 8 kiểu đa tạp 3 chiều ; một trong 8 kiểu đó là kiểu « mặt cầu » 3 chiều nói tới trong ức đoán Poincaré. Song tính chất bao quát của ức đoán Thurston dường như làm cho nó ở ngoài tầm với của những lí thuyết hiện tồn (cũng như ở ngoài tầm với của khả năng phổ biến khoa học : từ nay trở đi, độc giả cho phép chúng tôi dùng nhiều ngoặc kép). Một trong những lí thuyết đó là « tô pô học vi phân », nhờ đó người ta đặt thêm lên các đa tạp một cấu trúc nữa để có thể áp dụng các phương trình vi phân riêng. Chính trong phương hướng mới này mà trong thập niên 1980, Richard Hamilton đã tạo ra sự khai thông cuối cùng với khái niệm « dòng chảy Ricci », một phương trình tương tự như phương trình quen thuộc trong vật lí học : phương trình nhiệt của Laplace. Sự truyền dẫn của « dòng Ricci » trên đa tạp cho phép phát hiện những « điểm kì dị ». Chương trình Hamilton đề nghị thanh lí những điểm kì dị đó bằng « phẫu thuật », một kĩ thuật quen thuộc đối với giới tô pô học, song khó khăn lớn ở đây là không chắc gì cuộc phẫu thuật này lại không tạo ra những điểm kì dị mới, và cứ như thế, quá trình này trở thành liên hồi bất tận. Ngược lại, nếu cuộc phẫu thuật thành công, thì ức đoán Thurston được chứng minh, và đương nhiên, cả ức đoán Poincaré. Chính trong thời gian sang Mĩ nghiên cứu sau khi đỗ tiến sĩ mà Perelman đã được biết chương trình Hamilton, và đã đến gặp Hamilton để được ông giải thích tường tận. Hình như Perelman đã tự « coi như là môn đệ » của Hamilton, một điều rất hiếm, chứng tỏ Perelman khá mến mộ Hamilton. Thực ra, hình như ngay từ đầu « Grisha » đã chắc mẩm dòng chảy Ricci là cái chìa khoá, và ông không hề cải chính rằng mình trở lại St Petersburg là để tiến công vào chương trình Hamilton. Ông đã bỏ ra 8 năm trời, và công trình này làm ta liên tưởng tới cuộc chiến đấu đơn độc của Wiles để chứng minh định lí lớn của Fermat. Câu chuyện lẽ ra đến đây là kết thúc. Nhưng không, trước tiên là vì Perelman không chịu tôn trọng luật chơi. Bởi vì các mệnh đề toán học, một khi đã được chứng minh rồi, trở thành những chân lí tuyệt đối (trong khuôn khổ những tiên đề nhất định), cho nên bài chứng minh nhất thiết phải được các chuyên gia kiểm tra kĩ lưỡng rồi được công bố để bất cứ nhà toán học nào cũng có thể tìm đọc, và nếu muốn, thì kiểm tra lại. Ba bài viết mà Perelman đưa lên mạng internet không tuân thủ khuôn phép ấy : một mặt, Perelman không gửi cho một tạp chí để chúng được kiểm tra, thẩm định ; mặt khác, đó không phải là một bài chứng minh đầy đủ, mà chỉ là những phác thảo (tuy khá chi tiết) đưa ra các nguyên tắc và nét lớn, bỏ qua những khó khăn kĩ thuật đôi khi khá quan trọng. Không ai nghi ngờ rằng nếu Perelman chịu khó thì ông sẽ hoàn tất, nhưng phải bao nhiêu nỗ lực và thời gian ? Song ý nghĩa khoa học (và, khốn thay, tác động của media) quan trọng đến mức cộng đồng toán học lần này chấp nhận không làm đúng các thủ tục một cách nghiêm ngặt. Ngoài các xêmina và các nhóm làm việc thường vẫn được tổ chức như trong các trường hợp tương tợ (tại Princeton, Lyon...) để thảo luận về các kết quả của Perelman, đã có hai sáng kiến vượt ra khỏi thông lệ, độc lập với nhau, với những động cơ khác nhau, đã được tiến hành và đi tới kết luận tích cực. Một mặt là viện Clay rất muốn trao giải đầu tiên (quảng cáo mà) cho