[Solutions] Romanian Mathematical Competitions 2002

Romania National Olympiad 2002

Grade level 7

  1. Eight card players are seated around a table. One remarks that at some moment, any player and his two neighbours have altogether an odd number of winning cards. Show that any player has at that moment at least one winning card.
  2. Prove that any real number $0<x<1$ can be written as a difference of two positive and less than $1$ irrational numbers.
  3. Let $ABCD$ be a trapezium and $AB$ and $CD$ be it's parallel edges. Find, with proof, the set of interior points $P$ of the trapezium which have the property that $P$ belongs to at least two lines each intersecting the segments $AB$ and $CD$ and each dividing the trapezium in two other trapezoids with equal areas.
  4. a) An equilateral triangle of sides $a$ is given and a triangle $MNP$ is constructed under the following conditions: $P\in (AB)$, $M\in (BC)$, $N\in (AC)$, such that $MP\perp AB$, $NM\perp BC$ and $PN\perp AC$. Find the length of the segment $MP$.
    b) Show that for any acute triangle $ABC$ one can find points $P\in (AB)$, $M\in (BC)$, $N\in (AC)$ such that $MP\perp AB$, $NM\perp BC$ and $PN\perp AC$.

Grade level 8

  1. For any number $n\in\mathbb{N},n\ge 2$, denote by $P(n)$ the number of pairs $(a,b)$ whose elements are of positive integers such that \[\frac{n}{a}\in (0,1),\quad \frac{a}{b}\in (1,2)\quad \text{and}\quad \frac{b}{n}\in (2,3). \] a) Calculate $P(3)$.
    b) Find $n$ such that $P(n)=2002$.
  2. Given real numbers $a,c,d$ show that there exists at most one function $f:\mathbb{R}\rightarrow\mathbb{R}$ which satisfies: \[f(ax+c)+d\le x\le f(x+d)+c\quad\text{for any}\ x\in\mathbb{R}\]
  3. Let $[ABCDEF]$ be a frustum of a regular pyramid. Let $G$ and $G'$ be the centroids of bases $ABC$ and $DEF$ respectively. It is known that $AB=36,DE=12$ and $GG'=35$.
    a) Prove that the planes $(ABF)$, $(BCD)$, $(CAE)$ have a common point $P$, and the planes $(DEC)$, $(EFA)$, $(FDB)$ have a common point $P'$, both situated on $GG'$.
    b) Find the length of the segment $[PP']$.
  4. The right prism $[A_1A_2A_3\ldots A_nA_1'A_2'A_3'\ldots A_n']$, $n\in\mathbb{N}$, $n\ge 3$, has a convex polygon as its base. It is known that $A_1A_2'\perp A_2A_3'$, $A_2A_3'\perp A_3A_4'$, $\ldots$, $A_{n-1}A_n'\perp A_nA_1'$, $A_nA_1'\perp A_1A_2'$. Show that
    a) $n=3$;
    b) the prism is regular.

Grade level 9

  1. Let $ab+bc+ca=1$. Show that \[\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge\sqrt{3}+\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}.\]
  2. Let $ABC$ be a right triangle where $\measuredangle A = 90^\circ$ and $M\in (AB)$ such that $\frac{AM}{MB}=3\sqrt{3}-4$. It is known that the symmetric point of $M$with respect to the line $GI$ lies on $AC$. Find the measure of $\measuredangle B$.
  3. Let $k$ and $n$ be positive integers with $n>2$. Show that the equation \[x^n-y^n=2^k\] has no positive integer solutions.
  4. Find all functions $f: \mathbb{N}\to\mathbb{N}$ which satisfy the inequality: \[f(3x+2y)=f(x)f(y)\] for all non-negative integers $x,y$.

Grade level 10

  1. Let $X,Y,Z,T$ be four points in the plane. The segments $[XY]$ and $[ZT]$ are said to be connected, if there is some point $O$ in the plane such that the triangles $OXY$ and $OZT$ are right-angled at $O$ and isosceles. Let $ABCDEF$ be a convex hexagon such that the pairs of segments $[AB],[CE],$ and $[BD],[EF]$ are connected. Show that the points $A,C,D$ and $F$ are the vertices of a parallelogram and $[BC]$ and $[AE]$ are connected.
  2. Find all real polynomials $f$ and $g$, such that: \[(x^2+x+1)\cdot f(x^2-x+1)=(x^2-x+1)\cdot g(x^2+x+1), \] for all $x\in\mathbb{R}$.
  3. Find all real numbers $a,b,c,d,e$ in the interval $[-2,2]$, that satisfy:
    \begin{align*}a+b+c+d+e &= 0\\ a^3+b^3+c^3+d^3+e^3&= 0\\ a^5+b^5+c^5+d^5+e^5&=10 \end{align*}
  4. Let $I\subseteq \mathbb{R}$ be an interval and $f:I\rightarrow\mathbb{R}$ a function such that: \[|f(x)-f(y)|\le |x-y|,\quad\text{for all}\ x,y\in I. \] Show that $f$ is monotonic on $I$ if and only if, for any $x,y\in I$, either $$f(x)\le f\left(\frac{x+y}{2}\right)\le f(y)$$ or $$f(y)\le f\left(\frac{x+y}{2}\right)\le f(x).$$

