[Solutions] Romanian Mathematical Competitions 2001

Romania National Olympiad 2001

Grade level 7

  1. Show that there exist no integers $a$ and $b$ such that $$a^3+a^2b+ab^2+b^3=2001.$$
  2. Let $a$ and $b$ be real, positive and distinct numbers. We consider the set \[M=\{ ax+by\mid x,y\in\mathbb{R},\ x>0,\ y>0,\ x+y=1\}.\] Prove that
    a) $\dfrac{2ab}{a+b}\in M;$
    b) $\sqrt{ab}\in M.$
  3. We consider a right trapezoid $ABCD$, in which $AB||CD$, $AB>CD$, $AD\perp AB$ and $AD>CD$. The diagonals $AC$ and $BD$ intersect at $O$. The parallel through $O$ to $AB$ intersects $AD$ in $E$ and $BE$ intersects $CD$ in $F$. Prove that $CE\perp AF$ if and only if $AB\cdot CD=AD^2-CD^2$ .
  4. Consider the acute angle $ABC$. On the half-line $BC$ we consider the distinct points $P$ and $Q$ whose projections onto the line $AB$ are the points $M$ and $N$. Knowing that $AP=AQ$ and $AM^2-AN^2=BN^2-BM^2$, find the angle $ABC$.

Grade level 8

  1. Determine all real numbers $a$ and $b$ such that $a+b\in\mathbb{Z}$ and $a^2+b^2=2$.
  2. For every rational number $m>0$ we consider the function $f_m:\mathbb{R}\rightarrow\mathbb{R}$, $f_m(x)=\dfrac{1}{m}x+m$. Denote by $G_m$ the graph of the function $f_m$. Let $p,q,r$ be positive rational numbers.
    a) Show that if $p$ and $q$ are distinct then $G_p\cap G_q$ is non-empty.
    b) Show that if $G_p\cap G_q$ is a point with integer coordinates, then $p$ and $q$ are integer numbers.
    c) Show that if $p,q,r$ are consecutive natural numbers, then the area of the triangle determined by intersections of $G_p,G_q$ and $G_r$ is equal to $1$.
  3. We consider the points $A$, $B$, $C$, $D$, not in the same plane, such that $AB\perp CD$ and $AB^2+CD^2=AD^2+BC^2$.
    a) Prove that $AC\perp BD$.
    b) Prove that if $CD<BC<BD$, then the angle between the planes $(ABC)$ and $(ADC)$ is greater than $60^{\circ}$.
  4. In the cube $ABCDA'B'C'D'$, with side $a$, the plane $(AB'D')$ intersects the planes $(A'BC)$, $(A'CD)$, $(A'DB)$ after the lines $d_1$, $d_2$ and $d_3$ respectively.
    a) Show that the lines $d_1$, $d_2$, $d_3$ intersect pairwise.
    b) Determine the area of the triangle formed by these three lines.

Grade level 9

  1. Let $A$ be a set of real numbers which verifies:
    a) $ 1 \in A$
    b) $x\in A\implies x^2\in A$
    c) $x^2-4x+4\in A\implies x\in A$
    Show that $2000+\sqrt{2001}\in A$.
  2. Let $ABC$ be a triangle $(A=90^{\circ})$ and $D\in (AC)$ such that $BD$ is the bisector of $B$. Prove that $BC-BD=2AB$ if and only if
    \[\frac{1}{BD}-\frac{1}{BC}=\frac{1}{2AB} \]
  3. Let $n\in\mathbb{N}^*$ and $v_1,v_2,\ldots ,v_n$ be vectors in the plane with lengths less than or equal to $1$. Prove that there exists $\xi_1,\xi_2,\ldots ,\xi_n\in\{-1,1\}$ such that
    \[ | \xi_1v_1+\xi_2v_2+\ldots +\xi_nv_n|\le\sqrt{2}\]
  4. Determine the ordered systems $(x,y,z)$ of positive rational numbers for which $x+\dfrac{1}{y}$, $y+\dfrac{1}{z}$ and $z+\dfrac{1}{x}$ are integers.