một « bài toán thiên niên kỉ », nên đã cử hai chuyên gia về tô pô học vi phân, là John Morgan (trường đại học Columbia, đã nói ở trên) và Gang Tian (Điền Cương, viện MIT) tập trung toàn phần thời gian vào việc thẩm định các bài viết của Perelman, và biên tập toàn bộ các phần chứng minh với đầy đủ chi tiết. Họ đã hoàn thành công việc và kết quả là một cuốn sách 473 trang sắp sửa được Viện Clay xuất bản. Mặt khác, sau 3 năm làm việc, hai nhà toán học Trung Quốc, Xiping Zhu (Chu Hi Bình) và Huaidong Cao (Tào Hoài Đông), dưới sự « huấn luyện » của nhà hình học Shing-Tung Yau (Khưu Thành Đồng, huy chương Fields 1982), vừa công bố trên tạp chí Asian Journal of Math (cũng phải nói rõ : do họ Khưu làm đồng chủ biên) một bài viết 318 trang để chứng minh ức đoán của Thurston, « dựa trên » những ý tưởng của Hamilton và Perelman (chữ của họ). Cần nói rõ, theo tập tục của giới toán học, một bài chứng minh chỉ được coi là « nguyên khôi » nếu nó được thực sự tìm ra lần đầu tiên, hoặc là nó lấp được một lỗ trống hoặc sửa lại một sai lầm thực sự của một bài chứng minh trước đó (trường hợp thứ nhì này đã xảy ra với bài chứng minh định lí Fermat của Wiles, có một lỗ trống đã được học trò của Wiles là Richard Taylor bổ khuyết, vì vậy định lí này từ nay mang tên chính thức là định lí Wiles-Taylor). Nhưng trong câu chuyện đang bàn, theo ý kiến của các nhà chuyên môn, bài viết của Tào và Chu hoàn toàn không thể xếp vào hai trường hợp nói trên. Cũng như cuốn sách của Morgan và Điền Cương, nó chỉ có thể được coi là một công trình soi sáng (công phu) công lao của Perelman. Tất cả chuyện này lẽ ra chỉ gây sóng gió trong chén trà của giới chuyên môn nếu như, phía Trung Quốc không làm ầm ĩ trên báo đài : đầu tháng 6.2006, hai tháng trước Đại hội Madrid, Khưu Thành Đồng đã tổ chức họp báo để nói về việc chứng ming ức đoán Poincaré tại Viện toán học Bắc Kinh. Ông viện trưởng họ Khưu không ngần ngại phân phát công lao như sau : 50% về phần Hamilton, 25% về phần « người Nga Perelman », 30% về người Hoa – một con toán cộng đơn giản cho thấy nhà hình học họ Khưu chắc không phải là nhà lí thuyết số. Đến cuối tháng 6, ông Khưu lại tổ chức một « sô » hội nghị vật lí học ở Bắc Kinh, với sự hỗ trợ của nhà cầm quyền Trung Quốc và sự tham gia của những đại gia như Stephen Hawking (« nhà vật lí thiên văn ngồi xe lăn »), để trình bày trong một phiên họp khoáng đại một báo cáo về... ức đoán Poincaré, công lao của hai môn đệ họ Tào và họ Chu, và nói đây là một thành tựu vĩ đại của học thuật Trung Quốc. Phải nói là họ Khưu, sinh trưởng hầu như ở Hồng Kông (bố mẹ ông đã chạy trốn Giải phóng quân Trung Hoa năm 1949, khi Khưu mới 5 tháng), làm việc ở Hoa Kì, sau khi được giải Fields năm 1982 đã trở thành một ông quan đại thần của nền khoa học Trung Quốc, đầu óc « đại hán » cũng chẳng thua ai. Giới toán học khó chấp nhận cách hành xử thiếu đạo đức khoa học như vậy. Philip Griffiths, nhà hình học kiệt xuất, người đã giúp Khưu rất nhiều trên đường công danh, đã phải lên tiếng : « Chính trị, quyền lực và những trò ma giáo không có chỗ đứng chính đáng trong cộng đồng chúng ta, chúng đe doạ sự toàn vẹn tinh thần của toán học ». Khi quyết định trao giải cho Perelman mặc dầu biết rằng Perelman từ chối, có lẽ Uỷ ban Fields cũng không muốn nói gì hơn.