Grade level 11

  1. In the Cartesian plane consider the hyperbola \[\Gamma=\{M(x,y)\in\mathbb{R}^2 \vert \frac{x^2}{4}-y^2=1\} \] and a conic $\Gamma '$, disjoint from $\Gamma$. Let $n(\Gamma ,\Gamma ')$ be the maximal number of pairs of points $(A,A')\in\Gamma\times\Gamma '$ such that $AA'\le BB'$, for any $(B,B')$. For each $p\in\{0,1,2,4\}$, find the equation of $\Gamma'$ for which $n(\Gamma ,\Gamma ')=p$. Justify the answer.
  2. Let $f:\mathbb{R}\rightarrow\mathbb{R}$ be a function that has limits at any point and has no local extrema. Show that:
    a) $f$ is continuous;
    b) $f$ is strictly monotone.
  3. Let $A\in M_4(C)$ be a non-zero matrix.
    a) If $\text{rank}(A)=r<4$, prove the existence of two invertible matrices $U,V\in M_4(C)$, such that: \[UAV=\begin{pmatrix}I_r&0\\0&0\end{pmatrix}\] where $I_r$ is the $r$-unit matrix.
    b) Show that if $A$ and $A^2$ have the same rank $k$, then the matrix $A^n$ has rank $k$, for any $n\ge 3$.
  4. Let $f:[0,1]\rightarrow [0,1]$ be a continuous and bijective function. Describe the set \[A=\{f(x)-f(y)\mid x,y\in[0,1]\backslash\mathbb{Q}\}\]

Grade level 12

  1. Let $A$ be a ring.
    a) Show that the set $Z(A)=\{a\in A|ax=xa,\ \text{for all}\ x\in A\}$ is a subring of the ring $A$.
    b) Prove that, if any commutative subring of $A$ is a field, then $A$ is a field.
  2. Let $f:[0,1]\rightarrow\mathbb{R}$ be an integrable function such that: \[0<\left\vert \int_{0}^{1}f(x)\, \text{d}x\right\vert\le 1.\] Show that there exists $x_1\not= x_2, x_1,x_2\in [0,1]$, such that: \[\int_{x_1}^{x_2}f(x)\, \text{d}x=(x_1-x_2)^{2002}\]
  3. Let $f:\mathbb{R}\rightarrow\mathbb{R}$ be a continuous and bounded function such that
    \[x\int_{x}^{x+1}f(t)\, \text{d}t=\int_{0}^{x}f(t)\, \text{d}t,\quad\text{for any}\ x\in\mathbb{R}.\] Prove that $f$ is a constant function.
  4. Let $K$ be a field having $q=p^n$ elements, where $p$ is a prime and $n\ge 2$ is an arbitrary integer number. For any $a\in K$, one defines the polynomial $f_a=X^q-X+a$. Show that:
    a) $f=(X^q-X)^q-(X^q-X)$ is divisible by $f_1$;
    b) $f_a$ has at least $p^{n-1}$ essentially different irreducible factors $K[X]$.