Grade level 10

  1. Let $a$ and $b$ be complex non-zero numbers and $z_1,z_2$ the roots of the polynomials $X^2+aX+b$. Show that $|z_1+z_2|=|z_1|+|z_2|$ if and only if there exists a real number $\lambda\ge 4$ such that $a^2=\lambda b$.
  2. In the tetrahedron $OABC$ we denote by $\alpha,\beta,\gamma$ the measures of the angles $\angle BOC,\angle COA,$ and $\angle AOB$, respectively. Prove the inequality
    \[\cos^2\alpha+\cos^2\beta+\cos^2\gamma<1+2\cos\alpha\cos\beta\cos\gamma \]
  3. Let $m,k$ be positive integers, $k<m$ and $M$ a set with $m$ elements. Prove that the maximal number of subsets $A_1,A_2,\ldots ,A_p$ of $M$ for which $A_i\cap A_j$ has at most $k$ elements, for every $1\le i<j\le p$, equals \[ p_{\max}=\binom{m}{0}+\binom{m}{1}+\binom{m}{2}+\ldots+\binom{m}{k+1}\]
  4. Let $n\ge 2$ be an even integer and $a,b$ real numbers such that $b^n=3a+1$. Show that the polynomial $P(X)=(X^2+X+1)^n-X^n-a$ is divisible by $Q(X)=X^3+X^2+X+b$ if and only if $b=1$.

Grade level 11

  1. Let $f:\mathbb{R}\rightarrow\mathbb{R}$ a continuous function, derivable on $R\backslash\{x_0\}$, having finite side derivatives in $x_0$. Show that there exists a derivable function $g:\mathbb{R}\rightarrow\mathbb{R}$, a linear function $h:\mathbb{R}\rightarrow\mathbb{R}$ and $\alpha\in\{-1,0,1\}$ such that \[ f(x)=g(x)+\alpha |h(x)|,\ \forall x\in\mathbb{R} \]
  2. We consider a matrix $A\in M_n(\textbf{C})$ with rank $r$, where $n\ge 2$ and $1\le r\le n-1$. a) Show that there exist $B\in M_{n,r}(\textbf{C}), C\in M_{r,n}(\textbf{C})$, with $%Error. "rank" is a bad command. B=%Error. "rank" is a bad command. C = r$, such that $A=BC$. b) Show that the matrix $A$ verifies a polynomial equation of degree $r+1$, with complex coefficients.
  3. Let $f:\mathbb{R}\rightarrow[0,\infty )$ be a function with the property that $$|f(x)-f(y)|\le |x-y|$$ for every $x,y\in\mathbb{R}$. Show that:
    a) If $\lim_{n\rightarrow \infty} f(x+n)=\infty$ for every $x\in\mathbb{R}$, then $\lim_{x\rightarrow\infty}=\infty$.
    b) If $\lim_{n\rightarrow \infty} f(x+n)=\alpha ,\alpha\in[0,\infty )$ for every $x\in\mathbb{R}$, then $\lim_{x\rightarrow\infty}=\alpha$.
  4. The continuous function $f:[0,1]\rightarrow\mathbb{R}$ has the property: \[\lim_{x\rightarrow\infty}\ n\left(f\left(x+\frac{1}{n}\right)-f(x)\right)=0 \] for every $x\in [0,1)$. Show that
    a) For every $\epsilon >0$ and $\lambda\in (0,1)$, we have: \[ \sup\ \{x\in[0,\lambda )\mid |f(x)-f(0)|\le \epsilon x \}=\lambda \] b) $f$ is a constant function.

Grade level 12

  1. a) Consider the polynomial $P(X)=X^5\in \mathbb{R}[X]$. Show that for every $\alpha\in\mathbb{R}^*$, the polynomial $P(X+\alpha )-P(X)$ has no real roots.
    b) Let $P(X)\in\mathbb{R}[X]$ be a polynomial of degree $n\ge 2$, with real and distinct roots. Show that there exists $\alpha\in\mathbb{Q}^*$ such that the polynomial $P(X+\alpha )-P(X)$ has only real roots.
  2. Let $A$ be a finite ring. Show that there exists two natural numbers $m,p$ where $m> p\ge 1$, such that $a^m=a^p$ for all $a\in A$.
  3. Let $f:[-1,1]\rightarrow\mathbb{R}$ be a continuous function. Show that:
    a) if $\int_0^1 f(\sin (x+\alpha ))\, dx=0$, for every $\alpha\in\mathbb{R}$, then $f(x)=0$, $\forall x\in [-1,1]$.
    b) if $\int_0^1 f(\sin (nx))\, dx=0$, for every $n\in\mathbb{Z}$, then $f(x)=0$, $\forall x\in [-1,1]$.
  4. Let $f:[0,\infty )\rightarrow\mathbb{R}$ be a periodical function, with period $1$, integrable on $[0,1]$. For a strictly increasing and unbounded sequence $(x_n)_{n\ge 0},\, x_0=0,$ with $\lim_{n\rightarrow\infty} (x_{n+1}-x_n)=0$, we denote $r(n)=\max \{ k\mid x_k\le n\}$.
    a) Show that \[\lim_{n\rightarrow\infty}\frac{1}{n}\sum_{k=1}^{r(n)}(x_k-x_{k+1})f(x_k)=\int_0^1 f(x)\, dx\]
    b) Show that \[ \lim_{n\rightarrow\infty} \frac{1}{\ln n}\sum_{k=1}^{r(n)}\frac{f(\ln k)}{k}=\int_0^1f(x)\, dx\]