Đỗ Thống
(Kiến văn dịch từ nguyên tác tiếng Pháp)

$hide=mobile$type=ticker$c=36$cols=2$l=0$sr=random$b=0

Name

Abel,5,Albania,2,AMM,2,Amsterdam,4,An Giang,45,Andrew Wiles,1,Anh,2,APMO,21,Austria (Áo),1,Ba Lan,1,Bà Rịa Vũng Tàu,77,Bắc Bộ,2,Bắc Giang,62,Bắc Kạn,4,Bạc Liêu,18,Bắc Ninh,53,Bắc Trung Bộ,3,Bài Toán Hay,5,Balkan,41,Baltic Way,32,BAMO,1,Bất Đẳng Thức,69,Bến Tre,72,Benelux,16,Bình Định,65,Bình Dương,38,Bình Phước,52,Bình Thuận,42,Birch,1,BMO,41,Booklet,12,Bosnia Herzegovina,3,BoxMath,3,Brazil,2,British,16,Bùi Đắc Hiên,1,Bùi Thị Thiện Mỹ,1,Bùi Văn Tuyên,1,Bùi Xuân Diệu,1,Bulgaria,6,Buôn Ma Thuột,2,BxMO,15,Cà Mau,22,Cần Thơ,27,Canada,40,Cao Bằng,12,Cao Quang Minh,1,Câu Chuyện Toán Học,43,Caucasus,3,CGMO,11,China - Trung Quốc,25,Chọn Đội Tuyển,515,Chu Tuấn Anh,1,Chuyên Đề,125,Chuyên SPHCM,7,Chuyên SPHN,30,Chuyên Trần Hưng Đạo,3,Collection,8,College Mathematic,1,Concours,1,Cono Sur,1,Contest,675,Correspondence,1,Cosmin Poahata,1,Crux,2,Czech-Polish-Slovak,28,Đà Nẵng,50,Đa Thức,2,Đại Số,20,Đắk Lắk,76,Đắk Nông,15,Danube,7,Đào Thái Hiệp,1,ĐBSCL,2,Đề Thi,1,Đề Thi HSG,2249,Đề Thi JMO,1,DHBB,30,Điện Biên,15,Định Lý,1,Định Lý Beaty,1,Đỗ Hữu Đức Thịnh,1,Do Thái,3,Doãn Quang Tiến,5,Đoàn Quỳnh,1,Đoàn Văn Trung,1,Đồng Nai,64,Đồng Tháp,63,Du Hiền Vinh,1,Đức,1,Dương Quỳnh Châu,1,Dương Tú,1,Duyên Hải Bắc Bộ,30,E-Book,31,EGMO,30,ELMO,19,EMC,11,Epsilon,1,Estonian,5,Euler,1,Evan Chen,1,Fermat,3,Finland,4,Forum Of Geometry,2,Furstenberg,1,G. Polya,3,Gặp Gỡ Toán Học,30,Gauss,1,GDTX,3,Geometry,14,GGTH,30,Gia Lai,40,Gia Viễn,2,Giải Tích Hàm,1,Giới hạn,2,Goldbach,1,Hà Giang,5,Hà Lan,1,Hà Nam,45,Hà Nội,255,Hà Tĩnh,91,Hà Trung Kiên,1,Hải Dương,70,Hải Phòng,57,Hậu Giang,14,Hélènne Esnault,1,Hilbert,2,Hình Học,33,HKUST,7,Hòa Bình,33,Hoài Nhơn,1,Hoàng Bá Minh,1,Hoàng Minh Quân,1,Hodge,1,Hojoo Lee,2,HOMC,5,HongKong,8,HSG 10,126,HSG 10 2010-2011,4,HSG 10 2011-2012,7,HSG 10 2012-2013,8,HSG 10 2013-2014,7,HSG 10 2014-2015,6,HSG 10 2015-2016,2,HSG 10 2016-2017,8,HSG 10 2017-2018,4,HSG 10 2018-2019,4,HSG 10 2019-2020,7,HSG 10 2020-2021,3,HSG 10 2021-2022,4,HSG 10 2022-2023,11,HSG 10 2023-2024,1,HSG 10 Bà Rịa Vũng Tàu,2,HSG 10 Bắc Giang,1,HSG 10 Bạc Liêu,2,HSG 10 Bình Định,1,HSG 10 Bình Dương,1,HSG 10 Bình Thuận,4,HSG 10 Chuyên SPHN,5,HSG 10 Đắk Lắk,2,HSG 10 Đồng Nai,4,HSG 10 Gia Lai,2,HSG 10 Hà Nam,4,HSG 10 Hà Tĩnh,15,HSG 10 Hải Dương,10,HSG 10 KHTN,9,HSG 10 Nghệ An,1,HSG 10 Ninh Thuận,1,HSG 10 Phú Yên,2,HSG 10 PTNK,10,HSG 10 Quảng Nam,1,HSG 10 Quảng Trị,2,HSG 10 Thái Nguyên,9,HSG 10 Vĩnh Phúc,14,HSG 1015-2016,3,HSG 