Romania Team Selection Test 2002

  1. Find all sets $A$ and $B$ that satisfy the following conditions:
    a) $A \cup B= \mathbb{Z}$;
    b) if $x \in A$ then $x-1 \in B$;
    c) if $x,y \in B$ then $x+y \in A$.
  2. The sequence $ (a_n)$ is defined by: $ a_0=a_1=1$ and $ a_{n+1}=14a_n-a_{n-1}$ for all $ n\ge 1$. Prove that $ 2a_n-1$ is a perfect square for any $ n\ge 0$.
  3. Let $M$ and $N$ be the midpoints of the respective sides $AB$ and $AC$ of an acute-angled triangle $ABC$. Let $P$ be the foot of the perpendicular from $N$ onto $BC$ and let $A_1$ be the midpoint of $MP$. Points $B_1$ and $C_1$ are obtained similarly. If $AA_1$, $BB_1$ and $CC_1$ are concurrent, show that the triangle $ABC$ is isosceles.
  4. For any positive integer $n$, let $f(n)$ be the number of possible choices of signs $+\ \text{or}\ - $ in the algebraic expression $\pm 1\pm 2\ldots \pm n$, such that the obtained sum is zero. Show that $f(n)$ satisfies the following conditions:
    a) $f(n)=0$ for $n=1\pmod{4}$ or $n=2\pmod{4}$.
    b) $2^{\frac{n}{2}-1}\le f(n)\le 2^n-2^{\lfloor\frac{n}{2}\rfloor+1}$, for $n=0\pmod{4}$ or $n=3\pmod{4}$.
  5. Let $ABCD$ be a unit square. For any interior points $M,N$ such that the line $MN$ does not contain a vertex of the square, we denote by $s(M,N)$ the least area of the triangles having their vertices in the set of points $\{ A,B,C,D,M,N\}$. Find the least number $k$ such that $s(M,N)\le k$, for all points $M,N$.
  6. Let $P(x)$ and $Q(x)$ be integer polynomials of degree $p$ and $q$ respectively. Assume that $P(x)$ divides $Q(x)$ and all their coefficients are either $1$ or $2002$. Show that $p+1$ is a divisor of $q+1$.
  7. Let $a,b$ be positive real numbers. For any positive integer $n$, denote by $x_n$ the sum of digits of the number $[an+b]$ in it's decimal representation. Show that the sequence $(x_n)_{n\ge 1}$ contains a constant subsequence.
  8. At an international conference there are four official languages. Any two participants can speak in one of these languages. Show that at least $60\%$ of the participants can speak the same language.
  9. Let $ABCDE$ be a cyclic pentagon inscribed in a circle of centre $O$ which has angles $\angle B=120^{\circ},\angle C=120^{\circ},$ $\angle D=130^{\circ},\angle E=100^{\circ}$. Show that the diagonals $BD$ and $CE$ meet at a point belonging to the diameter $AO$.
  10. Let $n\geq 4$ be an integer, and let $a_1,a_2,\ldots,a_n$ be positive real numbers such that \[ a_1^2+a_2^2+\cdots +a_n^2=1 . \] Prove that the following inequality takes place \[ \frac{a_1}{a_2^2+1}+\cdots +\frac{a_n}{a_1^2+1} \geq \frac{4}{5}\left( a_1 \sqrt{a_1}+\cdots +a_n \sqrt{a_n} \right)^2 . \]
  11. Let $n$ be a positive integer. $S$ is the set of nonnegative integers $a$ such that $1<a<n$ and $a^{a-1}-1$ is divisible by $n$. Prove that if $S=\{ n-1 \}$ then $n=2p$ where $p$ is a prime number. Mihai Cipu and Nicolae Ciprian Bonciocat nhat view topic 4 Let $f:\mathbb{Z}\rightarrow\{ 1,2,\ldots ,n\}$ be a function such that $f(x)\not= f(y)$, for all $x,y\in\mathbb{Z}$ such that $|x-y|\in\{2,3,5\}$. Prove that $n\ge 4$. Ioan Tomescu WakeUp view topic Day 4 1 Let $(a_n)_{n\ge 1}$ be a sequence of positive integers defined as $a_1,a_2>0$ and $a_{n+1}$ is the least prime divisor of $a_{n-1}+a_{n}$, for all $n\ge 2$.
  12. Prove that a real number $x$ whose decimals are digits of the numbers $a_1,a_2,\ldots a_n,\ldots $ written in order, is a rational number.
  13. Find the least positive real number $r$ with the following property:
  14. Whatever four disks are considered, each with centre on the edges of a unit square and the sum of their radii equals $r$, there exists an equilateral triangle which has its edges in three of the disks.
  15. After elections, every parliament member (PM), has his own absolute rating. When the parliament set up, he enters in a group and gets a relative rating. The relative rating is the ratio of its own absolute rating to the sum of all absolute ratings of the PMs in the group. A PM can move from one group to another only if in his new group his relative rating is greater. In a given day, only one PM can change the group. Show that only a finite number of group moves is possible.
    (A rating is positive real number.)
  16. Let $m,n$ be positive integers of distinct parities and such that $m<n<5m$. Show that there exists a partition with two element subsets of the set $\{ 1,2,3,\ldots ,4mn\}$ such that the sum of numbers in each set is a perfect square.
  17. Let $ABC$ be a triangle such that $AC\not= BC,AB<AC$ and let $K$ be it's circumcircle. The tangent to $K$ at the point $A$ intersects the line $BC$ at the point $D$. Let $K_1$ be the circle tangent to $K$ and to the segments $(AD),(BD)$. We denote by $M$ the point where $K_1$ touches $(BD)$. Show that $AC=MC$ if and only if $AM$ is the bisector of the $\angle DAB$.
  18. There are $n$ players, $n\ge 2$, which are playing a card game with $np$ cards in $p$ rounds. The cards are coloured in $n$ colours and each colour is labelled with the numbers $1,2,\ldots ,p$. The game submits to the following rules: each player receives $p$ cards. The player who begins the first round throws a card and each player has to discard a card of the same colour, if he has one; otherwise they can give an arbitrary card. The winner of the round is the player who has put the greatest card of the same colour as the first one. the winner of the round starts the next round with a card that he selects and the play continues with the same rules. The played cards are out of the game. Show that if all cards labelled with number $1$ are winners, then $p\ge 2n$.