Romania Team Selection Test 2001

  1. Show that if $a,b,c$ are complex numbers that such that
    \[(a+b)(a+c)=b, \quad (b+c)(b+a)=c, \quad (c+a)(c+b)=a\] then $a,b,c$ are real numbers.
  2. a) Let $f,g:\mathbb{Z}\rightarrow\mathbb{Z}$ be one to one maps. Show that the function $h:\mathbb{Z}\rightarrow\mathbb{Z}$ defined by $h(x)=f(x)g(x)$, for all $x\in\mathbb{Z}$, cannot be a surjective function.
    b) Let $f:\mathbb{Z}\rightarrow\mathbb{Z}$ be a surjective function. Show that there exist surjective functions $g,h:\mathbb{Z}\rightarrow\mathbb{Z}$ such that $f(x)=g(x)h(x)$, for all $x\in\mathbb{Z}$.
  3. The sides of a triangle have lengths $a,b,c$. Prove that:
    \begin{align*}(-a+b+c)(a-b+c)\, +\, & (a-b+c)(a+b-c)+(a+b-c)(-a+b+c)\\ &\le\sqrt{abc}(\sqrt{a}+\sqrt{b}+\sqrt{c})\end{align*}
  4. Three schools have $200$ students each. Every student has at least one friend in each school (if the student $a$ is a friend of the student $b$ then $b$ is a friend of $a$). It is known that there exists a set $E$ of $300$ students (among the $600$) such that for any school $S$ and any two students $x,y\in E$ but not in $S$, the number of friends in $S$ of $x$ and $y$ are different. Show that one can find a student in each school such that they are friends with each other.
  5. Find all polynomials with real coefficients $P$ such that \[ P(x)P(2x^2-1)=P(x^2)P(2x-1)\] for every $x\in\mathbb{R}$.
  6. The vertices $A,B,C$ and $D$ of a square lie outside a circle centred at $M$. Let $AA',BB',CC',DD'$ be tangents to the circle. Assume that the segments $AA',BB',CC',DD'$ are the consecutive sides of a quadrilateral $p$ in which a circle is inscribed. Prove that $p$ has an axis of symmetry.
  7. Find the least $n\in N$ such that among any $n$ rays in space sharing a common origin there exist two which form an acute angle.
  8. Show that the set of positive integers that cannot be represented as a sum of distinct perfect squares is finite.
  9. Let $n$ be a positive integer and $f(x)=a_mx^m+\ldots + a_1X+a_0$, with $m\ge 2$, a polynomial with integer coefficients such that:
    a) $a_2,a_3\ldots a_m$ are divisible by all prime factors of $n$,
    b) $a_1$ and $n$ are relatively prime.
    Prove that for any positive integer $k$, there exists a positive integer $c$, such that $f(c)$ is divisible by $n^k$.
  10. Let $ p$ and $ q$ be relatively prime positive integers. A subset $ S$ of $ \{0, 1, 2, \ldots \}$ is called ideal if $ 0 \in S$ and for each element $ n \in S,$ the integers $ n + p$ and $ n + q$ belong to $ S.$ Determine the number of ideal subsets of $ \{0, 1, 2, \ldots \}.$
  11. Find all pairs $\left(m,n\right)$ of positive integers, with $m,n\geq2$, such that $a^n-1$ is divisible by $m$ for each $a\in \left\{1,2,3,\ldots,n\right\}$.
  12. Prove that there is no function $f:(0,\infty )\rightarrow (0,\infty)$ such that \[f(x+y)\ge f(x)+yf(f(x)) \] for every $x,y\in (0,\infty )$.
  13. The tangents at $A$ and $B$ to the circumcircle of the acute triangle $ABC$ intersect the tangent at $C$ at the points $D$ and $E$, respectively. The line $AE$ intersects $BC$ at $P$ and the line $BD$ intersects $AC$ at $R$. Let $Q$ and $S$ be the midpoints of the segments $AP$ and $BR$ respectively. Prove that $\angle ABQ=\angle BAS$.
  14. Consider a convex polyhedron $P$ with vertices $V_1,\ldots ,V_p$. The distinct vertices $V_i$ and $V_j$ are called neighbours if they belong to the same face of the polyhedron. To each vertex $V_k$ we assign a number $v_k(0)$, and construct inductively the sequence $v_k(n)\ (n\ge 0)$ as follows: $v_k(n+1)$ is the average of the $v_j(n)$ for all neighbours $V_j$ of $V_k$ . If all numbers $v_k(n)$ are integers, prove that there exists the positive integer $N$ such that all $v_k(n)$ are equal for $n\ge N$ .