11,135,HSG 11 2009-2010,1,HSG 11 2010-2011,6,HSG 11 2011-2012,10,HSG 11 2012-2013,9,HSG 11 2013-2014,7,HSG 11 2014-2015,10,HSG 11 2015-2016,6,HSG 11 2016-2017,8,HSG 11 2017-2018,7,HSG 11 2018-2019,8,HSG 11 2019-2020,5,HSG 11 2020-2021,8,HSG 11 2021-2022,4,HSG 11 2022-2023,7,HSG 11 2023-2024,1,HSG 11 An Giang,2,HSG 11 Bà Rịa Vũng Tàu,1,HSG 11 Bắc Giang,4,HSG 11 Bạc Liêu,3,HSG 11 Bắc Ninh,2,HSG 11 Bình Định,12,HSG 11 Bình Dương,3,HSG 11 Bình Thuận,1,HSG 11 Cà Mau,1,HSG 11 Đà Nẵng,9,HSG 11 Đồng Nai,1,HSG 11 Hà Nam,2,HSG 11 Hà Tĩnh,12,HSG 11 Hải Phòng,1,HSG 11 Kiên Giang,4,HSG 11 Lạng Sơn,11,HSG 11 Nghệ An,6,HSG 11 Ninh Bình,2,HSG 11 Quảng Bình,12,HSG 11 Quảng Nam,1,HSG 11 Quảng Ngãi,9,HSG 11 Quảng Trị,3,HSG 11 Sóc Trăng,1,HSG 11 Thái Nguyên,8,HSG 11 Thanh Hóa,3,HSG 11 Trà Vinh,1,HSG 11 Tuyên Quang,1,HSG 11 Vĩnh Long,3,HSG 11 Vĩnh Phúc,11,HSG 12,668,HSG 12 2009-2010,2,HSG 12 2010-2011,39,HSG 12 2011-2012,44,HSG 12 2012-2013,58,HSG 12 2013-2014,53,HSG 12 2014-2015,44,HSG 12 2015-2016,37,HSG 12 2016-2017,46,HSG 12 2017-2018,55,HSG 12 2018-2019,43,HSG 12 2019-2020,43,HSG 12 2020-2021,52,HSG 12 2021-2022,35,HSG 12 2022-2023,42,HSG 12 2023-2024,23,HSG 12 2023-2041,1,HSG 12 An Giang,8,HSG 12 Bà Rịa Vũng Tàu,13,HSG 12 Bắc Giang,18,HSG 12 Bạc Liêu,3,HSG 12 Bắc Ninh,13,HSG 12 Bến Tre,19,HSG 12 Bình Định,17,HSG 12 Bình Dương,8,HSG 12 Bình Phước,9,HSG 12 Bình Thuận,8,HSG 12 Cà Mau,7,HSG 12 Cần Thơ,7,HSG 12 Cao Bằng,5,HSG 12 Chuyên SPHN,11,HSG 12 Đà Nẵng,3,HSG 12 Đắk Lắk,21,HSG 12 Đắk Nông,1,HSG 12 Điện Biên,3,HSG 12 Đồng Nai,20,HSG 12 Đồng Tháp,18,HSG 12 Gia Lai,14,HSG 12 Hà Nam,5,HSG 12 Hà Nội,17,HSG 12 Hà Tĩnh,16,HSG 12 Hải Dương,16,HSG 12 Hải Phòng,20,HSG 12 Hậu Giang,4,HSG 12 Hòa Bình,10,HSG 12 Hưng Yên,10,HSG 12 Khánh Hòa,4,HSG 12 KHTN,26,HSG 12 Kiên Giang,12,HSG 12 Kon Tum,3,HSG 12 Lai Châu,4,HSG 12 Lâm Đồng,11,HSG 12 Lạng Sơn,8,HSG 12 Lào Cai,17,HSG 12 Long An,18,HSG 12 Nam Định,7,HSG 12 Nghệ An,13,HSG 12 Ninh Bình,12,HSG 12 Ninh Thuận,7,HSG 12 Phú Thọ,18,HSG 12 Phú Yên,13,HSG 12 Quảng Bình,14,HSG 12 Quảng Nam,11,HSG 12 Quảng Ngãi,6,HSG 12 Quảng Ninh,20,HSG 12 Quảng Trị,10,HSG 12 Sóc Trăng,4,HSG 12 Sơn La,5,HSG 12 Tây Ninh,6,HSG 12 Thái Bình,11,HSG 12 Thái Nguyên,13,HSG 12 Thanh Hóa,17,HSG 12 Thừa Thiên Huế,19,HSG 12 Tiền Giang,3,HSG 12 TPHCM,13,HSG 12 Tuyên Quang,3,HSG 12 Vĩnh Long,7,HSG 12 Vĩnh Phúc,20,HSG 12 Yên Bái,6,HSG 9,573,HSG 9 2009-2010,1,HSG 9 2010-2011,21,HSG 9 2011-2012,42,HSG 9 2012-2013,41,HSG 9 2013-2014,35,HSG 9 2014-2015,41,HSG 9 2015-2016,38,HSG 9 2016-2017,42,HSG 9 2017-2018,45,HSG 9 