Abel,5,Albania,2,AMM,2,Amsterdam,5,An Giang,40,Andrew Wiles,1,Anh,2,APMO,21,Austria (Áo),1,Ba Đình,2,Ba Lan,1,Bà Rịa Vũng Tàu,71,Bắc Bộ,2,Bắc Giang,59,Bắc Kạn,3,Bạc Liêu,14,Bắc Ninh,58,Bắc Trung Bộ,3,Bài Toán Hay,5,Balkan,40,Baltic Way,32,BAMO,1,Bất Đẳng Thức,69,Bến Tre,67,Benelux,15,Bình Định,60,Bình Dương,35,Bình Phước,47,Bình Thuận,39,Birch,1,BMO,40,Booklet,12,Bosnia Herzegovina,3,BoxMath,3,Brazil,2,British,16,Bùi Đắc Hiên,1,Bùi Thị Thiện Mỹ,1,Bùi Văn Tuyên,1,Bùi Xuân Diệu,1,Bulgaria,6,Buôn Ma Thuột,2,BxMO,14,Cà Mau,20,Cần Thơ,25,Canada,40,Cao Bằng,11,Cao Quang Minh,1,Câu Chuyện Toán Học,43,Caucasus,3,CGMO,11,China - Trung Quốc,25,Chọn Đội Tuyển,475,Chu Tuấn Anh,1,Chuyên Đề,125,Chuyên SPHCM,7,Chuyên SPHN,26,Chuyên Trần Hưng Đạo,2,Collection,8,College Mathematic,1,Concours,1,Cono Sur,1,Contest,666,Correspondence,1,Cosmin Poahata,1,Crux,2,Czech-Polish-Slovak,26,Đà Nẵng,48,Đa Thức,2,Đại Số,20,Đắk Lắk,72,Đắk Nông,12,Đan Phượng,1,Danube,7,Đào Thái Hiệp,1,ĐBSCL,2,Đề Thi,1,Đề Thi HSG,2097,Đề Thi JMO,1,DHBB,28,Điện Biên,12,Định Lý,1,Định Lý Beaty,1,Đỗ Hữu Đức Thịnh,1,Do Thái,3,Doãn Quang Tiến,5,Đoàn Quỳnh,1,Đoàn Văn Trung,1,Đống Đa,4,Đồng Nai,62,Đồng Tháp,62,Du Hiền Vinh,1,Đức,1,Dương Quỳnh Châu,1,Dương Tú,1,Duyên Hải Bắc Bộ,28,E-Book,31,EGMO,29,ELMO,19,EMC,10,Epsilon,1,Estonian,5,Euler,1,Evan Chen,1,Fermat,3,Finland,4,Forum Of Geometry,2,Furstenberg,1,G. Polya,3,Gặp Gỡ Toán Học,30,Gauss,1,GDTX,3,Geometry,14,GGTH,30,Gia Lai,37,Gia Viễn,2,Giải Tích Hàm,1,Giảng Võ,1,Giới hạn,2,Goldbach,1,Hà Giang,4,Hà Lan,1,Hà Nam,38,Hà Nội,257,Hà Tĩnh,87,Hà Trung Kiên,1,Hải Dương,63,Hải Phòng,54,Hậu Giang,11,Hậu Lộc,1,Hélènne Esnault,1,Hilbert,2,Hình Học,33,HKUST,7,Hòa Bình,31,Hoài Nhơn,1,Hoàng Bá Minh,1,Hoàng Minh Quân,1,Hodge,1,Hojoo Lee,2,HOMC,5,HongKong,8,HSG 10,114,HSG 10 2010-2011,4,HSG 10 2011-2012,6,HSG 10 2012-2013,5,HSG 10 2013-2014,4,HSG 10 2014-2015,5,HSG 10 2015-2016,2,HSG 10 2016-2017,5,HSG 10 2017-2018,3,HSG 10 2018-2019,3,HSG 10 2019-2020,8,HSG 10 2020-2021,2,HSG 10 2021-2022,2,HSG 10 2022-2023,3,HSG 10 Bà Rịa Vũng Tàu,2,HSG 10 Bắc Giang,1,HSG 10 Bạc Liêu,2,HSG 10 Bắc Ninh,3,HSG 10 Bình Định,1,HSG 10 Bình Dương,1,HSG 10 Bình Thuận,3,HSG 10 Chuyên SPHN,5,HSG 10 Đắk Lắk,2,HSG 10 Đồng Nai,4,HSG 10 Gia Lai,2,HSG 10 Hà Nam,3,HSG 10 Hà Tĩnh,13,HSG 10 Hải Dương,9,HSG 10 KHTN,9,HSG 10 Kon Tum,1,HSG 10 Nghệ An,1,HSG 10 Ninh Thuận,1,HSG 10 Phú Yên,2,HSG 10 Quảng Trị,2,HSG 10 Thái Nguyên,8,HSG 10 Thanh Hóa,1,HSG 10 Trà Vinh,5,HSG 10 Vĩnh Phúc,14,HSG 1015-2016,3,HSG 11,115,HSG 11 2010-2011,4,HSG 11 2011-2012,5,HSG 11 2012-2013,7,HSG 11 2013-2014,4,HSG 11 2014-2015,8,HSG 11 2015-2016,2,HSG 11 2016-2017,5,HSG 11 2017-2018,4,HSG 11 2018-2019,5,HSG 11 2019-2020,5,HSG 11 2020-2021,5,HSG 11 2021-2022,1,HSG 11 An Giang,1,HSG 11 Bà Rịa Vũng Tàu,1,HSG 11 Bắc Giang,4,HSG 11 Bạc Liêu,2,HSG 11 Bắc Ninh,4,HSG 11 Bình Định,11,HSG 11 Bình Dương,3,HSG 11 Bình Thuận,1,HSG 11 Cà Mau,1,HSG 11 