Post a Comment





Kỷ Yếu$cl=violet$type=three$count=6$sr=random$t=oot$h=1$l=0$meta=hide$rm=hide$sn=0$hide=mobile



Ả-rập Xê-út,1,Abel,5,Albania,2,AMM,3,Amsterdam,5,Ấn Độ,2,An Giang,23,Andrew Wiles,1,Anh,2,Áo,1,APMO,19,Ba Đình,2,Ba Lan,1,Bà Rịa Vũng Tàu,52,Bắc Giang,50,Bắc Kạn,1,Bạc Liêu,9,Bắc Ninh,48,Bắc Trung Bộ,7,Bài Toán Hay,5,Balkan,38,Baltic Way,30,BAMO,1,Bất Đẳng Thức,66,Bến Tre,46,Benelux,14,Bình Định,45,Bình Dương,23,Bình Phước,38,Bình Thuận,34,Birch,1,Booklet,11,Bosnia Herzegovina,3,BoxMath,3,Brazil,2,Bùi Đắc Hiên,1,Bùi Thị Thiện Mỹ,1,Bùi Văn Tuyên,1,Bùi Xuân Diệu,1,Bulgaria,6,Buôn Ma Thuột,1,BxMO,13,Cà Mau,14,Cần Thơ,14,Canada,40,Cao Bằng,7,Cao Quang Minh,1,Câu Chuyện Toán Học,36,Caucasus,2,CGMO,10,China,10,Chọn Đội Tuyển,351,Chu Tuấn Anh,1,Chuyên Đề,124,Chuyên Sư Phạm,31,Chuyên Trần Hưng Đạo,3,Collection,8,College Mathematic,1,Concours,1,Cono Sur,1,Contest,618,Correspondence,1,Cosmin Poahata,1,Crux,2,Czech-Polish-Slovak,26,Đà Nẵng,39,Đa Thức,2,Đại Số,20,Đắk Lắk,56,Đắk Nông,7,Đan Phượng,1,Danube,7,Đào Thái Hiệp,1,ĐBSCL,2,Đề Thi,1,Đề Thi HSG,1766,Đề Thi JMO,1,Điện Biên,8,Định Lý,1,Định Lý Beaty,1,Đỗ Hữu Đức Thịnh,1,Do Thái,3,Doãn Quang Tiến,4,Đoàn Quỳnh,1,Đoàn Văn Trung,1,Đống Đa,4,Đồng Nai,49,Đồng Tháp,52,Du Hiền Vinh,1,Đức,1,Duyên Hải Bắc Bộ,25,E-Book,33,EGMO,17,ELMO,19,EMC,9,Epsilon,1,Estonian,5,Euler,1,Evan Chen,1,Fermat,3,Finland,4,Forum Of Geometry,2,Furstenberg,1,G. Polya,3,Gặp Gỡ Toán Học,26,Gauss,1,GDTX,3,Geometry,12,Gia Lai,26,Gia Viễn,2,Giải Tích Hàm,1,Giảng Võ,1,Giới hạn,2,Goldbach,1,Hà Giang,2,Hà Lan,1,Hà Nam,29,Hà Nội,232,Hà Tĩnh,72,Hà Trung Kiên,1,Hải Dương,50,Hải Phòng,42,Hàn Quốc,5,Hậu Giang,4,Hậu Lộc,1,Hilbert,1,Hình Học,33,HKUST,7,Hòa Bình,13,Hoài Nhơn,1,Hoàng Bá Minh,1,Hoàng Minh Quân,1,Hodge,1,Hojoo Lee,2,HOMC,5,HongKong,8,HSG 10,101,HSG 11,91,HSG 12,585,HSG 9,425,HSG Cấp Trường,78,HSG Quốc Gia,106,HSG Quốc Tế,16,Hứa Lâm Phong,1,Hứa Thuần Phỏng,1,Hùng Vương,2,Hưng Yên,33,Hương Sơn,2,Huỳnh Kim Linh,1,Hy Lạp,1,IMC,26,IMO,56,IMT,1,India,45,Inequality,13,InMC,1,International,315,Iran,11,Jakob,1,JBMO,41,Jewish,1,Journal,20,Junior,38,K2pi,1,Kazakhstan,1,Khánh Hòa,17,KHTN,54,Kiên Giang,64,Kim Liên,1,Kon Tum,18,Korea,5,Kvant,2,Kỷ Yếu,42,Lai Châu,4,Lâm Đồng,33,Lạng