2018-2019,41,HSG 9 2019-2020,18,HSG 9 2020-2021,50,HSG 9 2021-2022,53,HSG 9 2022-2023,55,HSG 9 2023-2024,15,HSG 9 An Giang,9,HSG 9 Bà Rịa Vũng Tàu,8,HSG 9 Bắc Giang,14,HSG 9 Bắc Kạn,1,HSG 9 Bạc Liêu,1,HSG 9 Bắc Ninh,12,HSG 9 Bến Tre,9,HSG 9 Bình Định,11,HSG 9 Bình Dương,7,HSG 9 Bình Phước,13,HSG 9 Bình Thuận,5,HSG 9 Cà Mau,2,HSG 9 Cần Thơ,4,HSG 9 Cao Bằng,2,HSG 9 Đà Nẵng,11,HSG 9 Đắk Lắk,12,HSG 9 Đắk Nông,3,HSG 9 Điện Biên,5,HSG 9 Đồng Nai,8,HSG 9 Đồng Tháp,10,HSG 9 Gia Lai,9,HSG 9 Hà Giang,4,HSG 9 Hà Nam,10,HSG 9 Hà Nội,15,HSG 9 Hà Tĩnh,13,HSG 9 Hải Dương,16,HSG 9 Hải Phòng,8,HSG 9 Hậu Giang,6,HSG 9 Hòa Bình,4,HSG 9 Hưng Yên,11,HSG 9 Khánh Hòa,6,HSG 9 Kiên Giang,16,HSG 9 Kon Tum,9,HSG 9 Lai Châu,2,HSG 9 Lâm Đồng,14,HSG 9 Lạng Sơn,10,HSG 9 Lào Cai,4,HSG 9 Long An,10,HSG 9 Nam Định,9,HSG 9 Nghệ An,21,HSG 9 Ninh Bình,14,HSG 9 Ninh Thuận,4,HSG 9 Phú Thọ,13,HSG 9 Phú Yên,9,HSG 9 Quảng Bình,14,HSG 9 Quảng Nam,12,HSG 9 Quảng Ngãi,13,HSG 9 Quảng Ninh,17,HSG 9 Quảng Trị,10,HSG 9 Sóc Trăng,9,HSG 9 Sơn La,5,HSG 9 Tây Ninh,16,HSG 9 Thái Bình,11,HSG 9 Thái Nguyên,5,HSG 9 Thanh Hóa,12,HSG 9 Thừa Thiên Huế,9,HSG 9 Tiền Giang,7,HSG 9 TPHCM,11,HSG 9 Trà Vinh,2,HSG 9 Tuyên Quang,6,HSG 9 Vĩnh Long,12,HSG 9 Vĩnh Phúc,12,HSG 9 Yên Bái,5,HSG Cấp Trường,80,HSG Quốc Gia,113,HSG Quốc Tế,16,Hứa Lâm Phong,1,Hứa Thuần Phỏng,1,Hùng Vương,2,Hưng Yên,43,Huỳnh Kim Linh,1,Hy Lạp,1,IMC,26,IMO,58,IMT,2,IMU,2,India - Ấn Độ,47,Inequality,13,InMC,1,International,349,Iran,13,Jakob,1,JBMO,41,Jewish,1,Journal,30,Junior,38,K2pi,1,Kazakhstan,1,Khánh Hòa,30,KHTN,64,Kiên Giang,74,Kon Tum,24,Korea - Hàn Quốc,5,Kvant,2,Kỷ Yếu,46,Lai Châu,12,Lâm Đồng,47,Lăng Hồng Nguyệt Anh,1,Lạng Sơn,37,Langlands,1,Lào Cai,35,Lê Hải Châu,1,Lê Hải Khôi,1,Lê Hoành Phò,4,Lê Hồng Phong,5,Lê Khánh Sỹ,3,Lê Minh Cường,1,Lê Phúc Lữ,1,Lê Phương,1,Lê Viết Hải,1,Lê Việt Hưng,2,Leibniz,1,Long An,52,Lớp 10 Chuyên,709,Lớp 10 Không Chuyên,355,Lớp 11,1,Lục Ngạn,1,Lượng giác,1,Lưu Giang Nam,2,Lưu Lý Tưởng,1,Macedonian,1,Malaysia,1,Margulis,2,Mark Levi,1,Mathematical Excalibur,1,Mathematical Reflections,1,Mathematics Magazine,1,Mathematics Today,1,Mathley,1,MathLinks,1,MathProblems Journal,1,Mathscope,8,MathsVN,5,MathVN,1,MEMO,13,Menelaus,1,Metropolises,4,Mexico,1,MIC,1,Michael Atiyah,1,Michael Guillen,1,Mochizuki,1,Moldova,1,Moscow,1,MYM,25,MYTS,4,Nam Định,45,Nam Phi,1,National,276,Nesbitt,1,Newton,4,Nghệ An,73,Ngô Bảo Châu,2,Ngô Việt Hải,1,Ngọc Huyền,2,Nguyễn Anh Tuyến,1,Nguyễn Bá Đang,1,Nguyễn Đình Thi,1,Nguyễn Đức Tấn,1,Nguyễn Đức Thắng,1,Nguyễn Duy Khương,1,Nguyễn Duy