Đà Nẵng,9,HSG 11 Đồng Nai,1,HSG 11 Hà Nam,1,HSG 11 Hà Tĩnh,10,HSG 11 Hải Phòng,1,HSG 11 Kiên Giang,4,HSG 11 Lạng Sơn,11,HSG 11 Nghệ An,6,HSG 11 Ninh Bình,2,HSG 11 Quảng Bình,9,HSG 11 Quảng Ngãi,8,HSG 11 Quảng Trị,3,HSG 11 Sóc Trăng,1,HSG 11 Thái Nguyên,8,HSG 11 Thanh Hóa,4,HSG 11 Trà Vinh,1,HSG 11 Tuyên Quang,1,HSG 11 Vĩnh Long,2,HSG 11 Vĩnh Phúc,10,HSG 12,610,HSG 12 2009-2010,2,HSG 12 2010-2011,39,HSG 12 2011-2012,44,HSG 12 2012-2013,58,HSG 12 2013-2014,53,HSG 12 2014-2015,44,HSG 12 2015-2016,36,HSG 12 2016-2017,47,HSG 12 2017-2018,58,HSG 12 2018-2019,44,HSG 12 2019-2020,43,HSG 12 2020-2021,51,HSG 12 2021-2022,34,HSG 12 2022-2023,14,HSG 12 An Giang,7,HSG 12 Bà Rịa Vũng Tàu,11,HSG 12 Bắc Giang,17,HSG 12 Bạc Liêu,2,HSG 12 Bắc Ninh,13,HSG 12 Bến Tre,18,HSG 12 Bình Định,15,HSG 12 Bình Dương,7,HSG 12 Bình Phước,8,HSG 12 Bình Thuận,7,HSG 12 Cà Mau,8,HSG 12 Cần Thơ,7,HSG 12 Cao Bằng,5,HSG 12 Chuyên SPHN,9,HSG 12 Đà Nẵng,3,HSG 12 Đắk Lắk,20,HSG 12 Đắk Nông,1,HSG 12 Điện Biên,3,HSG 12 Đồng Nai,20,HSG 12 Đồng Tháp,18,HSG 12 Gia Lai,12,HSG 12 Hà Nam,4,HSG 12 Hà Nội,15,HSG 12 Hà Tĩnh,15,HSG 12 Hải Dương,13,HSG 12 Hải Phòng,19,HSG 12 Hậu Giang,3,HSG 12 Hòa Bình,10,HSG 12 Hưng Yên,9,HSG 12 Khánh Hòa,2,HSG 12 KHTN,26,HSG 12 Kiên Giang,11,HSG 12 Kon Tum,2,HSG 12 Lai Châu,4,HSG 12 Lâm Đồng,10,HSG 12 Lạng Sơn,8,HSG 12 Lào Cai,16,HSG 12 Long An,17,HSG 12 Nam Định,7,HSG 12 Nghệ An,11,HSG 12 Ninh Bình,11,HSG 12 Ninh Thuận,6,HSG 12 Phú Thọ,16,HSG 12 Phú Yên,12,HSG 12 Quảng Bình,12,HSG 12 Quảng Nam,9,HSG 12 Quảng Ngãi,5,HSG 12 Quảng Ninh,19,HSG 12 Quảng Trị,9,HSG 12 Sóc Trăng,4,HSG 12 Sơn La,5,HSG 12 Tây Ninh,6,HSG 12 Thái Bình,11,HSG 12 Thái Nguyên,12,HSG 12 Thanh Hóa,18,HSG 12 Thừa Thiên Huế,16,HSG 12 Tiền Giang,3,HSG 12 TPHCM,12,HSG 12 Tuyên Quang,2,HSG 12 Vĩnh Long,6,HSG 12 Vĩnh Phúc,22,HSG 12 Yên Bái,6,HSG 9,533,HSG 9 2009-2010,1,HSG 9 2010-2011,21,HSG 9 2011-2012,44,HSG 9 2012-2013,44,HSG 9 2013-2014,36,HSG 9 2014-2015,40,HSG 9 2015-2016,39,HSG 9 2016-2017,42,HSG 9 2017-2018,47,HSG 9 2018-2019,50,HSG 9 2019-2020,20,HSG 9 2020-2021,53,HSG 9 2021-2022,57,HSG 9 2022-2023,1,HSG 9 An Giang,8,HSG 9 Bà Rịa Vũng Tàu,7,HSG 9 Bắc Giang,12,HSG 9 Bạc Liêu,1,HSG 9 Bắc Ninh,12,HSG 9 Bến Tre,9,HSG 9 Bình Định,10,HSG 9 Bình Dương,6,HSG 9 Bình Phước,13,HSG 9 Bình Thuận,5,HSG 9 Cà Mau,1,HSG 9 Cần Thơ,4,HSG 9 Cao Bằng,1,HSG 9 Chuyên SPHN,2,HSG 9 Đà Nẵng,10,HSG 9 Đắk Lắk,11,HSG 9 Đắk Nông,2,HSG 9 Điện Biên,3,HSG 9 Đồng Nai,7,HSG 9 Đồng Tháp,10,HSG 9 Gia Lai,8,HSG 9 Hà Giang,3,HSG 9 Hà Nam,9,HSG 9 Hà Nội,25,HSG 9 Hà Tĩnh,16,HSG 9 Hải Dương,14,HSG 9 Hải Phòng,7,HSG 9 Hậu Giang,4,HSG 9 Hòa Bình,3,HSG 9 Hưng Yên,9,HSG 9 Khánh Hòa,4,HSG 9 Kiên Giang,15,HSG 9 Kon Tum,8,HSG 9 Lai Châu,1,HSG 9 Lâm Đồng,13,HSG 9 Lạng Sơn,9,HSG 9 Lào Cai,3,HSG 9 Long An,9,HSG 9 Nam Định,8,HSG 9 Nghệ An,19,HSG 9 Ninh Bình,13,HSG 9 Ninh Thuận,3,HSG 9 Phú Thọ,12,HSG 9 Phú Yên,8,HSG 9 Quảng Bình,13,HSG 9 Quảng Nam,11,HSG 