Sơn,21,Langlands,1,Lào Cai,17,Lê Hải Châu,1,Lê Hải Khôi,1,Lê Hoành Phò,4,Lê Khánh Sỹ,3,Lê Minh Cường,1,Lê Phúc Lữ,1,Lê Phương,1,Lê Quý Đôn,1,Lê Viết Hải,1,Lê Việt Hưng,1,Leibniz,1,Long An,42,Lớp 10,10,Lớp 10 Chuyên,455,Lớp 10 Không Chuyên,229,Lớp 11,1,Lục Ngạn,1,Lượng giác,1,Lương Tài,1,Lưu Giang Nam,2,Lý Thánh Tông,1,Macedonian,1,Malaysia,1,Margulis,2,Mark Levi,1,Mathematical Excalibur,1,Mathematical Reflections,1,Mathematics Magazine,1,Mathematics Today,1,Mathley,1,MathLinks,1,MathProblems Journal,1,Mathscope,8,MathsVN,5,MathVN,1,MEMO,11,Metropolises,4,Mexico,1,MIC,1,Michael Guillen,1,Mochizuki,1,Moldova,1,Moscow,1,Mỹ,10,MYM,227,MYTS,4,Nam Định,33,Nam Phi,1,Nam Trung Bộ,1,National,249,Nesbitt,1,Newton,4,Nghệ An,52,Ngô Bảo Châu,2,Ngô Việt Hải,1,Ngọc Huyền,2,Nguyễn Anh Tuyến,1,Nguyễn Bá Đang,1,Nguyễn Đình Thi,1,Nguyễn Đức Tấn,1,Nguyễn Đức Thắng,1,Nguyễn Duy Khương,1,Nguyễn Duy Tùng,1,Nguyễn Hữu Điển,3,Nguyễn Mình Hà,1,Nguyễn Minh Tuấn,8,Nguyễn Phan Tài Vương,1,Nguyễn Phú Khánh,1,Nguyễn Phúc Tăng,1,Nguyễn Quản Bá Hồng,1,Nguyễn Quang Sơn,1,Nguyễn Tài Chung,5,Nguyễn Tăng Vũ,1,Nguyễn Tất Thu,1,Nguyễn Thúc Vũ Hoàng,1,Nguyễn Trung Tuấn,8,Nguyễn Tuấn Anh,2,Nguyễn Văn Huyện,3,Nguyễn Văn Mậu,25,Nguyễn Văn Nho,1,Nguyễn Văn Quý,2,Nguyễn Văn Thông,1,Nguyễn Việt Anh,1,Nguyễn Vũ Lương,2,Nhật Bản,4,Nhóm $\LaTeX$,4,Nhóm Toán,1,Ninh Bình,42,Ninh Thuận,15,Nội Suy Lagrange,2,Nội Suy Newton,1,Nordic,19,Olympiad Corner,1,Olympiad Preliminary,2,Olympic 10,99,Olympic 10/3,5,Olympic 11,92,Olympic 12,30,Olympic 24/3,7,Olympic 27/4,20,Olympic 30/4,69,Olympic KHTN,6,Olympic Sinh Viên,73,Olympic Tháng 4,12,Olympic Toán,304,Olympic Toán Sơ Cấp,3,PAMO,1,Phạm Đình Đồng,1,Phạm Đức Tài,1,Phạm Huy Hoàng,1,Pham Kim Hung,3,Phạm Quốc Sang,2,Phan Huy Khải,1,Phan Thành Nam,1,Pháp,2,Philippines,8,Phú Thọ,30,Phú Yên,29,Phùng Hồ Hải,1,Phương Trình Hàm,11,Phương Trình Pythagoras,1,Pi,1,Polish,32,Problems,1,PT-HPT,14,PTNK,45,Putnam,25,Quảng Bình,44,Quảng Nam,32,Quảng Ngãi,34,Quảng Ninh,43,Quảng Trị,27,Quỹ Tích,1,Riemann,1,RMM,12,RMO,24,Romania,36,Romanian Mathematical,1,Russia,1,Sách Thường Thức Toán,7,Sách Toán,69,Sách Toán Cao Học,1,Sách Toán THCS,7,Saudi Arabia,7,Scholze,1,Serbia,17,Sharygin,24,Shortlists,56,Simon Singh,1,Singapore,1,Số