Tùng,1,Nguyễn Hữu Điển,3,Nguyễn Minh Hà,1,Nguyễn Minh Tuấn,9,Nguyễn Nhất Huy,1,Nguyễn Phan Tài Vương,1,Nguyễn Phú Khánh,1,Nguyễn Phúc Tăng,2,Nguyễn Quản Bá Hồng,1,Nguyễn Quang Sơn,1,Nguyễn Song Thiên Long,1,Nguyễn Tài Chung,5,Nguyễn Tăng Vũ,1,Nguyễn Tất Thu,1,Nguyễn Thúc Vũ Hoàng,1,Nguyễn Trung Tuấn,8,Nguyễn Tuấn Anh,2,Nguyễn Văn Huyện,3,Nguyễn Văn Mậu,25,Nguyễn Văn Nho,1,Nguyễn Văn Quý,2,Nguyễn Văn Thông,1,Nguyễn Việt Anh,1,Nguyễn Vũ Lương,2,Nhật Bản,4,Nhóm $\LaTeX$,4,Nhóm Toán,1,Ninh Bình,61,Ninh Thuận,26,Nội Suy Lagrange,2,Nội Suy Newton,1,Nordic,21,Olympiad Corner,1,Olympiad Preliminary,2,Olympic 10,134,Olympic 10/3,6,Olympic 10/3 Đắk Lắk,6,Olympic 11,122,Olympic 12,52,Olympic 23/3,2,Olympic 24/3,10,Olympic 24/3 Quảng Nam,10,Olympic 27/4,24,Olympic 30/4,61,Olympic KHTN,8,Olympic Sinh Viên,78,Olympic Tháng 4,12,Olympic Toán,344,Olympic Toán Sơ Cấp,3,Ôn Thi 10,2,PAMO,1,Phạm Đình Đồng,1,Phạm Đức Tài,1,Phạm Huy Hoàng,1,Pham Kim Hung,3,Phạm Quốc Sang,2,Phan Huy Khải,1,Phan Quang Đạt,1,Phan Thành Nam,1,Pháp,2,Philippines,8,Phú Thọ,32,Phú Yên,42,Phùng Hồ Hải,1,Phương Trình Hàm,11,Phương Trình Pythagoras,1,Pi,1,Polish,32,Problems,1,PT-HPT,14,PTNK,64,Putnam,27,Quảng Bình,64,Quảng Nam,57,Quảng Ngãi,49,Quảng Ninh,60,Quảng Trị,42,Quỹ Tích,1,Riemann,1,RMM,14,RMO,24,Romania,38,Romanian Mathematical,1,Russia,1,Sách Thường Thức Toán,7,Sách Toán,70,Sách Toán Cao Học,1,Sách Toán THCS,7,Saudi Arabia - Ả Rập Xê Út,9,Scholze,1,Serbia,17,Sharygin,28,Shortlists,56,Simon Singh,1,Singapore,1,Số Học - Tổ Hợp,28,Sóc Trăng,36,Sơn La,22,Spain,8,Star Education,1,Stars of Mathematics,11,Swinnerton-Dyer,1,Talent Search,1,Tăng Hải Tuân,2,Tạp Chí,17,Tập San,3,Tây Ban Nha,1,Tây Ninh,37,Thái Bình,45,Thái Nguyên,61,Thái Vân,2,Thanh Hóa,69,THCS,2,Thổ Nhĩ Kỳ,5,Thomas J. Mildorf,1,Thông Tin Toán Học,43,THPT Chuyên Lê Quý Đôn,1,THPT Chuyên Nguyễn Du,9,THPTQG,16,THTT,31,Thừa Thiên Huế,56,Tiền Giang,30,Tin Tức Toán Học,1,Titu Andreescu,2,Toán 12,7,Toán Cao Cấp,3,Toán Rời Rạc,5,Toán Tuổi Thơ,3,Tôn Ngọc Minh Quân,2,TOT,1,TPHCM,158,Trà Vinh,10,Trắc Nghiệm,1,Trắc Nghiệm Toán,2,Trại Hè,39,Trại Hè Hùng Vương,30,Trại Hè Phương Nam,7,Trần Đăng Phúc,1,Trần Minh Hiền,2,Trần Nam Dũng,12,Trần Phương,1,Trần Quang Hùng,1,Trần Quốc Anh,2,Trần Quốc Luật,1,Trần Quốc Nghĩa,1,Trần Tiến Tự,1,Trịnh Đào Chiến,2,Trường Đông,23,Trường Hè,10,Trường Thu,1,Trường Xuân,3,TST,544,TST 2008-2009,1,TST 2010-2011,22,TST 2011-2012,23,TST 2012-2013,32,TST 2013-2014,29,TST 2014-2015,27,TST 2015-2016,26,TST 2016-2017,41,TST 2017-2018,42,TST 2018-2019,30,TST 2019-2020,34,TST 