9 Quảng Ngãi,12,HSG 9 Quảng Ninh,15,HSG 9 Quảng Trị,9,HSG 9 Sóc Trăng,8,HSG 9 Sơn La,4,HSG 9 Tây Ninh,16,HSG 9 Thái Bình,9,HSG 9 Thái Nguyên,5,HSG 9 Thanh Hóa,17,HSG 9 Thừa Thiên Huế,8,HSG 9 Tiền Giang,6,HSG 9 TPHCM,10,HSG 9 Trà Vinh,2,HSG 9 Tuyên Quang,5,HSG 9 Vĩnh Long,11,HSG 9 Vĩnh Phúc,12,HSG 9 Yên Bái,4,HSG Cấp Trường,89,HSG Quốc Gia,109,HSG Quốc Tế,16,HSG11 2021-2022,3,Hứa Lâm Phong,1,Hứa Thuần Phỏng,1,Hùng Vương,2,Hưng Yên,39,Hương Sơn,2,Huỳnh Kim Linh,1,Hy Lạp,1,IMC,26,IMO,57,IMT,2,IMU,2,India - Ấn Độ,47,Inequality,13,InMC,1,International,340,Iran,13,Jakob,1,JBMO,41,Jewish,1,Journal,30,Junior,38,K2pi,1,Kazakhstan,1,Khánh Hòa,26,KHTN,61,Kiên Giang,71,Kim Liên,1,Kon Tum,23,Korea - Hàn Quốc,5,Kvant,2,Kỷ Yếu,45,Lai Châu,10,Lâm Đồng,44,Lăng Hồng Nguyệt Anh,1,Lạng Sơn,35,Langlands,1,Lào Cai,32,Lê Hải Châu,1,Lê Hải Khôi,1,Lê Hoành Phò,4,Lê Hồng Phong,5,Lê Khánh Sỹ,3,Lê Minh Cường,1,Lê Phúc Lữ,1,Lê Phương,1,Lê Quý Đôn,1,Lê Viết Hải,1,Lê Việt Hưng,2,Leibniz,1,Long An,48,Lớp 10 Chuyên,666,Lớp 10 Không Chuyên,347,Lớp 11,1,Lục Ngạn,1,Lượng giác,1,Lương Tài,1,Lưu Giang Nam,2,Lưu Lý Tưởng,1,Lý Thánh Tông,1,Macedonian,1,Malaysia,1,Margulis,2,Mark Levi,1,Mathematical Excalibur,1,Mathematical Reflections,1,Mathematics Magazine,1,Mathematics Today,1,Mathley,1,MathLinks,1,MathProblems Journal,1,Mathscope,8,MathsVN,5,MathVN,1,MEMO,12,Menelaus,1,Metropolises,4,Mexico,1,MIC,1,Michael Atiyah,1,Michael Guillen,1,Mochizuki,1,Moldova,1,Moscow,1,MYTS,4,Nam Định,44,Nam Phi,1,National,276,Nesbitt,1,Newton,4,Nghệ An,68,Ngô Bảo Châu,2,Ngô Việt Hải,1,Ngọc Huyền,2,Nguyễn Anh Tuyến,1,Nguyễn Bá Đang,1,Nguyễn Đình Thi,1,Nguyễn Đức Tấn,1,Nguyễn Đức Thắng,1,Nguyễn Duy Khương,1,Nguyễn Duy Tùng,1,Nguyễn Hữu Điển,3,Nguyễn Minh Hà,1,Nguyễn Minh Tuấn,9,Nguyễn Nhất Huy,1,Nguyễn Phan Tài Vương,1,Nguyễn Phú Khánh,1,Nguyễn Phúc Tăng,2,Nguyễn Quản Bá Hồng,1,Nguyễn Quang Sơn,1,Nguyễn Song Thiên Long,1,Nguyễn Tài Chung,5,Nguyễn Tăng Vũ,1,Nguyễn Tất Thu,1,Nguyễn Thúc Vũ Hoàng,1,Nguyễn Trung Tuấn,8,Nguyễn Tuấn Anh,2,Nguyễn Văn Huyện,3,Nguyễn Văn Mậu,25,Nguyễn Văn Nho,1,Nguyễn Văn Quý,2,Nguyễn Văn Thông,1,Nguyễn Việt Anh,1,Nguyễn Vũ Lương,2,Nhật Bản,4,Nhóm $\LaTeX$,4,Nhóm Toán,1,Ninh Bình,58,Ninh Thuận,23,Nội Suy Lagrange,2,Nội Suy Newton,1,Nordic,21,Olympiad Corner,1,Olympiad Preliminary,2,Olympic 10,126,Olympic 10/3,6,Olympic 10/3 Đắk Lắk,6,Olympic 11,117,Olympic 12,49,Olympic 23/3,2,Olympic 24/3,10,Olympic 24/3 Quảng Nam,10,Olympic 27/4,23,Olympic 30/4,57,Olympic KHTN,7,Olympic Sinh Viên,75,Olympic Tháng 4,12,Olympic Toán,330,Olympic Toán Sơ Cấp,3,Ôn Thi 10,2,PAMO,1,Phạm Đình Đồng,1,Phạm Đức Tài,1,Phạm Huy Hoàng,1,Pham Kim Hung,3,Phạm Quốc Sang,2,Phan Huy Khải,1,Phan Quang Đạt,1,Phan Thành Nam,1,Pháp,2,Philippines,8,Phú Thọ,31,Phú Yên,38,Phùng Hồ Hải,1,Phương Trình Hàm,11,Phương Trình Pythagoras,1,Pi,1,Polish,32,Problems,1,PT-HPT,14,PTNK,55,Putnam,27,Quảng Bình,57,Quảng Nam,50,Quảng Ngãi,44,Quảng