Học - Tổ Hợp,27,Sóc Trăng,28,Sơn La,12,Spain,8,Star Education,5,Stars of Mathematics,11,Swinnerton-Dyer,1,Talent Search,1,Tăng Hải Tuân,2,Tạp Chí,14,Tập San,6,Tây Ban Nha,1,Tây Ninh,29,Thạch Hà,1,Thái Bình,39,Thái Nguyên,49,Thái Vân,2,Thanh Hóa,62,THCS,2,Thổ Nhĩ Kỳ,5,Thomas J. Mildorf,1,THPT Chuyên Lê Quý Đôn,1,THPTQG,15,THTT,7,Thừa Thiên Huế,36,Tiền Giang,19,Tin Tức Toán Học,1,Titu Andreescu,2,Toán 12,7,Toán Cao Cấp,3,Toán Chuyên,2,Toán Rời Rạc,5,Toán Tuổi Thơ,3,Tôn Ngọc Minh Quân,2,TOT,1,TPHCM,126,Trà Vinh,6,Trắc Nghiệm,1,Trắc Nghiệm Toán,2,Trại Hè,34,Trại Hè Hùng Vương,25,Trại Hè Phương Nam,5,Trần Đăng Phúc,1,Trần Minh Hiền,2,Trần Nam Dũng,9,Trần Phương,1,Trần Quang Hùng,1,Trần Quốc Anh,2,Trần Quốc Luật,1,Trần Quốc Nghĩa,1,Trần Tiến Tự,1,Trịnh Đào Chiến,2,Trung Quốc,14,Trường Đông,19,Trường Hè,7,Trường Thu,1,Trường Xuân,2,TST,56,Tuyên Quang,6,Tuyển Sinh,3,Tuyển Sinh 10,680,Tuyển Tập,44,Tuymaada,4,Undergraduate,67,USA,44,USAJMO,10,USATST,7,Uzbekistan,1,Vasile Cîrtoaje,4,Vật Lý,1,Viện Toán Học,2,Vietnam,4,Viktor Prasolov,1,VIMF,1,Vinh,27,Vĩnh Long,21,Vĩnh Phúc,64,Virginia Tech,1,VLTT,1,VMEO,4,VMF,12,VMO,47,VNTST,22,Võ Anh Khoa,1,Võ Quốc Bá Cẩn,26,Võ Thành Văn,1,Vojtěch Jarník,6,Vũ Hữu Bình,7,Vương Trung Dũng,1,WFNMC Journal,1,Wiles,1,Yên Bái,18,Yên Định,1,Yên Thành,1,Zhautykov,11,Zhou Yuan Zhe,1,
MOlympiad: [Solutions] Romanian Mathematical Competitions 2001
[Solutions] Romanian Mathematical Competitions 2001
Loaded All Posts Not found any posts VIEW ALL Readmore Reply Cancel reply Delete By Home PAGES POSTS View All RECOMMENDED FOR YOU LABEL ARCHIVE SEARCH ALL POSTS Not found any post match with your request Back Home Sunday Monday Tuesday Wednesday Thursday Friday Saturday Sun Mon Tue Wed Thu Fri Sat January February March April May June July August September October November December Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec just now 1 minute ago $$1$$ minutes ago 1 hour ago $$1$$ hours ago Yesterday $$1$$ days ago $$1$$ weeks ago more than 5 weeks ago Followers Follow THIS PREMIUM CONTENT IS LOCKED Please share to unlock Copy All Code Select All Code All codes were copied to your clipboard Can not copy the codes / texts, please press [CTRL]+[C] (or CMD+C with Mac) to copy