2020-2021,30,TST 2021-2022,38,TST 2022-2023,42,TST 2023-2024,23,TST An Giang,8,TST Bà Rịa Vũng Tàu,11,TST Bắc Giang,5,TST Bắc Ninh,11,TST Bến Tre,10,TST Bình Định,5,TST Bình Dương,7,TST Bình Phước,9,TST Bình Thuận,9,TST Cà Mau,7,TST Cần Thơ,6,TST Cao Bằng,2,TST Đà Nẵng,8,TST Đắk Lắk,12,TST Đắk Nông,2,TST Điện Biên,2,TST Đồng Nai,13,TST Đồng Tháp,12,TST Gia Lai,4,TST Hà Nam,8,TST Hà Nội,12,TST Hà Tĩnh,15,TST Hải Dương,11,TST Hải Phòng,13,TST Hậu Giang,1,TST Hòa Bình,4,TST Hưng Yên,10,TST Khánh Hòa,8,TST Kiên Giang,11,TST Kon Tum,6,TST Lâm Đồng,12,TST Lạng Sơn,3,TST Lào Cai,4,TST Long An,6,TST Nam Định,8,TST Nghệ An,7,TST Ninh Bình,11,TST Ninh Thuận,4,TST Phú Thọ,13,TST Phú Yên,5,TST PTNK,15,TST Quảng Bình,12,TST Quảng Nam,7,TST Quảng Ngãi,8,TST Quảng Ninh,9,TST Quảng Trị,10,TST Sóc Trăng,5,TST Sơn La,7,TST Thái Bình,6,TST Thái Nguyên,8,TST Thanh Hóa,9,TST Thừa Thiên Huế,4,TST Tiền Giang,6,TST TPHCM,14,TST Trà Vinh,1,TST Tuyên Quang,1,TST Vĩnh Long,7,TST Vĩnh Phúc,7,TST Yên Bái,8,Tuyên Quang,14,Tuyển Sinh,4,Tuyển Sinh 10,1064,Tuyển Sinh 10 An Giang,18,Tuyển Sinh 10 Bà Rịa Vũng Tàu,22,Tuyển Sinh 10 Bắc Giang,19,Tuyển Sinh 10 Bắc Kạn,3,Tuyển Sinh 10 Bạc Liêu,9,Tuyển Sinh 10 Bắc Ninh,15,Tuyển Sinh 10 Bến Tre,34,Tuyển Sinh 10 Bình Định,19,Tuyển Sinh 10 Bình Dương,12,Tuyển Sinh 10 Bình Phước,21,Tuyển Sinh 10 Bình Thuận,15,Tuyển Sinh 10 Cà Mau,5,Tuyển Sinh 10 Cần Thơ,10,Tuyển Sinh 10 Cao Bằng,2,Tuyển Sinh 10 Chuyên SPHN,19,Tuyển Sinh 10 Đà Nẵng,18,Tuyển Sinh 10 Đại Học Vinh,13,Tuyển Sinh 10 Đắk Lắk,21,Tuyển Sinh 10 Đắk Nông,7,Tuyển Sinh 10 Điện Biên,5,Tuyển Sinh 10 Đồng Nai,18,Tuyển Sinh 10 Đồng Tháp,23,Tuyển Sinh 10 Gia Lai,10,Tuyển Sinh 10 Hà Giang,1,Tuyển Sinh 10 Hà Nam,16,Tuyển Sinh 10 Hà Nội,80,Tuyển Sinh 10 Hà Tĩnh,19,Tuyển Sinh 10 Hải Dương,17,Tuyển Sinh 10 Hải Phòng,15,Tuyển Sinh 10 Hậu Giang,3,Tuyển Sinh 10 Hòa Bình,15,Tuyển Sinh 10 Hưng Yên,12,Tuyển Sinh 10 Khánh Hòa,12,Tuyển Sinh 10 KHTN,21,Tuyển Sinh 10 Kiên Giang,31,Tuyển Sinh 10 Kon Tum,6,Tuyển Sinh 10 Lai Châu,6,Tuyển Sinh 10 Lâm Đồng,10,Tuyển Sinh 10 Lạng Sơn,6,Tuyển Sinh 10 Lào Cai,10,Tuyển Sinh 10 Long An,18,Tuyển Sinh 10 Nam Định,21,Tuyển Sinh 10 Nghệ An,23,Tuyển Sinh 10 Ninh Bình,20,Tuyển Sinh 10 Ninh Thuận,10,Tuyển Sinh 10 Phú Thọ,18,Tuyển Sinh 10 Phú Yên,12,Tuyển Sinh 10 PTNK,37,Tuyển Sinh 10 Quảng Bình,12,Tuyển Sinh 10 Quảng Nam,15,Tuyển Sinh 10 Quảng Ngãi,13,Tuyển Sinh 10 Quảng Ninh,12,Tuyển Sinh 10 Quảng Trị,7,Tuyển Sinh 10 Sóc Trăng,17,Tuyển Sinh 10 Sơn La,5,Tuyển Sinh 10 Tây Ninh,15,Tuyển Sinh 10 Thái Bình,17,Tuyển Sinh 10 Thái