Ninh,54,Quảng Trị,38,Quỹ Tích,1,Riemann,1,RMM,13,RMO,24,Romania,37,Romanian Mathematical,1,Russia,1,Sách Thường Thức Toán,7,Sách Toán,70,Sách Toán Cao Học,1,Sách Toán THCS,7,Saudi Arabia - Ả Rập Xê Út,9,Scholze,1,Serbia,17,Sharygin,28,Shortlists,56,Simon Singh,1,Singapore,1,Số Học - Tổ Hợp,28,Sóc Trăng,31,Sơn La,21,Spain,8,Star Education,1,Stars of Mathematics,11,Swinnerton-Dyer,1,Talent Search,1,Tăng Hải Tuân,2,Tạp Chí,17,Tập San,3,Tây Ban Nha,1,Tây Ninh,36,Thạch Hà,1,Thái Bình,42,Thái Nguyên,57,Thái Vân,2,Thanh Hóa,74,THCS,2,Thổ Nhĩ Kỳ,5,Thomas J. Mildorf,1,Thông Tin Toán Học,43,THPT Chuyên Lê Quý Đôn,1,THPT Chuyên Nguyễn Du,9,THPTQG,16,THTT,6,Thừa Thiên Huế,50,Tiền Giang,27,Tin Tức Toán Học,1,Titu Andreescu,2,Toán 12,7,Toán Cao Cấp,3,Toán Rời Rạc,5,Toán Tuổi Thơ,3,Tôn Ngọc Minh Quân,2,TOT,1,TPHCM,147,Trà Vinh,9,Trắc Nghiệm,1,Trắc Nghiệm Toán,2,Trại Hè,37,Trại Hè Hùng Vương,28,Trại Hè Phương Nam,7,Trần Đăng Phúc,1,Trần Minh Hiền,2,Trần Nam Dũng,12,Trần Phương,1,Trần Quang Hùng,1,Trần Quốc Anh,2,Trần Quốc Luật,1,Trần Quốc Nghĩa,1,Trần Tiến Tự,1,Trịnh Đào Chiến,2,Trường Đông,20,Trường Hè,8,Trường Thu,1,Trường Xuân,2,TST,504,TST 2008-2009,1,TST 2010-2011,22,TST 2011-2012,23,TST 2012-2013,32,TST 2013-2014,29,TST 2014-2015,27,TST 2015-2016,26,TST 2016-2017,41,TST 2017-2018,41,TST 2018-2019,30,TST 2019-2020,36,TST 2020-2021,29,TST 2021-2022,36,TST 2022-2023,27,TST An Giang,7,TST Bà Rịa Vũng Tàu,10,TST Bắc Giang,5,TST Bắc Ninh,11,TST Bến Tre,7,TST Bình Định,4,TST Bình Dương,6,TST Bình Phước,7,TST Bình Thuận,8,TST Cà Mau,5,TST Cần Thơ,5,TST Cao Bằng,2,TST Đà Nẵng,8,TST Đắk Lắk,11,TST Đắk Nông,1,TST Điện Biên,2,TST Đồng Nai,12,TST Đồng Tháp,12,TST Gia Lai,4,TST Hà Nam,7,TST Hà Nội,10,TST Hà Tĩnh,14,TST Hải Dương,11,TST Hải Phòng,13,TST Hậu Giang,1,TST Hòa Bình,3,TST Hưng Yên,9,TST Khánh Hòa,8,TST Kiên Giang,10,TST Kon Tum,6,TST Lâm Đồng,11,TST Lạng Sơn,2,TST Lào Cai,4,TST Long An,5,TST Nam Định,8,TST Nghệ An,7,TST Ninh Bình,11,TST Ninh Thuận,3,TST Phú Thọ,13,TST Phú Yên,4,TST PTNK,14,TST Quảng Bình,12,TST Quảng Nam,5,TST Quảng Ngãi,7,TST Quảng Ninh,7,TST Quảng Trị,9,TST Sóc Trăng,3,TST Sơn La,7,TST Thái Bình,6,TST Thái Nguyên,8,TST Thanh Hóa,9,TST Thừa Thiên Huế,4,TST Tiền Giang,4,TST TPHCM,14,TST Trà Vinh,1,TST Tuyên Quang,1,TST Vĩnh Long,6,TST Vĩnh Phúc,7,TST Yên Bái,8,Tuyên Quang,12,Tuyển Sinh,4,Tuyển Sinh 10,1013,Tuyển Sinh 10 An Giang,17,Tuyển Sinh 10 Bà Rịa Vũng Tàu,21,Tuyển Sinh 10 Bắc Giang,19,Tuyển Sinh 10 Bạc Liêu,7,Tuyển Sinh 10 Bắc Ninh,15,Tuyển Sinh 10 Bến Tre,33,Tuyển Sinh 10 Bình Định,19,Tuyển Sinh 10 Bình Dương,12,Tuyển Sinh 10 Bình Phước,19,Tuyển Sinh 10 Bình Thuận,15,Tuyển Sinh 10 Cà Mau,5,Tuyển Sinh 10 Cần Thơ,9,Tuyển Sinh 10 Cao Bằng,2,Tuyển Sinh 10 Chuyên SPHN,15,Tuyển Sinh 10 Đà Nẵng,17,Tuyển Sinh 10 Đắk Lắk,20,Tuyển Sinh 10 Đắk Nông,6,Tuyển Sinh 10 Điện Biên,4,Tuyển Sinh 10 Đồng Nai,18,Tuyển Sinh 10 Đồng Tháp,22,Tuyển Sinh 10 Gia Lai,10,Tuyển Sinh 10 Hà Giang,1,Tuyển Sinh 10 Hà Nam,14,Tuyển Sinh 10 Hà Nội,80,Tuyển Sinh 10 Hà Tĩnh,18,Tuyển Sinh 10 Hải Dương,16,Tuyển Sinh 10 Hải Phòng,14,Tuyển Sinh 10 Hậu Giang,3,Tuyển Sinh 10 Hòa Bình,15,Tuyển Sinh 10 Hưng Yên,12,Tuyển Sinh 10 Khánh Hòa,12,Tuyển Sinh 10 KHTN,19,Tuyển Sinh 10 Kiên Giang,31,Tuyển Sinh 10 Kon Tum,6,Tuyển Sinh 10 Lai Châu,5,Tuyển Sinh 10 Lâm Đồng,10,Tuyển Sinh 10 Lạng Sơn,6,Tuyển Sinh 10 Lào Cai,9,Tuyển Sinh 10 Long An,17,Tuyển Sinh 10 Nam Định,21,Tuyển Sinh 10 Nghệ An,22,Tuyển Sinh 10 Ninh Bình,19,Tuyển Sinh 10 Ninh Thuận,10,Tuyển Sinh 10 Phú Thọ,17,Tuyển Sinh 10 Phú Yên,11,Tuyển Sinh 10 PTNK,35,Tuyển Sinh 10 Quảng Bình,11,Tuyển Sinh 10 Quảng Nam,15,Tuyển Sinh 10 Quảng Ngãi,12,Tuyển Sinh 10 Quảng Ninh,11,Tuyển Sinh 10 Quảng Trị,6,Tuyển Sinh 10 Sóc Trăng,15,Tuyển Sinh 10 Sơn La,5,Tuyển Sinh 10 Tây Ninh,14,Tuyển Sinh 10 Thái Bình,16,Tuyển Sinh 10 Thái Nguyên,16,Tuyển Sinh 10 Thanh Hóa,24,Tuyển Sinh 10 Thừa Thiên Huế,22,Tuyển Sinh 10 Tiền Giang,14,Tuyển Sinh 10 TPHCM,23,Tuyển Sinh 10 Tuyên Quang,3,Tuyển Sinh 10 Vĩnh Long,12,Tuyển Sinh 10 Vĩnh Phúc,21,Tuyển Sinh 2008-2009,1,Tuyển Sinh 2009-2010,1,Tuyển Sinh 2010-2011,6,Tuyển Sinh 2011-2012,20,Tuyển Sinh 2012-2013,63,Tuyển Sinh 2013-2014,78,Tuyển Sinh 2014-2015,78,Tuyển Sinh 2015-2016,60,Tuyển Sinh 2016-2017,72,Tuyển Sinh 2017-2018,126,Tuyển Sinh 2018-2019,60,Tuyển Sinh 2019-2020,90,Tuyển Sinh 2020-2021,59,Tuyển Sinh 2021-202,1,Tuyển Sinh 2021-2022,70,Tuyển Sinh 2022-2023,114,Tuyển Sinh Chuyên SPHCM,7,Tuyển Sinh Yên Bái,6,Tuyển Tập,45,Tuymaada,6,UK - Anh,16,Undergraduate,69,USA - Mỹ,62,USA TSTST,6,USAJMO,12,USATST,8,USEMO,4,Uzbekistan,1,Vasile Cîrtoaje,4,Vật Lý,1,Viện Toán Học,4,Vietnam,4,Viktor Prasolov,1,VIMF,1,Vinh,31,Vĩnh Long,37,Vĩnh Phúc,86,Virginia Tech,1,VLTT,1,VMEO,4,VMF,12,VMO,51,VNTST,23,Võ Anh Khoa,1,Võ Quốc Bá Cẩn,26,Võ Thành Văn,1,Vojtěch Jarník,6,Vũ Hữu Bình,7,Vương Trung Dũng,1,WFNMC Journal,1,Wiles,1,Xác Suất,1,Yên Bái,24,Yên Định,1,Yên Thành,1,Zhautykov,13,Zhou Yuan Zhe,1,
MOlympiad.NET: [Solutions] Romanian Mathematical Competitions 2002
[Solutions] Romanian Mathematical Competitions 2002
Loaded All Posts Not found any posts VIEW ALL Readmore Reply Cancel reply Delete By Home PAGES POSTS View All RECOMMENDED FOR YOU Tag ARCHIVE SEARCH ALL POSTS Not found any post match with your request Back Home Sunday Monday Tuesday Wednesday Thursday Friday Saturday Sun Mon Tue Wed Thu Fri Sat January February March April May June July August September October November December Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec just now 1 minute ago $$1$$ minutes ago 1 hour ago $$1$$ hours ago Yesterday $$1$$ days ago $$1$$ weeks ago more than 5 weeks ago Followers Follow THIS PREMIUM CONTENT IS LOCKED
Copy All Code Select All Code All codes were copied to your clipboard Can not copy the codes / texts, please press [CTRL]+[C] (or CMD+C with Mac) to copy Table of Content