Nguyên,18,Tuyển Sinh 10 Thanh Hóa,27,Tuyển Sinh 10 Thừa Thiên Huế,24,Tuyển Sinh 10 Tiền Giang,14,Tuyển Sinh 10 TPHCM,23,Tuyển Sinh 10 Trà Vinh,6,Tuyển Sinh 10 Tuyên Quang,3,Tuyển Sinh 10 Vĩnh Long,12,Tuyển Sinh 10 Vĩnh Phúc,22,Tuyển Sinh 2008-2009,1,Tuyển Sinh 2009-2010,1,Tuyển Sinh 2010-2011,6,Tuyển Sinh 2011-2012,20,Tuyển Sinh 2012-2013,65,Tuyển Sinh 2013-2014,77,Tuyển Sinh 2013-2044,1,Tuyển Sinh 2014-2015,81,Tuyển Sinh 2015-2016,64,Tuyển Sinh 2016-2017,72,Tuyển Sinh 2017-2018,126,Tuyển Sinh 2018-2019,61,Tuyển Sinh 2019-2020,90,Tuyển Sinh 2020-2021,59,Tuyển Sinh 2021-202,1,Tuyển Sinh 2021-2022,69,Tuyển Sinh 2022-2023,113,Tuyển Sinh 2023-2024,49,Tuyển Sinh Chuyên SPHCM,7,Tuyển Sinh Yên Bái,6,Tuyển Tập,45,Tuymaada,6,UK - Anh,16,Undergraduate,69,USA - Mỹ,62,USA TSTST,6,USAJMO,12,USATST,8,USEMO,4,Uzbekistan,1,Vasile Cîrtoaje,4,Vật Lý,1,Viện Toán Học,6,Vietnam,4,Viktor Prasolov,1,VIMF,1,Vinh,32,Vĩnh Long,41,Vĩnh Phúc,86,Virginia Tech,1,VLTT,1,VMEO,4,VMF,12,VMO,58,VNTST,25,Võ Anh Khoa,1,Võ Quốc Bá Cẩn,26,Võ Thành Văn,1,Vojtěch Jarník,6,Vũ Hữu Bình,7,Vương Trung Dũng,1,WFNMC Journal,1,Wiles,1,Xác Suất,1,Yên Bái,25,Yên Thành,1,Zhautykov,14,Zhou Yuan Zhe,1,
ltr
item
MOlympiad.NET: Poincaré, Perelman, Khưu Thành Đồng Và.....
Poincaré, Perelman, Khưu Thành Đồng Và.....
MOlympiad.NET
https://www.molympiad.net/2017/07/poincare-perelman-khuu-thanh-dong-va.html
https://www.molympiad.net/
https://www.molympiad.net/
https://www.molympiad.net/2017/07/poincare-perelman-khuu-thanh-dong-va.html
true
2506595080985176441
UTF-8
Loaded All Posts Not found any posts VIEW ALL Readmore Reply Cancel reply Delete By Home PAGES POSTS View All RECOMMENDED FOR YOU Tag ARCHIVE SEARCH ALL POSTS Not found any post match with your request Back Home Sunday Monday Tuesday Wednesday Thursday Friday Saturday Sun Mon Tue Wed Thu Fri Sat January February March April May June July August September October November December Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec just now 1 minute ago $$1$$ minutes ago 1 hour ago $$1$$ hours ago Yesterday $$1$$ days ago $$1$$ weeks ago more than 5 weeks ago Followers Follow THIS PREMIUM CONTENT IS LOCKED
NỘI DUNG CAO CẤP NÀY ĐÃ BỊ KHÓA
STEP 1: SHARE THIS ARTICLE TO A SOCIAL NETWORK
BƯỚC 1: CHIA SẺ BÀI VIẾT NÀY LÊN MẠNG XÃ HỘI
STEP 2: CLICK THE LINK ON YOUR SOCIAL NETWORK
BƯỚC 2: BẤM VÀO ĐƯỜNG DẪN TRÊN MẠNG XÃ HỘI CỦA BẠN
Copy All Code Select All Code All codes were copied to your clipboard Can not copy the codes / texts, please press [CTRL]+[C] (or CMD+C with Mac) to copy Table of Content